| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project 2006. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 2006 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/evp.h> |
| |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/buf.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rsa.h> |
| |
| #include "../internal.h" |
| #include "../fipsmodule/rsa/internal.h" |
| #include "internal.h" |
| |
| |
| typedef struct { |
| // Key gen parameters |
| int nbits; |
| BIGNUM *pub_exp; |
| // RSA padding mode |
| int pad_mode; |
| // message digest |
| const EVP_MD *md; |
| // message digest for MGF1 |
| const EVP_MD *mgf1md; |
| // PSS salt length |
| int saltlen; |
| // tbuf is a buffer which is either NULL, or is the size of the RSA modulus. |
| // It's used to store the output of RSA operations. |
| uint8_t *tbuf; |
| // OAEP label |
| uint8_t *oaep_label; |
| size_t oaep_labellen; |
| } RSA_PKEY_CTX; |
| |
| typedef struct { |
| uint8_t *data; |
| size_t len; |
| } RSA_OAEP_LABEL_PARAMS; |
| |
| static int pkey_rsa_init(EVP_PKEY_CTX *ctx) { |
| RSA_PKEY_CTX *rctx; |
| rctx = OPENSSL_malloc(sizeof(RSA_PKEY_CTX)); |
| if (!rctx) { |
| return 0; |
| } |
| OPENSSL_memset(rctx, 0, sizeof(RSA_PKEY_CTX)); |
| |
| rctx->nbits = 2048; |
| rctx->pad_mode = RSA_PKCS1_PADDING; |
| rctx->saltlen = -2; |
| |
| ctx->data = rctx; |
| |
| return 1; |
| } |
| |
| static int pkey_rsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { |
| RSA_PKEY_CTX *dctx, *sctx; |
| if (!pkey_rsa_init(dst)) { |
| return 0; |
| } |
| sctx = src->data; |
| dctx = dst->data; |
| dctx->nbits = sctx->nbits; |
| if (sctx->pub_exp) { |
| dctx->pub_exp = BN_dup(sctx->pub_exp); |
| if (!dctx->pub_exp) { |
| return 0; |
| } |
| } |
| |
| dctx->pad_mode = sctx->pad_mode; |
| dctx->md = sctx->md; |
| dctx->mgf1md = sctx->mgf1md; |
| if (sctx->oaep_label) { |
| OPENSSL_free(dctx->oaep_label); |
| dctx->oaep_label = BUF_memdup(sctx->oaep_label, sctx->oaep_labellen); |
| if (!dctx->oaep_label) { |
| return 0; |
| } |
| dctx->oaep_labellen = sctx->oaep_labellen; |
| } |
| |
| return 1; |
| } |
| |
| static void pkey_rsa_cleanup(EVP_PKEY_CTX *ctx) { |
| RSA_PKEY_CTX *rctx = ctx->data; |
| |
| if (rctx == NULL) { |
| return; |
| } |
| |
| BN_free(rctx->pub_exp); |
| OPENSSL_free(rctx->tbuf); |
| OPENSSL_free(rctx->oaep_label); |
| OPENSSL_free(rctx); |
| } |
| |
| static int setup_tbuf(RSA_PKEY_CTX *ctx, EVP_PKEY_CTX *pk) { |
| if (ctx->tbuf) { |
| return 1; |
| } |
| ctx->tbuf = OPENSSL_malloc(EVP_PKEY_size(pk->pkey)); |
| if (!ctx->tbuf) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int pkey_rsa_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen, |
| const uint8_t *tbs, size_t tbslen) { |
| RSA_PKEY_CTX *rctx = ctx->data; |
| RSA *rsa = ctx->pkey->pkey.rsa; |
| const size_t key_len = EVP_PKEY_size(ctx->pkey); |
| |
| if (!sig) { |
| *siglen = key_len; |
| return 1; |
| } |
| |
| if (*siglen < key_len) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (rctx->md) { |
| unsigned out_len; |
| switch (rctx->pad_mode) { |
| case RSA_PKCS1_PADDING: |
| if (!RSA_sign(EVP_MD_type(rctx->md), tbs, tbslen, sig, &out_len, rsa)) { |
| return 0; |
| } |
| *siglen = out_len; |
| return 1; |
| |
| case RSA_PKCS1_PSS_PADDING: |
| return RSA_sign_pss_mgf1(rsa, siglen, sig, *siglen, tbs, tbslen, |
| rctx->md, rctx->mgf1md, rctx->saltlen); |
| |
| default: |
| return 0; |
| } |
| } |
| |
| return RSA_sign_raw(rsa, siglen, sig, *siglen, tbs, tbslen, rctx->pad_mode); |
| } |
| |
| static int pkey_rsa_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig, |
| size_t siglen, const uint8_t *tbs, |
| size_t tbslen) { |
| RSA_PKEY_CTX *rctx = ctx->data; |
| RSA *rsa = ctx->pkey->pkey.rsa; |
| |
| if (rctx->md) { |
| switch (rctx->pad_mode) { |
| case RSA_PKCS1_PADDING: |
| return RSA_verify(EVP_MD_type(rctx->md), tbs, tbslen, sig, siglen, rsa); |
| |
| case RSA_PKCS1_PSS_PADDING: |
| return RSA_verify_pss_mgf1(rsa, tbs, tbslen, rctx->md, rctx->mgf1md, |
| rctx->saltlen, sig, siglen); |
| |
| default: |
| return 0; |
| } |
| } |
| |
| size_t rslen; |
| const size_t key_len = EVP_PKEY_size(ctx->pkey); |
| if (!setup_tbuf(rctx, ctx) || |
| !RSA_verify_raw(rsa, &rslen, rctx->tbuf, key_len, sig, siglen, |
| rctx->pad_mode) || |
| rslen != tbslen || |
| CRYPTO_memcmp(tbs, rctx->tbuf, rslen) != 0) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int pkey_rsa_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out, |
| size_t *out_len, const uint8_t *sig, |
| size_t sig_len) { |
| RSA_PKEY_CTX *rctx = ctx->data; |
| RSA *rsa = ctx->pkey->pkey.rsa; |
| const size_t key_len = EVP_PKEY_size(ctx->pkey); |
| |
| if (out == NULL) { |
| *out_len = key_len; |
| return 1; |
| } |
| |
| if (*out_len < key_len) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (rctx->md == NULL) { |
| return RSA_verify_raw(rsa, out_len, out, *out_len, sig, sig_len, |
| rctx->pad_mode); |
| } |
| |
| if (rctx->pad_mode != RSA_PKCS1_PADDING) { |
| return 0; |
| } |
| |
| // Assemble the encoded hash, using a placeholder hash value. |
| static const uint8_t kDummyHash[EVP_MAX_MD_SIZE] = {0}; |
| const size_t hash_len = EVP_MD_size(rctx->md); |
| uint8_t *asn1_prefix; |
| size_t asn1_prefix_len; |
| int asn1_prefix_allocated; |
| if (!setup_tbuf(rctx, ctx) || |
| !RSA_add_pkcs1_prefix(&asn1_prefix, &asn1_prefix_len, |
| &asn1_prefix_allocated, EVP_MD_type(rctx->md), |
| kDummyHash, hash_len)) { |
| return 0; |
| } |
| |
| size_t rslen; |
| int ok = 1; |
| if (!RSA_verify_raw(rsa, &rslen, rctx->tbuf, key_len, sig, sig_len, |
| RSA_PKCS1_PADDING) || |
| rslen != asn1_prefix_len || |
| // Compare all but the hash suffix. |
| CRYPTO_memcmp(rctx->tbuf, asn1_prefix, asn1_prefix_len - hash_len) != 0) { |
| ok = 0; |
| } |
| |
| if (asn1_prefix_allocated) { |
| OPENSSL_free(asn1_prefix); |
| } |
| |
| if (!ok) { |
| return 0; |
| } |
| |
| if (out != NULL) { |
| OPENSSL_memcpy(out, rctx->tbuf + rslen - hash_len, hash_len); |
| } |
| *out_len = hash_len; |
| |
| return 1; |
| } |
| |
| static int pkey_rsa_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen, |
| const uint8_t *in, size_t inlen) { |
| RSA_PKEY_CTX *rctx = ctx->data; |
| RSA *rsa = ctx->pkey->pkey.rsa; |
| const size_t key_len = EVP_PKEY_size(ctx->pkey); |
| |
| if (!out) { |
| *outlen = key_len; |
| return 1; |
| } |
| |
| if (*outlen < key_len) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) { |
| if (!setup_tbuf(rctx, ctx) || |
| !RSA_padding_add_PKCS1_OAEP_mgf1(rctx->tbuf, key_len, in, inlen, |
| rctx->oaep_label, rctx->oaep_labellen, |
| rctx->md, rctx->mgf1md) || |
| !RSA_encrypt(rsa, outlen, out, *outlen, rctx->tbuf, key_len, |
| RSA_NO_PADDING)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| return RSA_encrypt(rsa, outlen, out, *outlen, in, inlen, rctx->pad_mode); |
| } |
| |
| static int pkey_rsa_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out, |
| size_t *outlen, const uint8_t *in, |
| size_t inlen) { |
| RSA_PKEY_CTX *rctx = ctx->data; |
| RSA *rsa = ctx->pkey->pkey.rsa; |
| const size_t key_len = EVP_PKEY_size(ctx->pkey); |
| |
| if (!out) { |
| *outlen = key_len; |
| return 1; |
| } |
| |
| if (*outlen < key_len) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) { |
| size_t padded_len; |
| if (!setup_tbuf(rctx, ctx) || |
| !RSA_decrypt(rsa, &padded_len, rctx->tbuf, key_len, in, inlen, |
| RSA_NO_PADDING) || |
| !RSA_padding_check_PKCS1_OAEP_mgf1( |
| out, outlen, key_len, rctx->tbuf, padded_len, rctx->oaep_label, |
| rctx->oaep_labellen, rctx->md, rctx->mgf1md)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| return RSA_decrypt(rsa, outlen, out, key_len, in, inlen, rctx->pad_mode); |
| } |
| |
| static int check_padding_md(const EVP_MD *md, int padding) { |
| if (!md) { |
| return 1; |
| } |
| |
| if (padding == RSA_NO_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int is_known_padding(int padding_mode) { |
| switch (padding_mode) { |
| case RSA_PKCS1_PADDING: |
| case RSA_NO_PADDING: |
| case RSA_PKCS1_OAEP_PADDING: |
| case RSA_PKCS1_PSS_PADDING: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static int pkey_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { |
| RSA_PKEY_CTX *rctx = ctx->data; |
| switch (type) { |
| case EVP_PKEY_CTRL_RSA_PADDING: |
| if (!is_known_padding(p1) || !check_padding_md(rctx->md, p1) || |
| (p1 == RSA_PKCS1_PSS_PADDING && |
| 0 == (ctx->operation & (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY))) || |
| (p1 == RSA_PKCS1_OAEP_PADDING && |
| 0 == (ctx->operation & EVP_PKEY_OP_TYPE_CRYPT))) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE); |
| return 0; |
| } |
| if ((p1 == RSA_PKCS1_PSS_PADDING || p1 == RSA_PKCS1_OAEP_PADDING) && |
| rctx->md == NULL) { |
| rctx->md = EVP_sha1(); |
| } |
| rctx->pad_mode = p1; |
| return 1; |
| |
| case EVP_PKEY_CTRL_GET_RSA_PADDING: |
| *(int *)p2 = rctx->pad_mode; |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_PSS_SALTLEN: |
| case EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN: |
| if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN); |
| return 0; |
| } |
| if (type == EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN) { |
| *(int *)p2 = rctx->saltlen; |
| } else { |
| if (p1 < -2) { |
| return 0; |
| } |
| rctx->saltlen = p1; |
| } |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_KEYGEN_BITS: |
| if (p1 < 256) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_KEYBITS); |
| return 0; |
| } |
| rctx->nbits = p1; |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP: |
| if (!p2) { |
| return 0; |
| } |
| BN_free(rctx->pub_exp); |
| rctx->pub_exp = p2; |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_OAEP_MD: |
| case EVP_PKEY_CTRL_GET_RSA_OAEP_MD: |
| if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); |
| return 0; |
| } |
| if (type == EVP_PKEY_CTRL_GET_RSA_OAEP_MD) { |
| *(const EVP_MD **)p2 = rctx->md; |
| } else { |
| rctx->md = p2; |
| } |
| return 1; |
| |
| case EVP_PKEY_CTRL_MD: |
| if (!check_padding_md(p2, rctx->pad_mode)) { |
| return 0; |
| } |
| rctx->md = p2; |
| return 1; |
| |
| case EVP_PKEY_CTRL_GET_MD: |
| *(const EVP_MD **)p2 = rctx->md; |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_MGF1_MD: |
| case EVP_PKEY_CTRL_GET_RSA_MGF1_MD: |
| if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING && |
| rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_MGF1_MD); |
| return 0; |
| } |
| if (type == EVP_PKEY_CTRL_GET_RSA_MGF1_MD) { |
| if (rctx->mgf1md) { |
| *(const EVP_MD **)p2 = rctx->mgf1md; |
| } else { |
| *(const EVP_MD **)p2 = rctx->md; |
| } |
| } else { |
| rctx->mgf1md = p2; |
| } |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_OAEP_LABEL: { |
| if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); |
| return 0; |
| } |
| OPENSSL_free(rctx->oaep_label); |
| RSA_OAEP_LABEL_PARAMS *params = p2; |
| rctx->oaep_label = params->data; |
| rctx->oaep_labellen = params->len; |
| return 1; |
| } |
| |
| case EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL: |
| if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); |
| return 0; |
| } |
| CBS_init((CBS *)p2, rctx->oaep_label, rctx->oaep_labellen); |
| return 1; |
| |
| default: |
| OPENSSL_PUT_ERROR(EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| return 0; |
| } |
| } |
| |
| static int pkey_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { |
| RSA *rsa = NULL; |
| RSA_PKEY_CTX *rctx = ctx->data; |
| |
| if (!rctx->pub_exp) { |
| rctx->pub_exp = BN_new(); |
| if (!rctx->pub_exp || !BN_set_word(rctx->pub_exp, RSA_F4)) { |
| return 0; |
| } |
| } |
| rsa = RSA_new(); |
| if (!rsa) { |
| return 0; |
| } |
| |
| if (!RSA_generate_key_ex(rsa, rctx->nbits, rctx->pub_exp, NULL)) { |
| RSA_free(rsa); |
| return 0; |
| } |
| |
| EVP_PKEY_assign_RSA(pkey, rsa); |
| return 1; |
| } |
| |
| const EVP_PKEY_METHOD rsa_pkey_meth = { |
| EVP_PKEY_RSA, |
| pkey_rsa_init, |
| pkey_rsa_copy, |
| pkey_rsa_cleanup, |
| pkey_rsa_keygen, |
| pkey_rsa_sign, |
| NULL /* sign_message */, |
| pkey_rsa_verify, |
| NULL /* verify_message */, |
| pkey_rsa_verify_recover, |
| pkey_rsa_encrypt, |
| pkey_rsa_decrypt, |
| NULL /* derive */, |
| NULL /* paramgen */, |
| pkey_rsa_ctrl, |
| }; |
| |
| int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, -1, EVP_PKEY_CTRL_RSA_PADDING, |
| padding, NULL); |
| } |
| |
| int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *out_padding) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, -1, EVP_PKEY_CTRL_GET_RSA_PADDING, |
| 0, out_padding); |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int salt_len) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, |
| (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY), |
| EVP_PKEY_CTRL_RSA_PSS_SALTLEN, salt_len, NULL); |
| } |
| |
| int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *out_salt_len) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, |
| (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY), |
| EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, out_salt_len); |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN, |
| EVP_PKEY_CTRL_RSA_KEYGEN_BITS, bits, NULL); |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *e) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN, |
| EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, e); |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)md); |
| } |
| |
| int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void*) out_md); |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, |
| EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void*) md); |
| } |
| |
| int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, |
| EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void*) out_md); |
| } |
| |
| int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, uint8_t *label, |
| size_t label_len) { |
| RSA_OAEP_LABEL_PARAMS params = {label, label_len}; |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_RSA_OAEP_LABEL, 0, ¶ms); |
| } |
| |
| int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, |
| const uint8_t **out_label) { |
| CBS label; |
| if (!EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL, 0, &label)) { |
| return -1; |
| } |
| if (CBS_len(&label) > INT_MAX) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); |
| return -1; |
| } |
| *out_label = CBS_data(&label); |
| return (int)CBS_len(&label); |
| } |