| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project 2005. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/rsa.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/rand.h> |
| #include <openssl/sha.h> |
| |
| #include "internal.h" |
| #include "../../internal.h" |
| |
| |
| #define RSA_PKCS1_PADDING_SIZE 11 |
| |
| int RSA_padding_add_PKCS1_type_1(uint8_t *to, size_t to_len, |
| const uint8_t *from, size_t from_len) { |
| // See RFC 8017, section 9.2. |
| if (to_len < RSA_PKCS1_PADDING_SIZE) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY); |
| return 0; |
| } |
| |
| to[0] = 0; |
| to[1] = 1; |
| OPENSSL_memset(to + 2, 0xff, to_len - 3 - from_len); |
| to[to_len - from_len - 1] = 0; |
| OPENSSL_memcpy(to + to_len - from_len, from, from_len); |
| return 1; |
| } |
| |
| int RSA_padding_check_PKCS1_type_1(uint8_t *out, size_t *out_len, |
| size_t max_out, const uint8_t *from, |
| size_t from_len) { |
| // See RFC 8017, section 9.2. This is part of signature verification and thus |
| // does not need to run in constant-time. |
| if (from_len < 2) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL); |
| return 0; |
| } |
| |
| // Check the header. |
| if (from[0] != 0 || from[1] != 1) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BLOCK_TYPE_IS_NOT_01); |
| return 0; |
| } |
| |
| // Scan over padded data, looking for the 00. |
| size_t pad; |
| for (pad = 2 /* header */; pad < from_len; pad++) { |
| if (from[pad] == 0x00) { |
| break; |
| } |
| |
| if (from[pad] != 0xff) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_FIXED_HEADER_DECRYPT); |
| return 0; |
| } |
| } |
| |
| if (pad == from_len) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_NULL_BEFORE_BLOCK_MISSING); |
| return 0; |
| } |
| |
| if (pad < 2 /* header */ + 8) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_PAD_BYTE_COUNT); |
| return 0; |
| } |
| |
| // Skip over the 00. |
| pad++; |
| |
| if (from_len - pad > max_out) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
| return 0; |
| } |
| |
| OPENSSL_memcpy(out, from + pad, from_len - pad); |
| *out_len = from_len - pad; |
| return 1; |
| } |
| |
| static int rand_nonzero(uint8_t *out, size_t len) { |
| if (!RAND_bytes(out, len)) { |
| return 0; |
| } |
| |
| for (size_t i = 0; i < len; i++) { |
| while (out[i] == 0) { |
| if (!RAND_bytes(out + i, 1)) { |
| return 0; |
| } |
| } |
| } |
| |
| return 1; |
| } |
| |
| int RSA_padding_add_PKCS1_type_2(uint8_t *to, size_t to_len, |
| const uint8_t *from, size_t from_len) { |
| // See RFC 8017, section 7.2.1. |
| if (to_len < RSA_PKCS1_PADDING_SIZE) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| if (from_len > to_len - RSA_PKCS1_PADDING_SIZE) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
| return 0; |
| } |
| |
| to[0] = 0; |
| to[1] = 2; |
| |
| size_t padding_len = to_len - 3 - from_len; |
| if (!rand_nonzero(to + 2, padding_len)) { |
| return 0; |
| } |
| |
| to[2 + padding_len] = 0; |
| OPENSSL_memcpy(to + to_len - from_len, from, from_len); |
| return 1; |
| } |
| |
| int RSA_padding_check_PKCS1_type_2(uint8_t *out, size_t *out_len, |
| size_t max_out, const uint8_t *from, |
| size_t from_len) { |
| if (from_len == 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); |
| return 0; |
| } |
| |
| // PKCS#1 v1.5 decryption. See "PKCS #1 v2.2: RSA Cryptography |
| // Standard", section 7.2.2. |
| if (from_len < RSA_PKCS1_PADDING_SIZE) { |
| // |from| is zero-padded to the size of the RSA modulus, a public value, so |
| // this can be rejected in non-constant time. |
| OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| crypto_word_t first_byte_is_zero = constant_time_eq_w(from[0], 0); |
| crypto_word_t second_byte_is_two = constant_time_eq_w(from[1], 2); |
| |
| crypto_word_t zero_index = 0, looking_for_index = CONSTTIME_TRUE_W; |
| for (size_t i = 2; i < from_len; i++) { |
| crypto_word_t equals0 = constant_time_is_zero_w(from[i]); |
| zero_index = |
| constant_time_select_w(looking_for_index & equals0, i, zero_index); |
| looking_for_index = constant_time_select_w(equals0, 0, looking_for_index); |
| } |
| |
| // The input must begin with 00 02. |
| crypto_word_t valid_index = first_byte_is_zero; |
| valid_index &= second_byte_is_two; |
| |
| // We must have found the end of PS. |
| valid_index &= ~looking_for_index; |
| |
| // PS must be at least 8 bytes long, and it starts two bytes into |from|. |
| valid_index &= constant_time_ge_w(zero_index, 2 + 8); |
| |
| // Skip the zero byte. |
| zero_index++; |
| |
| // NOTE: Although this logic attempts to be constant time, the API contracts |
| // of this function and |RSA_decrypt| with |RSA_PKCS1_PADDING| make it |
| // impossible to completely avoid Bleichenbacher's attack. Consumers should |
| // use |RSA_PADDING_NONE| and perform the padding check in constant-time |
| // combined with a swap to a random session key or other mitigation. |
| if (!valid_index) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); |
| return 0; |
| } |
| |
| const size_t msg_len = from_len - zero_index; |
| if (msg_len > max_out) { |
| // This shouldn't happen because this function is always called with |
| // |max_out| as the key size and |from_len| is bounded by the key size. |
| OPENSSL_PUT_ERROR(RSA, RSA_R_PKCS_DECODING_ERROR); |
| return 0; |
| } |
| |
| OPENSSL_memcpy(out, &from[zero_index], msg_len); |
| *out_len = msg_len; |
| return 1; |
| } |
| |
| int RSA_padding_add_none(uint8_t *to, size_t to_len, const uint8_t *from, |
| size_t from_len) { |
| if (from_len > to_len) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
| return 0; |
| } |
| |
| if (from_len < to_len) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_SMALL); |
| return 0; |
| } |
| |
| OPENSSL_memcpy(to, from, from_len); |
| return 1; |
| } |
| |
| static int PKCS1_MGF1(uint8_t *out, size_t len, const uint8_t *seed, |
| size_t seed_len, const EVP_MD *md) { |
| int ret = 0; |
| EVP_MD_CTX ctx; |
| EVP_MD_CTX_init(&ctx); |
| |
| size_t md_len = EVP_MD_size(md); |
| |
| for (uint32_t i = 0; len > 0; i++) { |
| uint8_t counter[4]; |
| counter[0] = (uint8_t)(i >> 24); |
| counter[1] = (uint8_t)(i >> 16); |
| counter[2] = (uint8_t)(i >> 8); |
| counter[3] = (uint8_t)i; |
| if (!EVP_DigestInit_ex(&ctx, md, NULL) || |
| !EVP_DigestUpdate(&ctx, seed, seed_len) || |
| !EVP_DigestUpdate(&ctx, counter, sizeof(counter))) { |
| goto err; |
| } |
| |
| if (md_len <= len) { |
| if (!EVP_DigestFinal_ex(&ctx, out, NULL)) { |
| goto err; |
| } |
| out += md_len; |
| len -= md_len; |
| } else { |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| if (!EVP_DigestFinal_ex(&ctx, digest, NULL)) { |
| goto err; |
| } |
| OPENSSL_memcpy(out, digest, len); |
| len = 0; |
| } |
| } |
| |
| ret = 1; |
| |
| err: |
| EVP_MD_CTX_cleanup(&ctx); |
| return ret; |
| } |
| |
| int RSA_padding_add_PKCS1_OAEP_mgf1(uint8_t *to, size_t to_len, |
| const uint8_t *from, size_t from_len, |
| const uint8_t *param, size_t param_len, |
| const EVP_MD *md, const EVP_MD *mgf1md) { |
| if (md == NULL) { |
| md = EVP_sha1(); |
| } |
| if (mgf1md == NULL) { |
| mgf1md = md; |
| } |
| |
| size_t mdlen = EVP_MD_size(md); |
| |
| if (to_len < 2 * mdlen + 2) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| size_t emlen = to_len - 1; |
| if (from_len > emlen - 2 * mdlen - 1) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
| return 0; |
| } |
| |
| if (emlen < 2 * mdlen + 1) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL); |
| return 0; |
| } |
| |
| to[0] = 0; |
| uint8_t *seed = to + 1; |
| uint8_t *db = to + mdlen + 1; |
| |
| if (!EVP_Digest(param, param_len, db, NULL, md, NULL)) { |
| return 0; |
| } |
| OPENSSL_memset(db + mdlen, 0, emlen - from_len - 2 * mdlen - 1); |
| db[emlen - from_len - mdlen - 1] = 0x01; |
| OPENSSL_memcpy(db + emlen - from_len - mdlen, from, from_len); |
| if (!RAND_bytes(seed, mdlen)) { |
| return 0; |
| } |
| |
| uint8_t *dbmask = OPENSSL_malloc(emlen - mdlen); |
| if (dbmask == NULL) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| int ret = 0; |
| if (!PKCS1_MGF1(dbmask, emlen - mdlen, seed, mdlen, mgf1md)) { |
| goto out; |
| } |
| for (size_t i = 0; i < emlen - mdlen; i++) { |
| db[i] ^= dbmask[i]; |
| } |
| |
| uint8_t seedmask[EVP_MAX_MD_SIZE]; |
| if (!PKCS1_MGF1(seedmask, mdlen, db, emlen - mdlen, mgf1md)) { |
| goto out; |
| } |
| for (size_t i = 0; i < mdlen; i++) { |
| seed[i] ^= seedmask[i]; |
| } |
| ret = 1; |
| |
| out: |
| OPENSSL_free(dbmask); |
| return ret; |
| } |
| |
| int RSA_padding_check_PKCS1_OAEP_mgf1(uint8_t *out, size_t *out_len, |
| size_t max_out, const uint8_t *from, |
| size_t from_len, const uint8_t *param, |
| size_t param_len, const EVP_MD *md, |
| const EVP_MD *mgf1md) { |
| uint8_t *db = NULL; |
| |
| if (md == NULL) { |
| md = EVP_sha1(); |
| } |
| if (mgf1md == NULL) { |
| mgf1md = md; |
| } |
| |
| size_t mdlen = EVP_MD_size(md); |
| |
| // The encoded message is one byte smaller than the modulus to ensure that it |
| // doesn't end up greater than the modulus. Thus there's an extra "+1" here |
| // compared to https://tools.ietf.org/html/rfc2437#section-9.1.1.2. |
| if (from_len < 1 + 2*mdlen + 1) { |
| // 'from_len' is the length of the modulus, i.e. does not depend on the |
| // particular ciphertext. |
| goto decoding_err; |
| } |
| |
| size_t dblen = from_len - mdlen - 1; |
| db = OPENSSL_malloc(dblen); |
| if (db == NULL) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| const uint8_t *maskedseed = from + 1; |
| const uint8_t *maskeddb = from + 1 + mdlen; |
| |
| uint8_t seed[EVP_MAX_MD_SIZE]; |
| if (!PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) { |
| goto err; |
| } |
| for (size_t i = 0; i < mdlen; i++) { |
| seed[i] ^= maskedseed[i]; |
| } |
| |
| if (!PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) { |
| goto err; |
| } |
| for (size_t i = 0; i < dblen; i++) { |
| db[i] ^= maskeddb[i]; |
| } |
| |
| uint8_t phash[EVP_MAX_MD_SIZE]; |
| if (!EVP_Digest(param, param_len, phash, NULL, md, NULL)) { |
| goto err; |
| } |
| |
| crypto_word_t bad = ~constant_time_is_zero_w(CRYPTO_memcmp(db, phash, mdlen)); |
| bad |= ~constant_time_is_zero_w(from[0]); |
| |
| crypto_word_t looking_for_one_byte = CONSTTIME_TRUE_W; |
| size_t one_index = 0; |
| for (size_t i = mdlen; i < dblen; i++) { |
| crypto_word_t equals1 = constant_time_eq_w(db[i], 1); |
| crypto_word_t equals0 = constant_time_eq_w(db[i], 0); |
| one_index = |
| constant_time_select_w(looking_for_one_byte & equals1, i, one_index); |
| looking_for_one_byte = |
| constant_time_select_w(equals1, 0, looking_for_one_byte); |
| bad |= looking_for_one_byte & ~equals0; |
| } |
| |
| bad |= looking_for_one_byte; |
| |
| if (bad) { |
| goto decoding_err; |
| } |
| |
| one_index++; |
| size_t mlen = dblen - one_index; |
| if (max_out < mlen) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
| goto err; |
| } |
| |
| OPENSSL_memcpy(out, db + one_index, mlen); |
| *out_len = mlen; |
| OPENSSL_free(db); |
| return 1; |
| |
| decoding_err: |
| // to avoid chosen ciphertext attacks, the error message should not reveal |
| // which kind of decoding error happened |
| OPENSSL_PUT_ERROR(RSA, RSA_R_OAEP_DECODING_ERROR); |
| err: |
| OPENSSL_free(db); |
| return 0; |
| } |
| |
| static const uint8_t kPSSZeroes[] = {0, 0, 0, 0, 0, 0, 0, 0}; |
| |
| int RSA_verify_PKCS1_PSS_mgf1(RSA *rsa, const uint8_t *mHash, |
| const EVP_MD *Hash, const EVP_MD *mgf1Hash, |
| const uint8_t *EM, int sLen) { |
| int i; |
| int ret = 0; |
| int maskedDBLen, MSBits, emLen; |
| size_t hLen; |
| const uint8_t *H; |
| uint8_t *DB = NULL; |
| EVP_MD_CTX ctx; |
| uint8_t H_[EVP_MAX_MD_SIZE]; |
| EVP_MD_CTX_init(&ctx); |
| |
| if (mgf1Hash == NULL) { |
| mgf1Hash = Hash; |
| } |
| |
| hLen = EVP_MD_size(Hash); |
| |
| // Negative sLen has special meanings: |
| // -1 sLen == hLen |
| // -2 salt length is autorecovered from signature |
| // -N reserved |
| if (sLen == -1) { |
| sLen = hLen; |
| } else if (sLen == -2) { |
| sLen = -2; |
| } else if (sLen < -2) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); |
| goto err; |
| } |
| |
| MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; |
| emLen = RSA_size(rsa); |
| if (EM[0] & (0xFF << MSBits)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_FIRST_OCTET_INVALID); |
| goto err; |
| } |
| if (MSBits == 0) { |
| EM++; |
| emLen--; |
| } |
| if (emLen < (int)hLen + 2 || emLen < ((int)hLen + sLen + 2)) { |
| // sLen can be small negative |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
| goto err; |
| } |
| if (EM[emLen - 1] != 0xbc) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_LAST_OCTET_INVALID); |
| goto err; |
| } |
| maskedDBLen = emLen - hLen - 1; |
| H = EM + maskedDBLen; |
| DB = OPENSSL_malloc(maskedDBLen); |
| if (!DB) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| if (!PKCS1_MGF1(DB, maskedDBLen, H, hLen, mgf1Hash)) { |
| goto err; |
| } |
| for (i = 0; i < maskedDBLen; i++) { |
| DB[i] ^= EM[i]; |
| } |
| if (MSBits) { |
| DB[0] &= 0xFF >> (8 - MSBits); |
| } |
| for (i = 0; DB[i] == 0 && i < (maskedDBLen - 1); i++) { |
| ; |
| } |
| if (DB[i++] != 0x1) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_RECOVERY_FAILED); |
| goto err; |
| } |
| if (sLen >= 0 && (maskedDBLen - i) != sLen) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); |
| goto err; |
| } |
| if (!EVP_DigestInit_ex(&ctx, Hash, NULL) || |
| !EVP_DigestUpdate(&ctx, kPSSZeroes, sizeof(kPSSZeroes)) || |
| !EVP_DigestUpdate(&ctx, mHash, hLen) || |
| !EVP_DigestUpdate(&ctx, DB + i, maskedDBLen - i) || |
| !EVP_DigestFinal_ex(&ctx, H_, NULL)) { |
| goto err; |
| } |
| if (OPENSSL_memcmp(H_, H, hLen)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); |
| ret = 0; |
| } else { |
| ret = 1; |
| } |
| |
| err: |
| OPENSSL_free(DB); |
| EVP_MD_CTX_cleanup(&ctx); |
| |
| return ret; |
| } |
| |
| int RSA_padding_add_PKCS1_PSS_mgf1(RSA *rsa, unsigned char *EM, |
| const unsigned char *mHash, |
| const EVP_MD *Hash, const EVP_MD *mgf1Hash, |
| int sLenRequested) { |
| int ret = 0; |
| size_t maskedDBLen, MSBits, emLen; |
| size_t hLen; |
| unsigned char *H, *salt = NULL, *p; |
| |
| if (mgf1Hash == NULL) { |
| mgf1Hash = Hash; |
| } |
| |
| hLen = EVP_MD_size(Hash); |
| |
| if (BN_is_zero(rsa->n)) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_EMPTY_PUBLIC_KEY); |
| goto err; |
| } |
| |
| MSBits = (BN_num_bits(rsa->n) - 1) & 0x7; |
| emLen = RSA_size(rsa); |
| if (MSBits == 0) { |
| assert(emLen >= 1); |
| *EM++ = 0; |
| emLen--; |
| } |
| |
| if (emLen < hLen + 2) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
| goto err; |
| } |
| |
| // Negative sLenRequested has special meanings: |
| // -1 sLen == hLen |
| // -2 salt length is maximized |
| // -N reserved |
| size_t sLen; |
| if (sLenRequested == -1) { |
| sLen = hLen; |
| } else if (sLenRequested == -2) { |
| sLen = emLen - hLen - 2; |
| } else if (sLenRequested < 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_SLEN_CHECK_FAILED); |
| goto err; |
| } else { |
| sLen = (size_t)sLenRequested; |
| } |
| |
| if (emLen - hLen - 2 < sLen) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE); |
| goto err; |
| } |
| |
| if (sLen > 0) { |
| salt = OPENSSL_malloc(sLen); |
| if (!salt) { |
| OPENSSL_PUT_ERROR(RSA, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| if (!RAND_bytes(salt, sLen)) { |
| goto err; |
| } |
| } |
| maskedDBLen = emLen - hLen - 1; |
| H = EM + maskedDBLen; |
| |
| EVP_MD_CTX ctx; |
| EVP_MD_CTX_init(&ctx); |
| int digest_ok = EVP_DigestInit_ex(&ctx, Hash, NULL) && |
| EVP_DigestUpdate(&ctx, kPSSZeroes, sizeof(kPSSZeroes)) && |
| EVP_DigestUpdate(&ctx, mHash, hLen) && |
| EVP_DigestUpdate(&ctx, salt, sLen) && |
| EVP_DigestFinal_ex(&ctx, H, NULL); |
| EVP_MD_CTX_cleanup(&ctx); |
| if (!digest_ok) { |
| goto err; |
| } |
| |
| // Generate dbMask in place then perform XOR on it |
| if (!PKCS1_MGF1(EM, maskedDBLen, H, hLen, mgf1Hash)) { |
| goto err; |
| } |
| |
| p = EM; |
| |
| // Initial PS XORs with all zeroes which is a NOP so just update |
| // pointer. Note from a test above this value is guaranteed to |
| // be non-negative. |
| p += emLen - sLen - hLen - 2; |
| *p++ ^= 0x1; |
| if (sLen > 0) { |
| for (size_t i = 0; i < sLen; i++) { |
| *p++ ^= salt[i]; |
| } |
| } |
| if (MSBits) { |
| EM[0] &= 0xFF >> (8 - MSBits); |
| } |
| |
| // H is already in place so just set final 0xbc |
| |
| EM[emLen - 1] = 0xbc; |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_free(salt); |
| |
| return ret; |
| } |