| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/bn.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "internal.h" |
| #include "rsaz_exp.h" |
| |
| |
| int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { |
| int i, bits, ret = 0; |
| BIGNUM *v, *rr; |
| |
| BN_CTX_start(ctx); |
| if (r == a || r == p) { |
| rr = BN_CTX_get(ctx); |
| } else { |
| rr = r; |
| } |
| |
| v = BN_CTX_get(ctx); |
| if (rr == NULL || v == NULL) { |
| goto err; |
| } |
| |
| if (BN_copy(v, a) == NULL) { |
| goto err; |
| } |
| bits = BN_num_bits(p); |
| |
| if (BN_is_odd(p)) { |
| if (BN_copy(rr, a) == NULL) { |
| goto err; |
| } |
| } else { |
| if (!BN_one(rr)) { |
| goto err; |
| } |
| } |
| |
| for (i = 1; i < bits; i++) { |
| if (!BN_sqr(v, v, ctx)) { |
| goto err; |
| } |
| if (BN_is_bit_set(p, i)) { |
| if (!BN_mul(rr, rr, v, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| if (r != rr && !BN_copy(r, rr)) { |
| goto err; |
| } |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| typedef struct bn_recp_ctx_st { |
| BIGNUM N; // the divisor |
| BIGNUM Nr; // the reciprocal |
| int num_bits; |
| int shift; |
| int flags; |
| } BN_RECP_CTX; |
| |
| static void BN_RECP_CTX_init(BN_RECP_CTX *recp) { |
| BN_init(&recp->N); |
| BN_init(&recp->Nr); |
| recp->num_bits = 0; |
| recp->shift = 0; |
| recp->flags = 0; |
| } |
| |
| static void BN_RECP_CTX_free(BN_RECP_CTX *recp) { |
| if (recp == NULL) { |
| return; |
| } |
| |
| BN_free(&recp->N); |
| BN_free(&recp->Nr); |
| } |
| |
| static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) { |
| if (!BN_copy(&(recp->N), d)) { |
| return 0; |
| } |
| BN_zero(&recp->Nr); |
| recp->num_bits = BN_num_bits(d); |
| recp->shift = 0; |
| |
| return 1; |
| } |
| |
| // len is the expected size of the result We actually calculate with an extra |
| // word of precision, so we can do faster division if the remainder is not |
| // required. |
| // r := 2^len / m |
| static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) { |
| int ret = -1; |
| BIGNUM *t; |
| |
| BN_CTX_start(ctx); |
| t = BN_CTX_get(ctx); |
| if (t == NULL) { |
| goto err; |
| } |
| |
| if (!BN_set_bit(t, len)) { |
| goto err; |
| } |
| |
| if (!BN_div(r, NULL, t, m, ctx)) { |
| goto err; |
| } |
| |
| ret = len; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, |
| BN_RECP_CTX *recp, BN_CTX *ctx) { |
| int i, j, ret = 0; |
| BIGNUM *a, *b, *d, *r; |
| |
| BN_CTX_start(ctx); |
| a = BN_CTX_get(ctx); |
| b = BN_CTX_get(ctx); |
| if (dv != NULL) { |
| d = dv; |
| } else { |
| d = BN_CTX_get(ctx); |
| } |
| |
| if (rem != NULL) { |
| r = rem; |
| } else { |
| r = BN_CTX_get(ctx); |
| } |
| |
| if (a == NULL || b == NULL || d == NULL || r == NULL) { |
| goto err; |
| } |
| |
| if (BN_ucmp(m, &recp->N) < 0) { |
| BN_zero(d); |
| if (!BN_copy(r, m)) { |
| goto err; |
| } |
| BN_CTX_end(ctx); |
| return 1; |
| } |
| |
| // We want the remainder |
| // Given input of ABCDEF / ab |
| // we need multiply ABCDEF by 3 digests of the reciprocal of ab |
| |
| // i := max(BN_num_bits(m), 2*BN_num_bits(N)) |
| i = BN_num_bits(m); |
| j = recp->num_bits << 1; |
| if (j > i) { |
| i = j; |
| } |
| |
| // Nr := round(2^i / N) |
| if (i != recp->shift) { |
| recp->shift = |
| BN_reciprocal(&(recp->Nr), &(recp->N), i, |
| ctx); // BN_reciprocal returns i, or -1 for an error |
| } |
| |
| if (recp->shift == -1) { |
| goto err; |
| } |
| |
| // d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i - |
| // BN_num_bits(N)))| |
| // = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i - |
| // BN_num_bits(N)))| |
| // <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)| |
| // = |m/N| |
| if (!BN_rshift(a, m, recp->num_bits)) { |
| goto err; |
| } |
| if (!BN_mul(b, a, &(recp->Nr), ctx)) { |
| goto err; |
| } |
| if (!BN_rshift(d, b, i - recp->num_bits)) { |
| goto err; |
| } |
| d->neg = 0; |
| |
| if (!BN_mul(b, &(recp->N), d, ctx)) { |
| goto err; |
| } |
| if (!BN_usub(r, m, b)) { |
| goto err; |
| } |
| r->neg = 0; |
| |
| j = 0; |
| while (BN_ucmp(r, &(recp->N)) >= 0) { |
| if (j++ > 2) { |
| OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL); |
| goto err; |
| } |
| if (!BN_usub(r, r, &(recp->N))) { |
| goto err; |
| } |
| if (!BN_add_word(d, 1)) { |
| goto err; |
| } |
| } |
| |
| r->neg = BN_is_zero(r) ? 0 : m->neg; |
| d->neg = m->neg ^ recp->N.neg; |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, |
| BN_RECP_CTX *recp, BN_CTX *ctx) { |
| int ret = 0; |
| BIGNUM *a; |
| const BIGNUM *ca; |
| |
| BN_CTX_start(ctx); |
| a = BN_CTX_get(ctx); |
| if (a == NULL) { |
| goto err; |
| } |
| |
| if (y != NULL) { |
| if (x == y) { |
| if (!BN_sqr(a, x, ctx)) { |
| goto err; |
| } |
| } else { |
| if (!BN_mul(a, x, y, ctx)) { |
| goto err; |
| } |
| } |
| ca = a; |
| } else { |
| ca = x; // Just do the mod |
| } |
| |
| ret = BN_div_recp(NULL, r, ca, recp, ctx); |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| // BN_window_bits_for_exponent_size returns sliding window size for mod_exp with |
| // a |b| bit exponent. |
| // |
| // For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of |
| // multiplications is a constant plus on average |
| // |
| // 2^(w-1) + (b-w)/(w+1); |
| // |
| // here 2^(w-1) is for precomputing the table (we actually need entries only |
| // for windows that have the lowest bit set), and (b-w)/(w+1) is an |
| // approximation for the expected number of w-bit windows, not counting the |
| // first one. |
| // |
| // Thus we should use |
| // |
| // w >= 6 if b > 671 |
| // w = 5 if 671 > b > 239 |
| // w = 4 if 239 > b > 79 |
| // w = 3 if 79 > b > 23 |
| // w <= 2 if 23 > b |
| // |
| // (with draws in between). Very small exponents are often selected |
| // with low Hamming weight, so we use w = 1 for b <= 23. |
| static int BN_window_bits_for_exponent_size(size_t b) { |
| if (b > 671) { |
| return 6; |
| } |
| if (b > 239) { |
| return 5; |
| } |
| if (b > 79) { |
| return 4; |
| } |
| if (b > 23) { |
| return 3; |
| } |
| return 1; |
| } |
| |
| // TABLE_SIZE is the maximum precomputation table size for *variable* sliding |
| // windows. This must be 2^(max_window - 1), where max_window is the largest |
| // value returned from |BN_window_bits_for_exponent_size|. |
| #define TABLE_SIZE 32 |
| |
| // TABLE_BITS_SMALL is the smallest value returned from |
| // |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| * |
| // |BN_SMALL_MAX_WORDS| words. |
| #define TABLE_BITS_SMALL 5 |
| |
| // TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most |
| // |BN_BITS2| * |BN_SMALL_MAX_WORDS|. |
| #define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1)) |
| |
| static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx) { |
| int i, j, ret = 0, wstart, window; |
| int start = 1; |
| BIGNUM *aa; |
| // Table of variables obtained from 'ctx' |
| BIGNUM *val[TABLE_SIZE]; |
| BN_RECP_CTX recp; |
| |
| // This function is only called on even moduli. |
| assert(!BN_is_odd(m)); |
| |
| int bits = BN_num_bits(p); |
| if (bits == 0) { |
| return BN_one(r); |
| } |
| |
| BN_CTX_start(ctx); |
| aa = BN_CTX_get(ctx); |
| val[0] = BN_CTX_get(ctx); |
| if (!aa || !val[0]) { |
| goto err; |
| } |
| |
| BN_RECP_CTX_init(&recp); |
| if (m->neg) { |
| // ignore sign of 'm' |
| if (!BN_copy(aa, m)) { |
| goto err; |
| } |
| aa->neg = 0; |
| if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) { |
| goto err; |
| } |
| } else { |
| if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) { |
| goto err; |
| } |
| } |
| |
| if (!BN_nnmod(val[0], a, m, ctx)) { |
| goto err; // 1 |
| } |
| if (BN_is_zero(val[0])) { |
| BN_zero(r); |
| ret = 1; |
| goto err; |
| } |
| |
| window = BN_window_bits_for_exponent_size(bits); |
| if (window > 1) { |
| if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) { |
| goto err; // 2 |
| } |
| j = 1 << (window - 1); |
| for (i = 1; i < j; i++) { |
| if (((val[i] = BN_CTX_get(ctx)) == NULL) || |
| !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| start = 1; // This is used to avoid multiplication etc |
| // when there is only the value '1' in the |
| // buffer. |
| wstart = bits - 1; // The top bit of the window |
| |
| if (!BN_one(r)) { |
| goto err; |
| } |
| |
| for (;;) { |
| int wvalue; // The 'value' of the window |
| int wend; // The bottom bit of the window |
| |
| if (!BN_is_bit_set(p, wstart)) { |
| if (!start) { |
| if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) { |
| goto err; |
| } |
| } |
| if (wstart == 0) { |
| break; |
| } |
| wstart--; |
| continue; |
| } |
| |
| // We now have wstart on a 'set' bit, we now need to work out |
| // how bit a window to do. To do this we need to scan |
| // forward until the last set bit before the end of the |
| // window |
| wvalue = 1; |
| wend = 0; |
| for (i = 1; i < window; i++) { |
| if (wstart - i < 0) { |
| break; |
| } |
| if (BN_is_bit_set(p, wstart - i)) { |
| wvalue <<= (i - wend); |
| wvalue |= 1; |
| wend = i; |
| } |
| } |
| |
| // wend is the size of the current window |
| j = wend + 1; |
| // add the 'bytes above' |
| if (!start) { |
| for (i = 0; i < j; i++) { |
| if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| // wvalue will be an odd number < 2^window |
| if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) { |
| goto err; |
| } |
| |
| // move the 'window' down further |
| wstart -= wend + 1; |
| start = 0; |
| if (wstart < 0) { |
| break; |
| } |
| } |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_RECP_CTX_free(&recp); |
| return ret; |
| } |
| |
| int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| BN_CTX *ctx) { |
| if (m->neg) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| return 0; |
| } |
| if (a->neg || BN_ucmp(a, m) >= 0) { |
| if (!BN_nnmod(r, a, m, ctx)) { |
| return 0; |
| } |
| a = r; |
| } |
| |
| if (BN_is_odd(m)) { |
| return BN_mod_exp_mont(r, a, p, m, ctx, NULL); |
| } |
| |
| return mod_exp_recp(r, a, p, m, ctx); |
| } |
| |
| int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) { |
| if (!BN_is_odd(m)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| return 0; |
| } |
| if (m->neg) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| return 0; |
| } |
| // |a| is secret, but |a < m| is not. |
| if (a->neg || constant_time_declassify_int(BN_ucmp(a, m)) >= 0) { |
| OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
| return 0; |
| } |
| |
| int bits = BN_num_bits(p); |
| if (bits == 0) { |
| // x**0 mod 1 is still zero. |
| if (BN_abs_is_word(m, 1)) { |
| BN_zero(rr); |
| return 1; |
| } |
| return BN_one(rr); |
| } |
| |
| int ret = 0; |
| BIGNUM *val[TABLE_SIZE]; |
| BN_MONT_CTX *new_mont = NULL; |
| |
| BN_CTX_start(ctx); |
| BIGNUM *r = BN_CTX_get(ctx); |
| val[0] = BN_CTX_get(ctx); |
| if (r == NULL || val[0] == NULL) { |
| goto err; |
| } |
| |
| // Allocate a montgomery context if it was not supplied by the caller. |
| if (mont == NULL) { |
| new_mont = BN_MONT_CTX_new_consttime(m, ctx); |
| if (new_mont == NULL) { |
| goto err; |
| } |
| mont = new_mont; |
| } |
| |
| // We exponentiate by looking at sliding windows of the exponent and |
| // precomputing powers of |a|. Windows may be shifted so they always end on a |
| // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) |
| // for i = 0 to 2^(window-1), all in Montgomery form. |
| int window = BN_window_bits_for_exponent_size(bits); |
| if (!BN_to_montgomery(val[0], a, mont, ctx)) { |
| goto err; |
| } |
| if (window > 1) { |
| BIGNUM *d = BN_CTX_get(ctx); |
| if (d == NULL || |
| !BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) { |
| goto err; |
| } |
| for (int i = 1; i < 1 << (window - 1); i++) { |
| val[i] = BN_CTX_get(ctx); |
| if (val[i] == NULL || |
| !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| // |p| is non-zero, so at least one window is non-zero. To save some |
| // multiplications, defer initializing |r| until then. |
| int r_is_one = 1; |
| int wstart = bits - 1; // The top bit of the window. |
| for (;;) { |
| if (!BN_is_bit_set(p, wstart)) { |
| if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) { |
| goto err; |
| } |
| if (wstart == 0) { |
| break; |
| } |
| wstart--; |
| continue; |
| } |
| |
| // We now have wstart on a set bit. Find the largest window we can use. |
| int wvalue = 1; |
| int wsize = 0; |
| for (int i = 1; i < window && i <= wstart; i++) { |
| if (BN_is_bit_set(p, wstart - i)) { |
| wvalue <<= (i - wsize); |
| wvalue |= 1; |
| wsize = i; |
| } |
| } |
| |
| // Shift |r| to the end of the window. |
| if (!r_is_one) { |
| for (int i = 0; i < wsize + 1; i++) { |
| if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| assert(wvalue & 1); |
| assert(wvalue < (1 << window)); |
| if (r_is_one) { |
| if (!BN_copy(r, val[wvalue >> 1])) { |
| goto err; |
| } |
| } else if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) { |
| goto err; |
| } |
| |
| r_is_one = 0; |
| if (wstart == wsize) { |
| break; |
| } |
| wstart -= wsize + 1; |
| } |
| |
| // |p| is non-zero, so |r_is_one| must be cleared at some point. |
| assert(!r_is_one); |
| |
| if (!BN_from_montgomery(rr, r, mont, ctx)) { |
| goto err; |
| } |
| ret = 1; |
| |
| err: |
| BN_MONT_CTX_free(new_mont); |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, |
| const BN_ULONG *p, size_t num_p, |
| const BN_MONT_CTX *mont) { |
| if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS || |
| num_p > ((size_t)-1) / BN_BITS2) { |
| abort(); |
| } |
| assert(BN_is_odd(&mont->N)); |
| |
| // Count the number of bits in |p|, skipping leading zeros. Note this function |
| // treats |p| as public. |
| while (num_p != 0 && p[num_p - 1] == 0) { |
| num_p--; |
| } |
| if (num_p == 0) { |
| bn_from_montgomery_small(r, num, mont->RR.d, num, mont); |
| return; |
| } |
| size_t bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2; |
| assert(bits != 0); |
| |
| // We exponentiate by looking at sliding windows of the exponent and |
| // precomputing powers of |a|. Windows may be shifted so they always end on a |
| // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for |
| // i = 0 to 2^(window-1), all in Montgomery form. |
| unsigned window = BN_window_bits_for_exponent_size(bits); |
| if (window > TABLE_BITS_SMALL) { |
| window = TABLE_BITS_SMALL; // Tolerate excessively large |p|. |
| } |
| BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS]; |
| OPENSSL_memcpy(val[0], a, num * sizeof(BN_ULONG)); |
| if (window > 1) { |
| BN_ULONG d[BN_SMALL_MAX_WORDS]; |
| bn_mod_mul_montgomery_small(d, val[0], val[0], num, mont); |
| for (unsigned i = 1; i < 1u << (window - 1); i++) { |
| bn_mod_mul_montgomery_small(val[i], val[i - 1], d, num, mont); |
| } |
| } |
| |
| // |p| is non-zero, so at least one window is non-zero. To save some |
| // multiplications, defer initializing |r| until then. |
| int r_is_one = 1; |
| size_t wstart = bits - 1; // The top bit of the window. |
| for (;;) { |
| if (!bn_is_bit_set_words(p, num_p, wstart)) { |
| if (!r_is_one) { |
| bn_mod_mul_montgomery_small(r, r, r, num, mont); |
| } |
| if (wstart == 0) { |
| break; |
| } |
| wstart--; |
| continue; |
| } |
| |
| // We now have wstart on a set bit. Find the largest window we can use. |
| unsigned wvalue = 1; |
| unsigned wsize = 0; |
| for (unsigned i = 1; i < window && i <= wstart; i++) { |
| if (bn_is_bit_set_words(p, num_p, wstart - i)) { |
| wvalue <<= (i - wsize); |
| wvalue |= 1; |
| wsize = i; |
| } |
| } |
| |
| // Shift |r| to the end of the window. |
| if (!r_is_one) { |
| for (unsigned i = 0; i < wsize + 1; i++) { |
| bn_mod_mul_montgomery_small(r, r, r, num, mont); |
| } |
| } |
| |
| assert(wvalue & 1); |
| assert(wvalue < (1u << window)); |
| if (r_is_one) { |
| OPENSSL_memcpy(r, val[wvalue >> 1], num * sizeof(BN_ULONG)); |
| } else { |
| bn_mod_mul_montgomery_small(r, r, val[wvalue >> 1], num, mont); |
| } |
| r_is_one = 0; |
| if (wstart == wsize) { |
| break; |
| } |
| wstart -= wsize + 1; |
| } |
| |
| // |p| is non-zero, so |r_is_one| must be cleared at some point. |
| assert(!r_is_one); |
| OPENSSL_cleanse(val, sizeof(val)); |
| } |
| |
| void bn_mod_inverse0_prime_mont_small(BN_ULONG *r, const BN_ULONG *a, |
| size_t num, const BN_MONT_CTX *mont) { |
| if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) { |
| abort(); |
| } |
| |
| // Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime. |
| BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS]; |
| const BN_ULONG *p = mont->N.d; |
| OPENSSL_memcpy(p_minus_two, p, num * sizeof(BN_ULONG)); |
| if (p_minus_two[0] >= 2) { |
| p_minus_two[0] -= 2; |
| } else { |
| p_minus_two[0] -= 2; |
| for (size_t i = 1; i < num; i++) { |
| if (p_minus_two[i]-- != 0) { |
| break; |
| } |
| } |
| } |
| |
| bn_mod_exp_mont_small(r, a, num, p_minus_two, num, mont); |
| } |
| |
| static void copy_to_prebuf(const BIGNUM *b, int top, BN_ULONG *table, int idx, |
| int window) { |
| int ret = bn_copy_words(table + idx * top, top, b); |
| assert(ret); // |b| is guaranteed to fit. |
| (void)ret; |
| } |
| |
| static int copy_from_prebuf(BIGNUM *b, int top, const BN_ULONG *table, int idx, |
| int window) { |
| if (!bn_wexpand(b, top)) { |
| return 0; |
| } |
| |
| OPENSSL_memset(b->d, 0, sizeof(BN_ULONG) * top); |
| const int width = 1 << window; |
| for (int i = 0; i < width; i++, table += top) { |
| // Use a value barrier to prevent Clang from adding a branch when |i != idx| |
| // and making this copy not constant time. Clang is still allowed to learn |
| // that |mask| is constant across the inner loop, so this won't inhibit any |
| // vectorization it might do. |
| BN_ULONG mask = value_barrier_w(constant_time_eq_int(i, idx)); |
| for (int j = 0; j < top; j++) { |
| b->d[j] |= table[j] & mask; |
| } |
| } |
| |
| b->width = top; |
| return 1; |
| } |
| |
| // Window sizes optimized for fixed window size modular exponentiation |
| // algorithm (BN_mod_exp_mont_consttime). |
| // |
| // TODO(davidben): These window sizes were originally set for 64-byte cache |
| // lines with a cache-line-dependent constant-time mitigation. They can probably |
| // be revised now that our implementation is no longer cache-time-dependent. |
| #define BN_window_bits_for_ctime_exponent_size(b) \ |
| ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1) |
| #define BN_MAX_MOD_EXP_CTIME_WINDOW (6) |
| |
| // This variant of |BN_mod_exp_mont| uses fixed windows and fixed memory access |
| // patterns to protect secret exponents (cf. the hyper-threading timing attacks |
| // pointed out by Colin Percival, |
| // http://www.daemonology.net/hyperthreading-considered-harmful/) |
| int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, |
| const BN_MONT_CTX *mont) { |
| int i, ret = 0, wvalue; |
| BN_MONT_CTX *new_mont = NULL; |
| |
| unsigned char *powerbuf_free = NULL; |
| size_t powerbuf_len = 0; |
| BN_ULONG *powerbuf = NULL; |
| |
| if (!BN_is_odd(m)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| return 0; |
| } |
| if (m->neg) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| return 0; |
| } |
| if (a->neg || BN_ucmp(a, m) >= 0) { |
| OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
| return 0; |
| } |
| |
| // Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak |
| // whether the top bits are zero. |
| int max_bits = p->width * BN_BITS2; |
| int bits = max_bits; |
| if (bits == 0) { |
| // x**0 mod 1 is still zero. |
| if (BN_abs_is_word(m, 1)) { |
| BN_zero(rr); |
| return 1; |
| } |
| return BN_one(rr); |
| } |
| |
| // Allocate a montgomery context if it was not supplied by the caller. |
| if (mont == NULL) { |
| new_mont = BN_MONT_CTX_new_consttime(m, ctx); |
| if (new_mont == NULL) { |
| goto err; |
| } |
| mont = new_mont; |
| } |
| |
| // Use the width in |mont->N|, rather than the copy in |m|. The assembly |
| // implementation assumes it can use |top| to size R. |
| int top = mont->N.width; |
| |
| #if defined(OPENSSL_BN_ASM_MONT5) || defined(RSAZ_ENABLED) |
| // Share one large stack-allocated buffer between the RSAZ and non-RSAZ code |
| // paths. If we were to use separate static buffers for each then there is |
| // some chance that both large buffers would be allocated on the stack, |
| // causing the stack space requirement to be truly huge (~10KB). |
| alignas(MOD_EXP_CTIME_ALIGN) BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN]; |
| #endif |
| #if defined(RSAZ_ENABLED) |
| // If the size of the operands allow it, perform the optimized RSAZ |
| // exponentiation. For further information see crypto/fipsmodule/bn/rsaz_exp.c |
| // and accompanying assembly modules. |
| if (a->width == 16 && p->width == 16 && BN_num_bits(m) == 1024 && |
| rsaz_avx2_preferred()) { |
| if (!bn_wexpand(rr, 16)) { |
| goto err; |
| } |
| RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0], |
| storage); |
| rr->width = 16; |
| rr->neg = 0; |
| ret = 1; |
| goto err; |
| } |
| #endif |
| |
| // Get the window size to use with size of p. |
| int window = BN_window_bits_for_ctime_exponent_size(bits); |
| assert(window <= BN_MAX_MOD_EXP_CTIME_WINDOW); |
| |
| // Calculating |powerbuf_len| below cannot overflow because of the bound on |
| // Montgomery reduction. |
| assert((size_t)top <= BN_MONTGOMERY_MAX_WORDS); |
| static_assert( |
| BN_MONTGOMERY_MAX_WORDS <= |
| INT_MAX / sizeof(BN_ULONG) / ((1 << BN_MAX_MOD_EXP_CTIME_WINDOW) + 3), |
| "powerbuf_len may overflow"); |
| |
| #if defined(OPENSSL_BN_ASM_MONT5) |
| if (window >= 5) { |
| window = 5; // ~5% improvement for RSA2048 sign, and even for RSA4096 |
| // Reserve space for the |mont->N| copy. |
| powerbuf_len += top * sizeof(mont->N.d[0]); |
| } |
| #endif |
| |
| // Allocate a buffer large enough to hold all of the pre-computed |
| // powers of |am|, |am| itself, and |tmp|. |
| int num_powers = 1 << window; |
| powerbuf_len += sizeof(m->d[0]) * top * (num_powers + 2); |
| |
| #if defined(OPENSSL_BN_ASM_MONT5) |
| if (powerbuf_len <= sizeof(storage)) { |
| powerbuf = storage; |
| } |
| // |storage| is more than large enough to handle 1024-bit inputs. |
| assert(powerbuf != NULL || top * BN_BITS2 > 1024); |
| #endif |
| if (powerbuf == NULL) { |
| powerbuf_free = OPENSSL_malloc(powerbuf_len + MOD_EXP_CTIME_ALIGN); |
| if (powerbuf_free == NULL) { |
| goto err; |
| } |
| powerbuf = align_pointer(powerbuf_free, MOD_EXP_CTIME_ALIGN); |
| } |
| OPENSSL_memset(powerbuf, 0, powerbuf_len); |
| |
| // Place |tmp| and |am| right after powers table. |
| BIGNUM tmp, am; |
| tmp.d = powerbuf + top * num_powers; |
| am.d = tmp.d + top; |
| tmp.width = am.width = 0; |
| tmp.dmax = am.dmax = top; |
| tmp.neg = am.neg = 0; |
| tmp.flags = am.flags = BN_FLG_STATIC_DATA; |
| |
| if (!bn_one_to_montgomery(&tmp, mont, ctx) || |
| !bn_resize_words(&tmp, top)) { |
| goto err; |
| } |
| |
| // Prepare a^1 in the Montgomery domain. |
| assert(!a->neg); |
| assert(BN_ucmp(a, m) < 0); |
| if (!BN_to_montgomery(&am, a, mont, ctx) || |
| !bn_resize_words(&am, top)) { |
| goto err; |
| } |
| |
| #if defined(OPENSSL_BN_ASM_MONT5) |
| // This optimization uses ideas from https://eprint.iacr.org/2011/239, |
| // specifically optimization of cache-timing attack countermeasures, |
| // pre-computation optimization, and Almost Montgomery Multiplication. |
| // |
| // The paper discusses a 4-bit window to optimize 512-bit modular |
| // exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer |
| // important. |
| // |
| // |bn_mul_mont_gather5| and |bn_power5| implement the "almost" reduction |
| // variant, so the values here may not be fully reduced. They are bounded by R |
| // (i.e. they fit in |top| words), not |m|. Additionally, we pass these |
| // "almost" reduced inputs into |bn_mul_mont|, which implements the normal |
| // reduction variant. Given those inputs, |bn_mul_mont| may not give reduced |
| // output, but it will still produce "almost" reduced output. |
| // |
| // TODO(davidben): Using "almost" reduction complicates analysis of this code, |
| // and its interaction with other parts of the project. Determine whether this |
| // is actually necessary for performance. |
| if (window == 5 && top > 1) { |
| // Copy |mont->N| to improve cache locality. |
| BN_ULONG *np = am.d + top; |
| for (i = 0; i < top; i++) { |
| np[i] = mont->N.d[i]; |
| } |
| |
| // Fill |powerbuf| with the first 32 powers of |am|. |
| const BN_ULONG *n0 = mont->n0; |
| bn_scatter5(tmp.d, top, powerbuf, 0); |
| bn_scatter5(am.d, am.width, powerbuf, 1); |
| bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); |
| bn_scatter5(tmp.d, top, powerbuf, 2); |
| |
| // Square to compute powers of two. |
| for (i = 4; i < 32; i *= 2) { |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_scatter5(tmp.d, top, powerbuf, i); |
| } |
| // Compute odd powers |i| based on |i - 1|, then all powers |i * 2^j|. |
| for (i = 3; i < 32; i += 2) { |
| bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
| bn_scatter5(tmp.d, top, powerbuf, i); |
| for (int j = 2 * i; j < 32; j *= 2) { |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_scatter5(tmp.d, top, powerbuf, j); |
| } |
| } |
| |
| bits--; |
| for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) { |
| wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| } |
| bn_gather5(tmp.d, top, powerbuf, wvalue); |
| |
| // At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit |
| // that has not been read yet.) |
| assert(bits >= -1 && (bits == -1 || bits % 5 == 4)); |
| |
| // Scan the exponent one window at a time starting from the most |
| // significant bits. |
| if (top & 7) { |
| while (bits >= 0) { |
| for (wvalue = 0, i = 0; i < 5; i++, bits--) { |
| wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| } |
| |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); |
| } |
| } else { |
| const uint8_t *p_bytes = (const uint8_t *)p->d; |
| assert(bits < max_bits); |
| // |p = 0| has been handled as a special case, so |max_bits| is at least |
| // one word. |
| assert(max_bits >= 64); |
| |
| // If the first bit to be read lands in the last byte, unroll the first |
| // iteration to avoid reading past the bounds of |p->d|. (After the first |
| // iteration, we are guaranteed to be past the last byte.) Note |bits| |
| // here is the top bit, inclusive. |
| if (bits - 4 >= max_bits - 8) { |
| // Read five bits from |bits-4| through |bits|, inclusive. |
| wvalue = p_bytes[p->width * BN_BYTES - 1]; |
| wvalue >>= (bits - 4) & 7; |
| wvalue &= 0x1f; |
| bits -= 5; |
| bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); |
| } |
| while (bits >= 0) { |
| // Read five bits from |bits-4| through |bits|, inclusive. |
| int first_bit = bits - 4; |
| uint16_t val; |
| OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val)); |
| val >>= first_bit & 7; |
| val &= 0x1f; |
| bits -= 5; |
| bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val); |
| } |
| } |
| // The result is now in |tmp| in Montgomery form, but it may not be fully |
| // reduced. This is within bounds for |BN_from_montgomery| (tmp < R <= m*R) |
| // so it will, when converting from Montgomery form, produce a fully reduced |
| // result. |
| // |
| // This differs from Figure 2 of the paper, which uses AMM(h, 1) to convert |
| // from Montgomery form with unreduced output, followed by an extra |
| // reduction step. In the paper's terminology, we replace steps 9 and 10 |
| // with MM(h, 1). |
| } else |
| #endif |
| { |
| copy_to_prebuf(&tmp, top, powerbuf, 0, window); |
| copy_to_prebuf(&am, top, powerbuf, 1, window); |
| |
| // If the window size is greater than 1, then calculate |
| // val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) |
| // (even powers could instead be computed as (a^(i/2))^2 |
| // to use the slight performance advantage of sqr over mul). |
| if (window > 1) { |
| if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) { |
| goto err; |
| } |
| |
| copy_to_prebuf(&tmp, top, powerbuf, 2, window); |
| |
| for (i = 3; i < num_powers; i++) { |
| // Calculate a^i = a^(i-1) * a |
| if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) { |
| goto err; |
| } |
| |
| copy_to_prebuf(&tmp, top, powerbuf, i, window); |
| } |
| } |
| |
| bits--; |
| for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) { |
| wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| } |
| if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) { |
| goto err; |
| } |
| |
| // Scan the exponent one window at a time starting from the most |
| // significant bits. |
| while (bits >= 0) { |
| wvalue = 0; // The 'value' of the window |
| |
| // Scan the window, squaring the result as we go |
| for (i = 0; i < window; i++, bits--) { |
| if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) { |
| goto err; |
| } |
| wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| } |
| |
| // Fetch the appropriate pre-computed value from the pre-buf |
| if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) { |
| goto err; |
| } |
| |
| // Multiply the result into the intermediate result |
| if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| // Convert the final result from Montgomery to standard format. If we used the |
| // |OPENSSL_BN_ASM_MONT5| codepath, |tmp| may not be fully reduced. It is only |
| // bounded by R rather than |m|. However, that is still within bounds for |
| // |BN_from_montgomery|, which implements full Montgomery reduction, not |
| // "almost" Montgomery reduction. |
| if (!BN_from_montgomery(rr, &tmp, mont, ctx)) { |
| goto err; |
| } |
| ret = 1; |
| |
| err: |
| BN_MONT_CTX_free(new_mont); |
| if (powerbuf != NULL && powerbuf_free == NULL) { |
| OPENSSL_cleanse(powerbuf, powerbuf_len); |
| } |
| OPENSSL_free(powerbuf_free); |
| return ret; |
| } |
| |
| int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, |
| const BN_MONT_CTX *mont) { |
| BIGNUM a_bignum; |
| BN_init(&a_bignum); |
| |
| int ret = 0; |
| |
| // BN_mod_exp_mont requires reduced inputs. |
| if (bn_minimal_width(m) == 1) { |
| a %= m->d[0]; |
| } |
| |
| if (!BN_set_word(&a_bignum, a)) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont); |
| |
| err: |
| BN_free(&a_bignum); |
| |
| return ret; |
| } |
| |
| #define TABLE_SIZE 32 |
| |
| int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, |
| const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, |
| BN_CTX *ctx, const BN_MONT_CTX *mont) { |
| BIGNUM tmp; |
| BN_init(&tmp); |
| |
| int ret = 0; |
| BN_MONT_CTX *new_mont = NULL; |
| |
| // Allocate a montgomery context if it was not supplied by the caller. |
| if (mont == NULL) { |
| new_mont = BN_MONT_CTX_new_for_modulus(m, ctx); |
| if (new_mont == NULL) { |
| goto err; |
| } |
| mont = new_mont; |
| } |
| |
| // BN_mod_mul_montgomery removes one Montgomery factor, so passing one |
| // Montgomery-encoded and one non-Montgomery-encoded value gives a |
| // non-Montgomery-encoded result. |
| if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) || |
| !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) || |
| !BN_to_montgomery(rr, rr, mont, ctx) || |
| !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_MONT_CTX_free(new_mont); |
| BN_free(&tmp); |
| |
| return ret; |
| } |