| /* Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> |
| * and Bodo Moeller for the OpenSSL project. */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/bn.h> |
| |
| #include <openssl/err.h> |
| |
| |
| BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { |
| /* Compute a square root of |a| mod |p| using the Tonelli/Shanks algorithm |
| * (cf. Henri Cohen, "A Course in Algebraic Computational Number Theory", |
| * algorithm 1.5.1). |p| is assumed to be a prime. */ |
| |
| BIGNUM *ret = in; |
| int err = 1; |
| int r; |
| BIGNUM *A, *b, *q, *t, *x, *y; |
| int e, i, j; |
| |
| if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) { |
| if (BN_abs_is_word(p, 2)) { |
| if (ret == NULL) { |
| ret = BN_new(); |
| } |
| if (ret == NULL) { |
| goto end; |
| } |
| if (!BN_set_word(ret, BN_is_bit_set(a, 0))) { |
| if (ret != in) { |
| BN_free(ret); |
| } |
| return NULL; |
| } |
| return ret; |
| } |
| |
| OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); |
| return (NULL); |
| } |
| |
| if (BN_is_zero(a) || BN_is_one(a)) { |
| if (ret == NULL) { |
| ret = BN_new(); |
| } |
| if (ret == NULL) { |
| goto end; |
| } |
| if (!BN_set_word(ret, BN_is_one(a))) { |
| if (ret != in) { |
| BN_free(ret); |
| } |
| return NULL; |
| } |
| return ret; |
| } |
| |
| BN_CTX_start(ctx); |
| A = BN_CTX_get(ctx); |
| b = BN_CTX_get(ctx); |
| q = BN_CTX_get(ctx); |
| t = BN_CTX_get(ctx); |
| x = BN_CTX_get(ctx); |
| y = BN_CTX_get(ctx); |
| if (y == NULL) { |
| goto end; |
| } |
| |
| if (ret == NULL) { |
| ret = BN_new(); |
| } |
| if (ret == NULL) { |
| goto end; |
| } |
| |
| /* A = a mod p */ |
| if (!BN_nnmod(A, a, p, ctx)) { |
| goto end; |
| } |
| |
| /* now write |p| - 1 as 2^e*q where q is odd */ |
| e = 1; |
| while (!BN_is_bit_set(p, e)) { |
| e++; |
| } |
| /* we'll set q later (if needed) */ |
| |
| if (e == 1) { |
| /* The easy case: (|p|-1)/2 is odd, so 2 has an inverse |
| * modulo (|p|-1)/2, and square roots can be computed |
| * directly by modular exponentiation. |
| * We have |
| * 2 * (|p|+1)/4 == 1 (mod (|p|-1)/2), |
| * so we can use exponent (|p|+1)/4, i.e. (|p|-3)/4 + 1. |
| */ |
| if (!BN_rshift(q, p, 2)) { |
| goto end; |
| } |
| q->neg = 0; |
| if (!BN_add_word(q, 1) || |
| !BN_mod_exp_mont(ret, A, q, p, ctx, NULL)) { |
| goto end; |
| } |
| err = 0; |
| goto vrfy; |
| } |
| |
| if (e == 2) { |
| /* |p| == 5 (mod 8) |
| * |
| * In this case 2 is always a non-square since |
| * Legendre(2,p) = (-1)^((p^2-1)/8) for any odd prime. |
| * So if a really is a square, then 2*a is a non-square. |
| * Thus for |
| * b := (2*a)^((|p|-5)/8), |
| * i := (2*a)*b^2 |
| * we have |
| * i^2 = (2*a)^((1 + (|p|-5)/4)*2) |
| * = (2*a)^((p-1)/2) |
| * = -1; |
| * so if we set |
| * x := a*b*(i-1), |
| * then |
| * x^2 = a^2 * b^2 * (i^2 - 2*i + 1) |
| * = a^2 * b^2 * (-2*i) |
| * = a*(-i)*(2*a*b^2) |
| * = a*(-i)*i |
| * = a. |
| * |
| * (This is due to A.O.L. Atkin, |
| * <URL: |
| *http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>, |
| * November 1992.) |
| */ |
| |
| /* t := 2*a */ |
| if (!BN_mod_lshift1_quick(t, A, p)) { |
| goto end; |
| } |
| |
| /* b := (2*a)^((|p|-5)/8) */ |
| if (!BN_rshift(q, p, 3)) { |
| goto end; |
| } |
| q->neg = 0; |
| if (!BN_mod_exp_mont(b, t, q, p, ctx, NULL)) { |
| goto end; |
| } |
| |
| /* y := b^2 */ |
| if (!BN_mod_sqr(y, b, p, ctx)) { |
| goto end; |
| } |
| |
| /* t := (2*a)*b^2 - 1*/ |
| if (!BN_mod_mul(t, t, y, p, ctx) || |
| !BN_sub_word(t, 1)) { |
| goto end; |
| } |
| |
| /* x = a*b*t */ |
| if (!BN_mod_mul(x, A, b, p, ctx) || |
| !BN_mod_mul(x, x, t, p, ctx)) { |
| goto end; |
| } |
| |
| if (!BN_copy(ret, x)) { |
| goto end; |
| } |
| err = 0; |
| goto vrfy; |
| } |
| |
| /* e > 2, so we really have to use the Tonelli/Shanks algorithm. |
| * First, find some y that is not a square. */ |
| if (!BN_copy(q, p)) { |
| goto end; /* use 'q' as temp */ |
| } |
| q->neg = 0; |
| i = 2; |
| do { |
| /* For efficiency, try small numbers first; |
| * if this fails, try random numbers. |
| */ |
| if (i < 22) { |
| if (!BN_set_word(y, i)) { |
| goto end; |
| } |
| } else { |
| if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0)) { |
| goto end; |
| } |
| if (BN_ucmp(y, p) >= 0) { |
| if (!(p->neg ? BN_add : BN_sub)(y, y, p)) { |
| goto end; |
| } |
| } |
| /* now 0 <= y < |p| */ |
| if (BN_is_zero(y)) { |
| if (!BN_set_word(y, i)) { |
| goto end; |
| } |
| } |
| } |
| |
| r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */ |
| if (r < -1) { |
| goto end; |
| } |
| if (r == 0) { |
| /* m divides p */ |
| OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); |
| goto end; |
| } |
| } while (r == 1 && ++i < 82); |
| |
| if (r != -1) { |
| /* Many rounds and still no non-square -- this is more likely |
| * a bug than just bad luck. |
| * Even if p is not prime, we should have found some y |
| * such that r == -1. |
| */ |
| OPENSSL_PUT_ERROR(BN, BN_R_TOO_MANY_ITERATIONS); |
| goto end; |
| } |
| |
| /* Here's our actual 'q': */ |
| if (!BN_rshift(q, q, e)) { |
| goto end; |
| } |
| |
| /* Now that we have some non-square, we can find an element |
| * of order 2^e by computing its q'th power. */ |
| if (!BN_mod_exp_mont(y, y, q, p, ctx, NULL)) { |
| goto end; |
| } |
| if (BN_is_one(y)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_P_IS_NOT_PRIME); |
| goto end; |
| } |
| |
| /* Now we know that (if p is indeed prime) there is an integer |
| * k, 0 <= k < 2^e, such that |
| * |
| * a^q * y^k == 1 (mod p). |
| * |
| * As a^q is a square and y is not, k must be even. |
| * q+1 is even, too, so there is an element |
| * |
| * X := a^((q+1)/2) * y^(k/2), |
| * |
| * and it satisfies |
| * |
| * X^2 = a^q * a * y^k |
| * = a, |
| * |
| * so it is the square root that we are looking for. |
| */ |
| |
| /* t := (q-1)/2 (note that q is odd) */ |
| if (!BN_rshift1(t, q)) { |
| goto end; |
| } |
| |
| /* x := a^((q-1)/2) */ |
| if (BN_is_zero(t)) /* special case: p = 2^e + 1 */ |
| { |
| if (!BN_nnmod(t, A, p, ctx)) { |
| goto end; |
| } |
| if (BN_is_zero(t)) { |
| /* special case: a == 0 (mod p) */ |
| BN_zero(ret); |
| err = 0; |
| goto end; |
| } else if (!BN_one(x)) { |
| goto end; |
| } |
| } else { |
| if (!BN_mod_exp_mont(x, A, t, p, ctx, NULL)) { |
| goto end; |
| } |
| if (BN_is_zero(x)) { |
| /* special case: a == 0 (mod p) */ |
| BN_zero(ret); |
| err = 0; |
| goto end; |
| } |
| } |
| |
| /* b := a*x^2 (= a^q) */ |
| if (!BN_mod_sqr(b, x, p, ctx) || |
| !BN_mod_mul(b, b, A, p, ctx)) { |
| goto end; |
| } |
| |
| /* x := a*x (= a^((q+1)/2)) */ |
| if (!BN_mod_mul(x, x, A, p, ctx)) { |
| goto end; |
| } |
| |
| while (1) { |
| /* Now b is a^q * y^k for some even k (0 <= k < 2^E |
| * where E refers to the original value of e, which we |
| * don't keep in a variable), and x is a^((q+1)/2) * y^(k/2). |
| * |
| * We have a*b = x^2, |
| * y^2^(e-1) = -1, |
| * b^2^(e-1) = 1. |
| */ |
| |
| if (BN_is_one(b)) { |
| if (!BN_copy(ret, x)) { |
| goto end; |
| } |
| err = 0; |
| goto vrfy; |
| } |
| |
| |
| /* find smallest i such that b^(2^i) = 1 */ |
| i = 1; |
| if (!BN_mod_sqr(t, b, p, ctx)) { |
| goto end; |
| } |
| while (!BN_is_one(t)) { |
| i++; |
| if (i == e) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE); |
| goto end; |
| } |
| if (!BN_mod_mul(t, t, t, p, ctx)) { |
| goto end; |
| } |
| } |
| |
| |
| /* t := y^2^(e - i - 1) */ |
| if (!BN_copy(t, y)) { |
| goto end; |
| } |
| for (j = e - i - 1; j > 0; j--) { |
| if (!BN_mod_sqr(t, t, p, ctx)) { |
| goto end; |
| } |
| } |
| if (!BN_mod_mul(y, t, t, p, ctx) || |
| !BN_mod_mul(x, x, t, p, ctx) || |
| !BN_mod_mul(b, b, y, p, ctx)) { |
| goto end; |
| } |
| e = i; |
| } |
| |
| vrfy: |
| if (!err) { |
| /* verify the result -- the input might have been not a square |
| * (test added in 0.9.8) */ |
| |
| if (!BN_mod_sqr(x, ret, p, ctx)) { |
| err = 1; |
| } |
| |
| if (!err && 0 != BN_cmp(x, A)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE); |
| err = 1; |
| } |
| } |
| |
| end: |
| if (err) { |
| if (ret != in) { |
| BN_clear_free(ret); |
| } |
| ret = NULL; |
| } |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| int BN_sqrt(BIGNUM *out_sqrt, const BIGNUM *in, BN_CTX *ctx) { |
| BIGNUM *estimate, *tmp, *delta, *last_delta, *tmp2; |
| int ok = 0, last_delta_valid = 0; |
| |
| if (in->neg) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
| return 0; |
| } |
| if (BN_is_zero(in)) { |
| BN_zero(out_sqrt); |
| return 1; |
| } |
| |
| BN_CTX_start(ctx); |
| if (out_sqrt == in) { |
| estimate = BN_CTX_get(ctx); |
| } else { |
| estimate = out_sqrt; |
| } |
| tmp = BN_CTX_get(ctx); |
| last_delta = BN_CTX_get(ctx); |
| delta = BN_CTX_get(ctx); |
| if (estimate == NULL || tmp == NULL || last_delta == NULL || delta == NULL) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* We estimate that the square root of an n-bit number is 2^{n/2}. */ |
| if (!BN_lshift(estimate, BN_value_one(), BN_num_bits(in)/2)) { |
| goto err; |
| } |
| |
| /* This is Newton's method for finding a root of the equation |estimate|^2 - |
| * |in| = 0. */ |
| for (;;) { |
| /* |estimate| = 1/2 * (|estimate| + |in|/|estimate|) */ |
| if (!BN_div(tmp, NULL, in, estimate, ctx) || |
| !BN_add(tmp, tmp, estimate) || |
| !BN_rshift1(estimate, tmp) || |
| /* |tmp| = |estimate|^2 */ |
| !BN_sqr(tmp, estimate, ctx) || |
| /* |delta| = |in| - |tmp| */ |
| !BN_sub(delta, in, tmp)) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB); |
| goto err; |
| } |
| |
| delta->neg = 0; |
| /* The difference between |in| and |estimate| squared is required to always |
| * decrease. This ensures that the loop always terminates, but I don't have |
| * a proof that it always finds the square root for a given square. */ |
| if (last_delta_valid && BN_cmp(delta, last_delta) >= 0) { |
| break; |
| } |
| |
| last_delta_valid = 1; |
| |
| tmp2 = last_delta; |
| last_delta = delta; |
| delta = tmp2; |
| } |
| |
| if (BN_cmp(tmp, in) != 0) { |
| OPENSSL_PUT_ERROR(BN, BN_R_NOT_A_SQUARE); |
| goto err; |
| } |
| |
| ok = 1; |
| |
| err: |
| if (ok && out_sqrt == in && !BN_copy(out_sqrt, estimate)) { |
| ok = 0; |
| } |
| BN_CTX_end(ctx); |
| return ok; |
| } |