| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #if !defined(_POSIX_C_SOURCE) |
| #define _POSIX_C_SOURCE 201410L |
| #endif |
| |
| #include <openssl/base.h> |
| |
| #if !defined(OPENSSL_WINDOWS) |
| #include <arpa/inet.h> |
| #include <fcntl.h> |
| #include <netinet/in.h> |
| #include <string.h> |
| #include <sys/socket.h> |
| #include <unistd.h> |
| #else |
| #include <io.h> |
| OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| #include <winsock2.h> |
| #include <ws2tcpip.h> |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| #endif |
| |
| #include <openssl/bio.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include <algorithm> |
| |
| #include "../test/scoped_types.h" |
| |
| |
| namespace bssl { |
| |
| #if !defined(OPENSSL_WINDOWS) |
| static int closesocket(int sock) { |
| return close(sock); |
| } |
| |
| static void PrintSocketError(const char *func) { |
| perror(func); |
| } |
| #else |
| static void PrintSocketError(const char *func) { |
| fprintf(stderr, "%s: %d\n", func, WSAGetLastError()); |
| } |
| #endif |
| |
| class ScopedSocket { |
| public: |
| ScopedSocket(int sock) : sock_(sock) {} |
| ~ScopedSocket() { |
| closesocket(sock_); |
| } |
| |
| private: |
| const int sock_; |
| }; |
| |
| static bool TestSocketConnect() { |
| static const char kTestMessage[] = "test"; |
| |
| int listening_sock = socket(AF_INET, SOCK_STREAM, 0); |
| if (listening_sock == -1) { |
| PrintSocketError("socket"); |
| return false; |
| } |
| ScopedSocket listening_sock_closer(listening_sock); |
| |
| struct sockaddr_in sin; |
| memset(&sin, 0, sizeof(sin)); |
| sin.sin_family = AF_INET; |
| if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) { |
| PrintSocketError("inet_pton"); |
| return false; |
| } |
| if (bind(listening_sock, (struct sockaddr *)&sin, sizeof(sin)) != 0) { |
| PrintSocketError("bind"); |
| return false; |
| } |
| if (listen(listening_sock, 1)) { |
| PrintSocketError("listen"); |
| return false; |
| } |
| socklen_t sockaddr_len = sizeof(sin); |
| if (getsockname(listening_sock, (struct sockaddr *)&sin, &sockaddr_len) || |
| sockaddr_len != sizeof(sin)) { |
| PrintSocketError("getsockname"); |
| return false; |
| } |
| |
| char hostname[80]; |
| BIO_snprintf(hostname, sizeof(hostname), "%s:%d", "127.0.0.1", |
| ntohs(sin.sin_port)); |
| ScopedBIO bio(BIO_new_connect(hostname)); |
| if (!bio) { |
| fprintf(stderr, "BIO_new_connect failed.\n"); |
| return false; |
| } |
| |
| if (BIO_write(bio.get(), kTestMessage, sizeof(kTestMessage)) != |
| sizeof(kTestMessage)) { |
| fprintf(stderr, "BIO_write failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| int sock = accept(listening_sock, (struct sockaddr *) &sin, &sockaddr_len); |
| if (sock == -1) { |
| PrintSocketError("accept"); |
| return false; |
| } |
| ScopedSocket sock_closer(sock); |
| |
| char buf[5]; |
| if (recv(sock, buf, sizeof(buf), 0) != sizeof(kTestMessage)) { |
| PrintSocketError("read"); |
| return false; |
| } |
| if (memcmp(buf, kTestMessage, sizeof(kTestMessage))) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| |
| // BioReadZeroCopyWrapper is a wrapper around the zero-copy APIs to make |
| // testing easier. |
| static size_t BioReadZeroCopyWrapper(BIO *bio, uint8_t *data, size_t len) { |
| uint8_t *read_buf; |
| size_t read_buf_offset; |
| size_t available_bytes; |
| size_t len_read = 0; |
| |
| do { |
| if (!BIO_zero_copy_get_read_buf(bio, &read_buf, &read_buf_offset, |
| &available_bytes)) { |
| return 0; |
| } |
| |
| available_bytes = std::min(available_bytes, len - len_read); |
| memmove(data + len_read, read_buf + read_buf_offset, available_bytes); |
| |
| BIO_zero_copy_get_read_buf_done(bio, available_bytes); |
| |
| len_read += available_bytes; |
| } while (len - len_read > 0 && available_bytes > 0); |
| |
| return len_read; |
| } |
| |
| // BioWriteZeroCopyWrapper is a wrapper around the zero-copy APIs to make |
| // testing easier. |
| static size_t BioWriteZeroCopyWrapper(BIO *bio, const uint8_t *data, |
| size_t len) { |
| uint8_t *write_buf; |
| size_t write_buf_offset; |
| size_t available_bytes; |
| size_t len_written = 0; |
| |
| do { |
| if (!BIO_zero_copy_get_write_buf(bio, &write_buf, &write_buf_offset, |
| &available_bytes)) { |
| return 0; |
| } |
| |
| available_bytes = std::min(available_bytes, len - len_written); |
| memmove(write_buf + write_buf_offset, data + len_written, available_bytes); |
| |
| BIO_zero_copy_get_write_buf_done(bio, available_bytes); |
| |
| len_written += available_bytes; |
| } while (len - len_written > 0 && available_bytes > 0); |
| |
| return len_written; |
| } |
| |
| static bool TestZeroCopyBioPairs() { |
| // Test read and write, especially triggering the ring buffer wrap-around. |
| uint8_t bio1_application_send_buffer[1024]; |
| uint8_t bio2_application_recv_buffer[1024]; |
| |
| const size_t kLengths[] = {254, 255, 256, 257, 510, 511, 512, 513}; |
| |
| // These trigger ring buffer wrap around. |
| const size_t kPartialLengths[] = {0, 1, 2, 3, 128, 255, 256, 257, 511, 512}; |
| |
| static const size_t kBufferSize = 512; |
| |
| srand(1); |
| for (size_t i = 0; i < sizeof(bio1_application_send_buffer); i++) { |
| bio1_application_send_buffer[i] = rand() & 255; |
| } |
| |
| // Transfer bytes from bio1_application_send_buffer to |
| // bio2_application_recv_buffer in various ways. |
| for (size_t i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) { |
| for (size_t j = 0; j < sizeof(kPartialLengths) / sizeof(kPartialLengths[0]); |
| j++) { |
| size_t total_write = 0; |
| size_t total_read = 0; |
| |
| BIO *bio1, *bio2; |
| if (!BIO_new_bio_pair(&bio1, kBufferSize, &bio2, kBufferSize)) { |
| return false; |
| } |
| ScopedBIO bio1_scoper(bio1); |
| ScopedBIO bio2_scoper(bio2); |
| |
| total_write += BioWriteZeroCopyWrapper( |
| bio1, bio1_application_send_buffer, kLengths[i]); |
| |
| // This tests interleaved read/write calls. Do a read between zero copy |
| // write calls. |
| uint8_t *write_buf; |
| size_t write_buf_offset; |
| size_t available_bytes; |
| if (!BIO_zero_copy_get_write_buf(bio1, &write_buf, &write_buf_offset, |
| &available_bytes)) { |
| return false; |
| } |
| |
| // Free kPartialLengths[j] bytes in the beginning of bio1 write buffer. |
| // This enables ring buffer wrap around for the next write. |
| total_read += BIO_read(bio2, bio2_application_recv_buffer + total_read, |
| kPartialLengths[j]); |
| |
| size_t interleaved_write_len = std::min(kPartialLengths[j], |
| available_bytes); |
| |
| // Write the data for the interleaved write call. If the buffer becomes |
| // empty after a read, the write offset is normally set to 0. Check that |
| // this does not happen for interleaved read/write and that |
| // |write_buf_offset| is still valid. |
| memcpy(write_buf + write_buf_offset, |
| bio1_application_send_buffer + total_write, interleaved_write_len); |
| if (BIO_zero_copy_get_write_buf_done(bio1, interleaved_write_len)) { |
| total_write += interleaved_write_len; |
| } |
| |
| // Do another write in case |write_buf_offset| was wrapped. |
| total_write += BioWriteZeroCopyWrapper( |
| bio1, bio1_application_send_buffer + total_write, |
| kPartialLengths[j] - interleaved_write_len); |
| |
| // Drain the rest. |
| size_t bytes_left = BIO_pending(bio2); |
| total_read += BioReadZeroCopyWrapper( |
| bio2, bio2_application_recv_buffer + total_read, bytes_left); |
| |
| if (total_read != total_write) { |
| fprintf(stderr, "Lengths not equal in round (%u, %u)\n", (unsigned)i, |
| (unsigned)j); |
| return false; |
| } |
| if (total_read > kLengths[i] + kPartialLengths[j]) { |
| fprintf(stderr, "Bad lengths in round (%u, %u)\n", (unsigned)i, |
| (unsigned)j); |
| return false; |
| } |
| if (memcmp(bio1_application_send_buffer, bio2_application_recv_buffer, |
| total_read) != 0) { |
| fprintf(stderr, "Buffers not equal in round (%u, %u)\n", (unsigned)i, |
| (unsigned)j); |
| return false; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool TestPrintf() { |
| // Test a short output, a very long one, and various sizes around |
| // 256 (the size of the buffer) to ensure edge cases are correct. |
| static const size_t kLengths[] = { 5, 250, 251, 252, 253, 254, 1023 }; |
| |
| ScopedBIO bio(BIO_new(BIO_s_mem())); |
| if (!bio) { |
| fprintf(stderr, "BIO_new failed\n"); |
| return false; |
| } |
| |
| for (size_t i = 0; i < sizeof(kLengths) / sizeof(kLengths[0]); i++) { |
| char string[1024]; |
| if (kLengths[i] >= sizeof(string)) { |
| fprintf(stderr, "Bad test string length\n"); |
| return false; |
| } |
| memset(string, 'a', sizeof(string)); |
| string[kLengths[i]] = '\0'; |
| |
| int ret = BIO_printf(bio.get(), "test %s", string); |
| if (ret < 0 || static_cast<size_t>(ret) != 5 + kLengths[i]) { |
| fprintf(stderr, "BIO_printf failed: %d\n", ret); |
| return false; |
| } |
| const uint8_t *contents; |
| size_t len; |
| if (!BIO_mem_contents(bio.get(), &contents, &len)) { |
| fprintf(stderr, "BIO_mem_contents failed\n"); |
| return false; |
| } |
| if (len != 5 + kLengths[i] || |
| strncmp((const char *)contents, "test ", 5) != 0 || |
| strncmp((const char *)contents + 5, string, kLengths[i]) != 0) { |
| fprintf(stderr, "Contents did not match: %.*s\n", (int)len, contents); |
| return false; |
| } |
| |
| if (!BIO_reset(bio.get())) { |
| fprintf(stderr, "BIO_reset failed\n"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool ReadASN1(bool should_succeed, const uint8_t *data, size_t data_len, |
| size_t expected_len, size_t max_len) { |
| ScopedBIO bio(BIO_new_mem_buf(data, data_len)); |
| |
| uint8_t *out; |
| size_t out_len; |
| int ok = BIO_read_asn1(bio.get(), &out, &out_len, max_len); |
| if (!ok) { |
| out = nullptr; |
| } |
| ScopedBytes out_storage(out); |
| |
| if (should_succeed != (ok == 1)) { |
| return false; |
| } |
| |
| if (should_succeed && |
| (out_len != expected_len || memcmp(data, out, expected_len) != 0)) { |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool TestASN1() { |
| static const uint8_t kData1[] = {0x30, 2, 1, 2, 0, 0}; |
| static const uint8_t kData2[] = {0x30, 3, 1, 2}; /* truncated */ |
| static const uint8_t kData3[] = {0x30, 0x81, 1, 1}; /* should be short len */ |
| static const uint8_t kData4[] = {0x30, 0x82, 0, 1, 1}; /* zero padded. */ |
| |
| if (!ReadASN1(true, kData1, sizeof(kData1), 4, 100) || |
| !ReadASN1(false, kData2, sizeof(kData2), 0, 100) || |
| !ReadASN1(false, kData3, sizeof(kData3), 0, 100) || |
| !ReadASN1(false, kData4, sizeof(kData4), 0, 100)) { |
| return false; |
| } |
| |
| static const size_t kLargePayloadLen = 8000; |
| static const uint8_t kLargePrefix[] = {0x30, 0x82, kLargePayloadLen >> 8, |
| kLargePayloadLen & 0xff}; |
| ScopedBytes large(reinterpret_cast<uint8_t *>( |
| OPENSSL_malloc(sizeof(kLargePrefix) + kLargePayloadLen))); |
| if (!large) { |
| return false; |
| } |
| memset(large.get() + sizeof(kLargePrefix), 0, kLargePayloadLen); |
| memcpy(large.get(), kLargePrefix, sizeof(kLargePrefix)); |
| |
| if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, |
| sizeof(kLargePrefix) + kLargePayloadLen, |
| kLargePayloadLen * 2)) { |
| fprintf(stderr, "Large payload test failed.\n"); |
| return false; |
| } |
| |
| if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, |
| sizeof(kLargePrefix) + kLargePayloadLen, |
| kLargePayloadLen - 1)) { |
| fprintf(stderr, "max_len test failed.\n"); |
| return false; |
| } |
| |
| static const uint8_t kIndefPrefix[] = {0x30, 0x80}; |
| memcpy(large.get(), kIndefPrefix, sizeof(kIndefPrefix)); |
| if (!ReadASN1(true, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, |
| sizeof(kLargePrefix) + kLargePayloadLen, |
| kLargePayloadLen*2)) { |
| fprintf(stderr, "indefinite length test failed.\n"); |
| return false; |
| } |
| |
| if (!ReadASN1(false, large.get(), sizeof(kLargePrefix) + kLargePayloadLen, |
| sizeof(kLargePrefix) + kLargePayloadLen, |
| kLargePayloadLen-1)) { |
| fprintf(stderr, "indefinite length, max_len test failed.\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| } // namespace bssl |
| |
| int main(void) { |
| CRYPTO_library_init(); |
| |
| #if defined(OPENSSL_WINDOWS) |
| // Initialize Winsock. |
| WORD wsa_version = MAKEWORD(2, 2); |
| WSADATA wsa_data; |
| int wsa_err = WSAStartup(wsa_version, &wsa_data); |
| if (wsa_err != 0) { |
| fprintf(stderr, "WSAStartup failed: %d\n", wsa_err); |
| return 1; |
| } |
| if (wsa_data.wVersion != wsa_version) { |
| fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion); |
| return 1; |
| } |
| #endif |
| |
| if (!bssl::TestSocketConnect() || |
| !bssl::TestPrintf() || |
| !bssl::TestZeroCopyBioPairs() || |
| !bssl::TestASN1()) { |
| return 1; |
| } |
| |
| printf("PASS\n"); |
| return 0; |
| } |