blob: 52102ab06bda7cd61460da6124c8ac71b192595f [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
// Adapted from the public domain, estream code by D. Bernstein.
#include <openssl/chacha.h>
#include <assert.h>
#include <string.h>
#include "../internal.h"
#include "internal.h"
// sigma contains the ChaCha constants, which happen to be an ASCII string.
static const uint8_t sigma[16] = { 'e', 'x', 'p', 'a', 'n', 'd', ' ', '3',
'2', '-', 'b', 'y', 't', 'e', ' ', 'k' };
// QUARTERROUND updates a, b, c, d with a ChaCha "quarter" round.
#define QUARTERROUND(a, b, c, d) \
x[a] += x[b]; \
x[d] = CRYPTO_rotl_u32(x[d] ^ x[a], 16); \
x[c] += x[d]; \
x[b] = CRYPTO_rotl_u32(x[b] ^ x[c], 12); \
x[a] += x[b]; \
x[d] = CRYPTO_rotl_u32(x[d] ^ x[a], 8); \
x[c] += x[d]; \
x[b] = CRYPTO_rotl_u32(x[b] ^ x[c], 7);
void CRYPTO_hchacha20(uint8_t out[32], const uint8_t key[32],
const uint8_t nonce[16]) {
uint32_t x[16];
OPENSSL_memcpy(x, sigma, sizeof(sigma));
OPENSSL_memcpy(&x[4], key, 32);
OPENSSL_memcpy(&x[12], nonce, 16);
for (size_t i = 0; i < 20; i += 2) {
QUARTERROUND(0, 4, 8, 12)
QUARTERROUND(1, 5, 9, 13)
QUARTERROUND(2, 6, 10, 14)
QUARTERROUND(3, 7, 11, 15)
QUARTERROUND(0, 5, 10, 15)
QUARTERROUND(1, 6, 11, 12)
QUARTERROUND(2, 7, 8, 13)
QUARTERROUND(3, 4, 9, 14)
}
OPENSSL_memcpy(out, &x[0], sizeof(uint32_t) * 4);
OPENSSL_memcpy(&out[16], &x[12], sizeof(uint32_t) * 4);
}
#if defined(CHACHA20_ASM_NOHW)
static void ChaCha20_ctr32(uint8_t *out, const uint8_t *in, size_t in_len,
const uint32_t key[8], const uint32_t counter[4]) {
#if defined(CHACHA20_ASM_NEON)
if (ChaCha20_ctr32_neon_capable(in_len)) {
ChaCha20_ctr32_neon(out, in, in_len, key, counter);
return;
}
#endif
if (in_len > 0) {
ChaCha20_ctr32_nohw(out, in, in_len, key, counter);
}
}
#endif
#if defined(CHACHA20_ASM) || defined(CHACHA20_ASM_NOHW)
void CRYPTO_chacha_20(uint8_t *out, const uint8_t *in, size_t in_len,
const uint8_t key[32], const uint8_t nonce[12],
uint32_t counter) {
assert(!buffers_alias(out, in_len, in, in_len) || in == out);
uint32_t counter_nonce[4];
counter_nonce[0] = counter;
counter_nonce[1] = CRYPTO_load_u32_le(nonce + 0);
counter_nonce[2] = CRYPTO_load_u32_le(nonce + 4);
counter_nonce[3] = CRYPTO_load_u32_le(nonce + 8);
const uint32_t *key_ptr = (const uint32_t *)key;
#if !defined(OPENSSL_X86) && !defined(OPENSSL_X86_64)
// The assembly expects the key to be four-byte aligned.
uint32_t key_u32[8];
if ((((uintptr_t)key) & 3) != 0) {
key_u32[0] = CRYPTO_load_u32_le(key + 0);
key_u32[1] = CRYPTO_load_u32_le(key + 4);
key_u32[2] = CRYPTO_load_u32_le(key + 8);
key_u32[3] = CRYPTO_load_u32_le(key + 12);
key_u32[4] = CRYPTO_load_u32_le(key + 16);
key_u32[5] = CRYPTO_load_u32_le(key + 20);
key_u32[6] = CRYPTO_load_u32_le(key + 24);
key_u32[7] = CRYPTO_load_u32_le(key + 28);
key_ptr = key_u32;
}
#endif
while (in_len > 0) {
// The assembly functions do not have defined overflow behavior. While
// overflow is almost always a bug in the caller, we prefer our functions to
// behave the same across platforms, so divide into multiple calls to avoid
// this case.
uint64_t todo = 64 * ((UINT64_C(1) << 32) - counter_nonce[0]);
if (todo > in_len) {
todo = in_len;
}
ChaCha20_ctr32(out, in, (size_t)todo, key_ptr, counter_nonce);
in += todo;
out += todo;
in_len -= todo;
// We're either done and will next break out of the loop, or we stopped at
// the wraparound point and the counter should continue at zero.
counter_nonce[0] = 0;
}
}
#else
// chacha_core performs 20 rounds of ChaCha on the input words in
// |input| and writes the 64 output bytes to |output|.
static void chacha_core(uint8_t output[64], const uint32_t input[16]) {
uint32_t x[16];
int i;
OPENSSL_memcpy(x, input, sizeof(uint32_t) * 16);
for (i = 20; i > 0; i -= 2) {
QUARTERROUND(0, 4, 8, 12)
QUARTERROUND(1, 5, 9, 13)
QUARTERROUND(2, 6, 10, 14)
QUARTERROUND(3, 7, 11, 15)
QUARTERROUND(0, 5, 10, 15)
QUARTERROUND(1, 6, 11, 12)
QUARTERROUND(2, 7, 8, 13)
QUARTERROUND(3, 4, 9, 14)
}
for (i = 0; i < 16; ++i) {
x[i] += input[i];
}
for (i = 0; i < 16; ++i) {
CRYPTO_store_u32_le(output + 4 * i, x[i]);
}
}
void CRYPTO_chacha_20(uint8_t *out, const uint8_t *in, size_t in_len,
const uint8_t key[32], const uint8_t nonce[12],
uint32_t counter) {
assert(!buffers_alias(out, in_len, in, in_len) || in == out);
uint32_t input[16];
uint8_t buf[64];
size_t todo, i;
input[0] = CRYPTO_load_u32_le(sigma + 0);
input[1] = CRYPTO_load_u32_le(sigma + 4);
input[2] = CRYPTO_load_u32_le(sigma + 8);
input[3] = CRYPTO_load_u32_le(sigma + 12);
input[4] = CRYPTO_load_u32_le(key + 0);
input[5] = CRYPTO_load_u32_le(key + 4);
input[6] = CRYPTO_load_u32_le(key + 8);
input[7] = CRYPTO_load_u32_le(key + 12);
input[8] = CRYPTO_load_u32_le(key + 16);
input[9] = CRYPTO_load_u32_le(key + 20);
input[10] = CRYPTO_load_u32_le(key + 24);
input[11] = CRYPTO_load_u32_le(key + 28);
input[12] = counter;
input[13] = CRYPTO_load_u32_le(nonce + 0);
input[14] = CRYPTO_load_u32_le(nonce + 4);
input[15] = CRYPTO_load_u32_le(nonce + 8);
while (in_len > 0) {
todo = sizeof(buf);
if (in_len < todo) {
todo = in_len;
}
chacha_core(buf, input);
for (i = 0; i < todo; i++) {
out[i] = in[i] ^ buf[i];
}
out += todo;
in += todo;
in_len -= todo;
input[12]++;
}
}
#endif