|  | // Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/pkcs8.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/cipher.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/nid.h> | 
|  | #include <openssl/rand.h> | 
|  |  | 
|  | #include "../bytestring/internal.h" | 
|  | #include "../internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | static int pkcs12_encode_password(const char *in, size_t in_len, uint8_t **out, | 
|  | size_t *out_len) { | 
|  | bssl::ScopedCBB cbb; | 
|  | if (!CBB_init(cbb.get(), in_len * 2)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Convert the password to BMPString, or UCS-2. See | 
|  | // https://tools.ietf.org/html/rfc7292#appendix-B.1. | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, (const uint8_t *)in, in_len); | 
|  | while (CBS_len(&cbs) != 0) { | 
|  | uint32_t c; | 
|  | if (!CBS_get_utf8(&cbs, &c) || !CBB_add_ucs2_be(cbb.get(), c)) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Terminate the result with a UCS-2 NUL. | 
|  | if (!CBB_add_ucs2_be(cbb.get(), 0) || !CBB_finish(cbb.get(), out, out_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int pkcs12_key_gen(const char *pass, size_t pass_len, const uint8_t *salt, | 
|  | size_t salt_len, uint8_t id, uint32_t iterations, | 
|  | size_t out_len, uint8_t *out, const EVP_MD *md) { | 
|  | // See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the | 
|  | // specification have errata applied and other typos fixed. | 
|  |  | 
|  | if (iterations < 1) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ret = 0; | 
|  | EVP_MD_CTX ctx; | 
|  | EVP_MD_CTX_init(&ctx); | 
|  | uint8_t *pass_raw = NULL, *I = NULL; | 
|  | size_t pass_raw_len = 0, I_len = 0; | 
|  |  | 
|  | { | 
|  | // If |pass| is NULL, we use the empty string rather than {0, 0} as the raw | 
|  | // password. | 
|  | if (pass != NULL && | 
|  | !pkcs12_encode_password(pass, pass_len, &pass_raw, &pass_raw_len)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // In the spec, |block_size| is called "v", but measured in bits. | 
|  | size_t block_size = EVP_MD_block_size(md); | 
|  |  | 
|  | // 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies | 
|  | // of ID. | 
|  | uint8_t D[EVP_MAX_MD_BLOCK_SIZE]; | 
|  | OPENSSL_memset(D, id, block_size); | 
|  |  | 
|  | // 2. Concatenate copies of the salt together to create a string S of length | 
|  | // v(ceiling(s/v)) bits (the final copy of the salt may be truncated to | 
|  | // create S). Note that if the salt is the empty string, then so is S. | 
|  | // | 
|  | // 3. Concatenate copies of the password together to create a string P of | 
|  | // length v(ceiling(p/v)) bits (the final copy of the password may be | 
|  | // truncated to create P).  Note that if the password is the empty string, | 
|  | // then so is P. | 
|  | // | 
|  | // 4. Set I=S||P to be the concatenation of S and P. | 
|  | if (salt_len + block_size - 1 < salt_len || | 
|  | pass_raw_len + block_size - 1 < pass_raw_len) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); | 
|  | goto err; | 
|  | } | 
|  | size_t S_len = block_size * ((salt_len + block_size - 1) / block_size); | 
|  | size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size); | 
|  | I_len = S_len + P_len; | 
|  | if (I_len < S_len) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | I = reinterpret_cast<uint8_t *>(OPENSSL_malloc(I_len)); | 
|  | if (I_len != 0 && I == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < S_len; i++) { | 
|  | I[i] = salt[i % salt_len]; | 
|  | } | 
|  | for (size_t i = 0; i < P_len; i++) { | 
|  | I[i + S_len] = pass_raw[i % pass_raw_len]; | 
|  | } | 
|  |  | 
|  | while (out_len != 0) { | 
|  | // A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I, | 
|  | // H(H(H(... H(D||I)))) | 
|  | uint8_t A[EVP_MAX_MD_SIZE]; | 
|  | unsigned A_len; | 
|  | if (!EVP_DigestInit_ex(&ctx, md, NULL) || | 
|  | !EVP_DigestUpdate(&ctx, D, block_size) || | 
|  | !EVP_DigestUpdate(&ctx, I, I_len) || | 
|  | !EVP_DigestFinal_ex(&ctx, A, &A_len)) { | 
|  | goto err; | 
|  | } | 
|  | for (uint32_t iter = 1; iter < iterations; iter++) { | 
|  | if (!EVP_DigestInit_ex(&ctx, md, NULL) || | 
|  | !EVP_DigestUpdate(&ctx, A, A_len) || | 
|  | !EVP_DigestFinal_ex(&ctx, A, &A_len)) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  |  | 
|  | size_t todo = out_len < A_len ? out_len : A_len; | 
|  | OPENSSL_memcpy(out, A, todo); | 
|  | out += todo; | 
|  | out_len -= todo; | 
|  | if (out_len == 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | // B. Concatenate copies of A_i to create a string B of length v bits (the | 
|  | // final copy of A_i may be truncated to create B). | 
|  | uint8_t B[EVP_MAX_MD_BLOCK_SIZE]; | 
|  | for (size_t i = 0; i < block_size; i++) { | 
|  | B[i] = A[i % A_len]; | 
|  | } | 
|  |  | 
|  | // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit | 
|  | // blocks, where k=ceiling(s/v)+ceiling(p/v), modify I by setting | 
|  | // I_j=(I_j+B+1) mod 2^v for each j. | 
|  | assert(I_len % block_size == 0); | 
|  | for (size_t i = 0; i < I_len; i += block_size) { | 
|  | unsigned carry = 1; | 
|  | for (size_t j = block_size - 1; j < block_size; j--) { | 
|  | carry += I[i + j] + B[j]; | 
|  | I[i + j] = (uint8_t)carry; | 
|  | carry >>= 8; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(I); | 
|  | OPENSSL_free(pass_raw); | 
|  | EVP_MD_CTX_cleanup(&ctx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite, | 
|  | EVP_CIPHER_CTX *ctx, uint32_t iterations, | 
|  | const char *pass, size_t pass_len, | 
|  | const uint8_t *salt, size_t salt_len, | 
|  | int is_encrypt) { | 
|  | const EVP_CIPHER *cipher = suite->cipher_func(); | 
|  | const EVP_MD *md = suite->md_func(); | 
|  |  | 
|  | uint8_t key[EVP_MAX_KEY_LENGTH]; | 
|  | uint8_t iv[EVP_MAX_IV_LENGTH]; | 
|  | if (!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, iterations, | 
|  | EVP_CIPHER_key_length(cipher), key, md) || | 
|  | !pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_IV_ID, iterations, | 
|  | EVP_CIPHER_iv_length(cipher), iv, md)) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt); | 
|  | OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); | 
|  | OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite, | 
|  | EVP_CIPHER_CTX *ctx, const char *pass, | 
|  | size_t pass_len, CBS *param) { | 
|  | CBS pbe_param, salt; | 
|  | uint64_t iterations; | 
|  | if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || | 
|  | !CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) || | 
|  | !CBS_get_asn1_uint64(&pbe_param, &iterations) || | 
|  | CBS_len(&pbe_param) != 0 || CBS_len(param) != 0) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!pkcs12_iterations_acceptable(iterations)) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return pkcs12_pbe_cipher_init(suite, ctx, (uint32_t)iterations, pass, | 
|  | pass_len, CBS_data(&salt), CBS_len(&salt), | 
|  | 0 /* decrypt */); | 
|  | } | 
|  |  | 
|  | static const struct pbe_suite kBuiltinPBE[] = { | 
|  | { | 
|  | NID_pbe_WithSHA1And40BitRC2_CBC, | 
|  | // 1.2.840.113549.1.12.1.6 | 
|  | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x06}, | 
|  | 10, | 
|  | EVP_rc2_40_cbc, | 
|  | EVP_sha1, | 
|  | pkcs12_pbe_decrypt_init, | 
|  | }, | 
|  | { | 
|  | NID_pbe_WithSHA1And128BitRC4, | 
|  | // 1.2.840.113549.1.12.1.1 | 
|  | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x01}, | 
|  | 10, | 
|  | EVP_rc4, | 
|  | EVP_sha1, | 
|  | pkcs12_pbe_decrypt_init, | 
|  | }, | 
|  | { | 
|  | NID_pbe_WithSHA1And3_Key_TripleDES_CBC, | 
|  | // 1.2.840.113549.1.12.1.3 | 
|  | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x03}, | 
|  | 10, | 
|  | EVP_des_ede3_cbc, | 
|  | EVP_sha1, | 
|  | pkcs12_pbe_decrypt_init, | 
|  | }, | 
|  | { | 
|  | NID_pbes2, | 
|  | // 1.2.840.113549.1.5.13 | 
|  | {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d}, | 
|  | 9, | 
|  | NULL, | 
|  | NULL, | 
|  | PKCS5_pbe2_decrypt_init, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct pbe_suite *get_pkcs12_pbe_suite(int pbe_nid) { | 
|  | for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) { | 
|  | if (kBuiltinPBE[i].pbe_nid == pbe_nid && | 
|  | // If |cipher_func| or |md_func| are missing, this is a PBES2 scheme. | 
|  | kBuiltinPBE[i].cipher_func != NULL && kBuiltinPBE[i].md_func != NULL) { | 
|  | return &kBuiltinPBE[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg_nid, | 
|  | const EVP_CIPHER *alg_cipher, uint32_t iterations, | 
|  | const char *pass, size_t pass_len, | 
|  | const uint8_t *salt, size_t salt_len) { | 
|  | // TODO(davidben): OpenSSL has since extended |pbe_nid| to control either | 
|  | // the PBES1 scheme or the PBES2 PRF. E.g. passing |NID_hmacWithSHA256| will | 
|  | // select PBES2 with HMAC-SHA256 as the PRF. Implement this if anything uses | 
|  | // it. See 5693a30813a031d3921a016a870420e7eb93ec90 in OpenSSL. | 
|  | if (alg_nid == -1) { | 
|  | return PKCS5_pbe2_encrypt_init(out, ctx, alg_cipher, iterations, pass, | 
|  | pass_len, salt, salt_len); | 
|  | } | 
|  |  | 
|  | const struct pbe_suite *suite = get_pkcs12_pbe_suite(alg_nid); | 
|  | if (suite == NULL) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // See RFC 7292, appendix C. All our supported "PBES1" schemes are the PKCS#12 | 
|  | // schemes, which use a different KDF. The true PBES1 schemes in RFC 8018 use | 
|  | // PBKDF1, which use a very similar PBEParameter structure, but require the | 
|  | // salt be exactly 8 bytes. | 
|  | CBB algorithm, param; | 
|  | if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || | 
|  | !CBB_add_asn1_element(&algorithm, CBS_ASN1_OBJECT, suite->oid, | 
|  | suite->oid_len) || | 
|  | !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || | 
|  | !CBB_add_asn1_octet_string(¶m, salt, salt_len) || | 
|  | !CBB_add_asn1_uint64(¶m, iterations) || !CBB_flush(out)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass, pass_len, salt, | 
|  | salt_len, 1 /* encrypt */); | 
|  | } | 
|  |  | 
|  | int pkcs8_pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm, | 
|  | const char *pass, size_t pass_len, const uint8_t *in, | 
|  | size_t in_len) { | 
|  | int ret = 0; | 
|  | uint8_t *buf = NULL; | 
|  | bssl::ScopedEVP_CIPHER_CTX ctx; | 
|  |  | 
|  | CBS obj; | 
|  | const struct pbe_suite *suite = NULL; | 
|  | if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) { | 
|  | if (CBS_mem_equal(&obj, kBuiltinPBE[i].oid, kBuiltinPBE[i].oid_len)) { | 
|  | suite = &kBuiltinPBE[i]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (suite == NULL) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!suite->decrypt_init(suite, ctx.get(), pass, pass_len, algorithm)) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(in_len)); | 
|  | if (buf == NULL) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (in_len > INT_MAX) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | int n1, n2; | 
|  | if (!EVP_DecryptUpdate(ctx.get(), buf, &n1, in, (int)in_len) || | 
|  | !EVP_DecryptFinal_ex(ctx.get(), buf + n1, &n2)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | *out = buf; | 
|  | *out_len = n1 + n2; | 
|  | ret = 1; | 
|  | buf = NULL; | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(buf); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs, const char *pass, | 
|  | size_t pass_len) { | 
|  | // See RFC 5208, section 6. | 
|  | CBS epki, algorithm, ciphertext; | 
|  | if (!CBS_get_asn1(cbs, &epki, CBS_ASN1_SEQUENCE) || | 
|  | !CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) || | 
|  | !CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || | 
|  | CBS_len(&epki) != 0) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t *out; | 
|  | size_t out_len; | 
|  | if (!pkcs8_pbe_decrypt(&out, &out_len, &algorithm, pass, pass_len, | 
|  | CBS_data(&ciphertext), CBS_len(&ciphertext))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | CBS pki; | 
|  | CBS_init(&pki, out, out_len); | 
|  | EVP_PKEY *ret = EVP_parse_private_key(&pki); | 
|  | OPENSSL_free(out); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int PKCS8_marshal_encrypted_private_key(CBB *out, int pbe_nid, | 
|  | const EVP_CIPHER *cipher, | 
|  | const char *pass, size_t pass_len, | 
|  | const uint8_t *salt, size_t salt_len, | 
|  | int iterations, const EVP_PKEY *pkey) { | 
|  | int ret = 0; | 
|  | uint8_t *plaintext = NULL, *salt_buf = NULL; | 
|  | size_t plaintext_len = 0; | 
|  | bssl::ScopedEVP_CIPHER_CTX ctx; | 
|  |  | 
|  | { | 
|  | // Generate a random salt if necessary. | 
|  | if (salt == NULL) { | 
|  | if (salt_len == 0) { | 
|  | salt_len = PKCS5_SALT_LEN; | 
|  | } | 
|  |  | 
|  | salt_buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(salt_len)); | 
|  | if (salt_buf == NULL || !RAND_bytes(salt_buf, salt_len)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | salt = salt_buf; | 
|  | } | 
|  |  | 
|  | if (iterations <= 0) { | 
|  | iterations = PKCS12_DEFAULT_ITER; | 
|  | } | 
|  |  | 
|  | // Serialize the input key. | 
|  | CBB plaintext_cbb; | 
|  | if (!CBB_init(&plaintext_cbb, 128) || | 
|  | !EVP_marshal_private_key(&plaintext_cbb, pkey) || | 
|  | !CBB_finish(&plaintext_cbb, &plaintext, &plaintext_len)) { | 
|  | CBB_cleanup(&plaintext_cbb); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | CBB epki; | 
|  | if (!CBB_add_asn1(out, &epki, CBS_ASN1_SEQUENCE) || | 
|  | !pkcs12_pbe_encrypt_init(&epki, ctx.get(), pbe_nid, cipher, | 
|  | (uint32_t)iterations, pass, pass_len, salt, | 
|  | salt_len)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | size_t max_out = plaintext_len + EVP_CIPHER_CTX_block_size(ctx.get()); | 
|  | if (max_out < plaintext_len) { | 
|  | OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | CBB ciphertext; | 
|  | uint8_t *ptr; | 
|  | int n1, n2; | 
|  | if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || | 
|  | !CBB_reserve(&ciphertext, &ptr, max_out) || | 
|  | !EVP_CipherUpdate(ctx.get(), ptr, &n1, plaintext, plaintext_len) || | 
|  | !EVP_CipherFinal_ex(ctx.get(), ptr + n1, &n2) || | 
|  | !CBB_did_write(&ciphertext, n1 + n2) || !CBB_flush(out)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | err: | 
|  | OPENSSL_free(plaintext); | 
|  | OPENSSL_free(salt_buf); | 
|  | return ret; | 
|  | } |