|  | // Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/evp.h> | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <stdint.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <map> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/crypto.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/dh.h> | 
|  | #include <openssl/dsa.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/rsa.h> | 
|  |  | 
|  | #include "../test/file_test.h" | 
|  | #include "../test/test_util.h" | 
|  | #include "../test/wycheproof_util.h" | 
|  |  | 
|  |  | 
|  | // evp_test dispatches between multiple test types. PrivateKey tests take a key | 
|  | // name parameter and single block, decode it as a PEM private key, and save it | 
|  | // under that key name. Decrypt, Sign, and Verify tests take a previously | 
|  | // imported key name as parameter and test their respective operations. | 
|  |  | 
|  | static const EVP_MD *GetDigest(FileTest *t, const std::string &name) { | 
|  | if (name == "MD5") { | 
|  | return EVP_md5(); | 
|  | } else if (name == "SHA1") { | 
|  | return EVP_sha1(); | 
|  | } else if (name == "SHA224") { | 
|  | return EVP_sha224(); | 
|  | } else if (name == "SHA256") { | 
|  | return EVP_sha256(); | 
|  | } else if (name == "SHA384") { | 
|  | return EVP_sha384(); | 
|  | } else if (name == "SHA512") { | 
|  | return EVP_sha512(); | 
|  | } | 
|  | ADD_FAILURE() << "Unknown digest: " << name; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static int GetKeyType(FileTest *t, const std::string &name) { | 
|  | if (name == "RSA") { | 
|  | return EVP_PKEY_RSA; | 
|  | } | 
|  | if (name == "EC") { | 
|  | return EVP_PKEY_EC; | 
|  | } | 
|  | if (name == "DSA") { | 
|  | return EVP_PKEY_DSA; | 
|  | } | 
|  | if (name == "Ed25519") { | 
|  | return EVP_PKEY_ED25519; | 
|  | } | 
|  | if (name == "X25519") { | 
|  | return EVP_PKEY_X25519; | 
|  | } | 
|  | ADD_FAILURE() << "Unknown key type: " << name; | 
|  | return EVP_PKEY_NONE; | 
|  | } | 
|  |  | 
|  | static bool GetRSAPadding(FileTest *t, int *out, const std::string &name) { | 
|  | if (name == "PKCS1") { | 
|  | *out = RSA_PKCS1_PADDING; | 
|  | return true; | 
|  | } | 
|  | if (name == "PSS") { | 
|  | *out = RSA_PKCS1_PSS_PADDING; | 
|  | return true; | 
|  | } | 
|  | if (name == "OAEP") { | 
|  | *out = RSA_PKCS1_OAEP_PADDING; | 
|  | return true; | 
|  | } | 
|  | if (name == "None") { | 
|  | *out = RSA_NO_PADDING; | 
|  | return true; | 
|  | } | 
|  | ADD_FAILURE() << "Unknown RSA padding mode: " << name; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | using KeyMap = std::map<std::string, bssl::UniquePtr<EVP_PKEY>>; | 
|  |  | 
|  | static bool ImportKey(FileTest *t, KeyMap *key_map, | 
|  | EVP_PKEY *(*parse_func)(CBS *cbs), | 
|  | int (*marshal_func)(CBB *cbb, const EVP_PKEY *key)) { | 
|  | std::vector<uint8_t> input; | 
|  | if (!t->GetBytes(&input, "Input")) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, input.data(), input.size()); | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(parse_func(&cbs)); | 
|  | if (!pkey) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::string key_type; | 
|  | if (!t->GetAttribute(&key_type, "Type")) { | 
|  | return false; | 
|  | } | 
|  | EXPECT_EQ(GetKeyType(t, key_type), EVP_PKEY_id(pkey.get())); | 
|  |  | 
|  | // The key must re-encode correctly. | 
|  | bssl::ScopedCBB cbb; | 
|  | uint8_t *der; | 
|  | size_t der_len; | 
|  | if (!CBB_init(cbb.get(), 0) || | 
|  | !marshal_func(cbb.get(), pkey.get()) || | 
|  | !CBB_finish(cbb.get(), &der, &der_len)) { | 
|  | return false; | 
|  | } | 
|  | bssl::UniquePtr<uint8_t> free_der(der); | 
|  |  | 
|  | std::vector<uint8_t> output = input; | 
|  | if (t->HasAttribute("Output") && | 
|  | !t->GetBytes(&output, "Output")) { | 
|  | return false; | 
|  | } | 
|  | EXPECT_EQ(Bytes(output), Bytes(der, der_len)) | 
|  | << "Re-encoding the key did not match."; | 
|  |  | 
|  | if (t->HasAttribute("ExpectNoRawPrivate")) { | 
|  | size_t len; | 
|  | EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)); | 
|  | } else if (t->HasAttribute("ExpectRawPrivate")) { | 
|  | std::vector<uint8_t> expected; | 
|  | if (!t->GetBytes(&expected, "ExpectRawPrivate")) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::vector<uint8_t> raw; | 
|  | size_t len; | 
|  | if (!EVP_PKEY_get_raw_private_key(pkey.get(), nullptr, &len)) { | 
|  | return false; | 
|  | } | 
|  | raw.resize(len); | 
|  | if (!EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)) { | 
|  | return false; | 
|  | } | 
|  | raw.resize(len); | 
|  | EXPECT_EQ(Bytes(raw), Bytes(expected)); | 
|  |  | 
|  | // Short buffers should be rejected. | 
|  | raw.resize(len - 1); | 
|  | len = raw.size(); | 
|  | EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pkey.get(), raw.data(), &len)); | 
|  | } | 
|  |  | 
|  | if (t->HasAttribute("ExpectNoRawPublic")) { | 
|  | size_t len; | 
|  | EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)); | 
|  | } else if (t->HasAttribute("ExpectRawPublic")) { | 
|  | std::vector<uint8_t> expected; | 
|  | if (!t->GetBytes(&expected, "ExpectRawPublic")) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::vector<uint8_t> raw; | 
|  | size_t len; | 
|  | if (!EVP_PKEY_get_raw_public_key(pkey.get(), nullptr, &len)) { | 
|  | return false; | 
|  | } | 
|  | raw.resize(len); | 
|  | if (!EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)) { | 
|  | return false; | 
|  | } | 
|  | raw.resize(len); | 
|  | EXPECT_EQ(Bytes(raw), Bytes(expected)); | 
|  |  | 
|  | // Short buffers should be rejected. | 
|  | raw.resize(len - 1); | 
|  | len = raw.size(); | 
|  | EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pkey.get(), raw.data(), &len)); | 
|  | } | 
|  |  | 
|  | // Save the key for future tests. | 
|  | const std::string &key_name = t->GetParameter(); | 
|  | EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name; | 
|  | (*key_map)[key_name] = std::move(pkey); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool GetOptionalBignum(FileTest *t, bssl::UniquePtr<BIGNUM> *out, | 
|  | const std::string &key) { | 
|  | if (!t->HasAttribute(key)) { | 
|  | *out = nullptr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::vector<uint8_t> bytes; | 
|  | if (!t->GetBytes(&bytes, key)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | out->reset(BN_bin2bn(bytes.data(), bytes.size(), nullptr)); | 
|  | return *out != nullptr; | 
|  | } | 
|  |  | 
|  | static bool ImportDHKey(FileTest *t, KeyMap *key_map) { | 
|  | bssl::UniquePtr<BIGNUM> p, q, g, pub_key, priv_key; | 
|  | if (!GetOptionalBignum(t, &p, "P") ||  // | 
|  | !GetOptionalBignum(t, &q, "Q") ||  // | 
|  | !GetOptionalBignum(t, &g, "G") || | 
|  | !GetOptionalBignum(t, &pub_key, "Public") || | 
|  | !GetOptionalBignum(t, &priv_key, "Private")) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<DH> dh(DH_new()); | 
|  | if (dh == nullptr || !DH_set0_pqg(dh.get(), p.get(), q.get(), g.get())) { | 
|  | return false; | 
|  | } | 
|  | // |DH_set0_pqg| takes ownership on success. | 
|  | p.release(); | 
|  | q.release(); | 
|  | g.release(); | 
|  |  | 
|  | if (!DH_set0_key(dh.get(), pub_key.get(), priv_key.get())) { | 
|  | return false; | 
|  | } | 
|  | // |DH_set0_key| takes ownership on success. | 
|  | pub_key.release(); | 
|  | priv_key.release(); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
|  | if (pkey == nullptr || !EVP_PKEY_set1_DH(pkey.get(), dh.get())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Save the key for future tests. | 
|  | const std::string &key_name = t->GetParameter(); | 
|  | EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name; | 
|  | (*key_map)[key_name] = std::move(pkey); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // SetupContext configures |ctx| based on attributes in |t|, with the exception | 
|  | // of the signing digest which must be configured externally. | 
|  | static bool SetupContext(FileTest *t, KeyMap *key_map, EVP_PKEY_CTX *ctx) { | 
|  | if (t->HasAttribute("RSAPadding")) { | 
|  | int padding; | 
|  | if (!GetRSAPadding(t, &padding, t->GetAttributeOrDie("RSAPadding")) || | 
|  | !EVP_PKEY_CTX_set_rsa_padding(ctx, padding)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (t->HasAttribute("PSSSaltLength") && | 
|  | !EVP_PKEY_CTX_set_rsa_pss_saltlen( | 
|  | ctx, atoi(t->GetAttributeOrDie("PSSSaltLength").c_str()))) { | 
|  | return false; | 
|  | } | 
|  | if (t->HasAttribute("MGF1Digest")) { | 
|  | const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("MGF1Digest")); | 
|  | if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, digest)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (t->HasAttribute("OAEPDigest")) { | 
|  | const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("OAEPDigest")); | 
|  | if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_oaep_md(ctx, digest)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (t->HasAttribute("OAEPLabel")) { | 
|  | std::vector<uint8_t> label; | 
|  | if (!t->GetBytes(&label, "OAEPLabel")) { | 
|  | return false; | 
|  | } | 
|  | // For historical reasons, |EVP_PKEY_CTX_set0_rsa_oaep_label| expects to be | 
|  | // take ownership of the input. | 
|  | bssl::UniquePtr<uint8_t> buf(reinterpret_cast<uint8_t *>( | 
|  | OPENSSL_memdup(label.data(), label.size()))); | 
|  | if (!buf || | 
|  | !EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, buf.get(), label.size())) { | 
|  | return false; | 
|  | } | 
|  | buf.release(); | 
|  | } | 
|  | if (t->HasAttribute("DerivePeer")) { | 
|  | std::string derive_peer = t->GetAttributeOrDie("DerivePeer"); | 
|  | if (key_map->count(derive_peer) == 0) { | 
|  | ADD_FAILURE() << "Could not find key " << derive_peer; | 
|  | return false; | 
|  | } | 
|  | EVP_PKEY *derive_peer_key = (*key_map)[derive_peer].get(); | 
|  | if (!EVP_PKEY_derive_set_peer(ctx, derive_peer_key)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | if (t->HasAttribute("DiffieHellmanPad") && !EVP_PKEY_CTX_set_dh_pad(ctx, 1)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool TestDerive(FileTest *t, KeyMap *key_map, EVP_PKEY *key) { | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr)); | 
|  | if (!ctx || | 
|  | !EVP_PKEY_derive_init(ctx.get()) || | 
|  | !SetupContext(t, key_map, ctx.get())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx.get())); | 
|  | if (!copy) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) { | 
|  | size_t len; | 
|  | std::vector<uint8_t> actual, output; | 
|  | if (!EVP_PKEY_derive(pctx, nullptr, &len)) { | 
|  | return false; | 
|  | } | 
|  | actual.resize(len); | 
|  | if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { | 
|  | return false; | 
|  | } | 
|  | actual.resize(len); | 
|  |  | 
|  | // Defer looking up the attribute so Error works properly. | 
|  | if (!t->GetBytes(&output, "Output")) { | 
|  | return false; | 
|  | } | 
|  | EXPECT_EQ(Bytes(output), Bytes(actual)); | 
|  |  | 
|  | // Test when the buffer is too large. | 
|  | actual.resize(len + 1); | 
|  | len = actual.size(); | 
|  | if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { | 
|  | return false; | 
|  | } | 
|  | actual.resize(len); | 
|  | EXPECT_EQ(Bytes(output), Bytes(actual)); | 
|  |  | 
|  | // Test when the buffer is too small. | 
|  | actual.resize(len - 1); | 
|  | len = actual.size(); | 
|  | if (t->HasAttribute("SmallBufferTruncates")) { | 
|  | if (!EVP_PKEY_derive(pctx, actual.data(), &len)) { | 
|  | return false; | 
|  | } | 
|  | actual.resize(len); | 
|  | EXPECT_EQ(Bytes(output.data(), len), Bytes(actual)); | 
|  | } else { | 
|  | EXPECT_FALSE(EVP_PKEY_derive(pctx, actual.data(), &len)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool TestEVP(FileTest *t, KeyMap *key_map) { | 
|  | if (t->GetType() == "PrivateKey") { | 
|  | return ImportKey(t, key_map, EVP_parse_private_key, | 
|  | EVP_marshal_private_key); | 
|  | } | 
|  |  | 
|  | if (t->GetType() == "PublicKey") { | 
|  | return ImportKey(t, key_map, EVP_parse_public_key, EVP_marshal_public_key); | 
|  | } | 
|  |  | 
|  | if (t->GetType() == "DHKey") { | 
|  | return ImportDHKey(t, key_map); | 
|  | } | 
|  |  | 
|  | // Load the key. | 
|  | const std::string &key_name = t->GetParameter(); | 
|  | if (key_map->count(key_name) == 0) { | 
|  | ADD_FAILURE() << "Could not find key " << key_name; | 
|  | return false; | 
|  | } | 
|  | EVP_PKEY *key = (*key_map)[key_name].get(); | 
|  |  | 
|  | int (*key_op_init)(EVP_PKEY_CTX *ctx) = nullptr; | 
|  | int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, | 
|  | const uint8_t *in, size_t in_len) = nullptr; | 
|  | int (*md_op_init)(EVP_MD_CTX * ctx, EVP_PKEY_CTX * *pctx, const EVP_MD *type, | 
|  | ENGINE *e, EVP_PKEY *pkey) = nullptr; | 
|  | bool is_verify = false; | 
|  | if (t->GetType() == "Decrypt") { | 
|  | key_op_init = EVP_PKEY_decrypt_init; | 
|  | key_op = EVP_PKEY_decrypt; | 
|  | } else if (t->GetType() == "Sign") { | 
|  | key_op_init = EVP_PKEY_sign_init; | 
|  | key_op = EVP_PKEY_sign; | 
|  | } else if (t->GetType() == "Verify") { | 
|  | key_op_init = EVP_PKEY_verify_init; | 
|  | is_verify = true; | 
|  | } else if (t->GetType() == "SignMessage") { | 
|  | md_op_init = EVP_DigestSignInit; | 
|  | } else if (t->GetType() == "VerifyMessage") { | 
|  | md_op_init = EVP_DigestVerifyInit; | 
|  | is_verify = true; | 
|  | } else if (t->GetType() == "Encrypt") { | 
|  | key_op_init = EVP_PKEY_encrypt_init; | 
|  | key_op = EVP_PKEY_encrypt; | 
|  | } else if (t->GetType() == "Derive") { | 
|  | return TestDerive(t, key_map, key); | 
|  | } else { | 
|  | ADD_FAILURE() << "Unknown test " << t->GetType(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const EVP_MD *digest = nullptr; | 
|  | if (t->HasAttribute("Digest")) { | 
|  | digest = GetDigest(t, t->GetAttributeOrDie("Digest")); | 
|  | if (digest == nullptr) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // For verify tests, the "output" is the signature. Read it now so that, for | 
|  | // tests which expect a failure in SetupContext, the attribute is still | 
|  | // consumed. | 
|  | std::vector<uint8_t> input, actual, output; | 
|  | if (!t->GetBytes(&input, "Input") || | 
|  | (is_verify && !t->GetBytes(&output, "Output"))) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (md_op_init) { | 
|  | bssl::ScopedEVP_MD_CTX ctx, copy; | 
|  | EVP_PKEY_CTX *pctx; | 
|  | if (!md_op_init(ctx.get(), &pctx, digest, nullptr, key) || | 
|  | !SetupContext(t, key_map, pctx) || | 
|  | !EVP_MD_CTX_copy_ex(copy.get(), ctx.get())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (is_verify) { | 
|  | return EVP_DigestVerify(ctx.get(), output.data(), output.size(), | 
|  | input.data(), input.size()) && | 
|  | EVP_DigestVerify(copy.get(), output.data(), output.size(), | 
|  | input.data(), input.size()); | 
|  | } | 
|  |  | 
|  | size_t len; | 
|  | if (!EVP_DigestSign(ctx.get(), nullptr, &len, input.data(), input.size())) { | 
|  | return false; | 
|  | } | 
|  | actual.resize(len); | 
|  | if (!EVP_DigestSign(ctx.get(), actual.data(), &len, input.data(), | 
|  | input.size()) || | 
|  | !t->GetBytes(&output, "Output")) { | 
|  | return false; | 
|  | } | 
|  | actual.resize(len); | 
|  | EXPECT_EQ(Bytes(output), Bytes(actual)); | 
|  |  | 
|  | // Repeat the test with |copy|, to check |EVP_MD_CTX_copy_ex| duplicated | 
|  | // everything. | 
|  | if (!EVP_DigestSign(copy.get(), nullptr, &len, input.data(), | 
|  | input.size())) { | 
|  | return false; | 
|  | } | 
|  | actual.resize(len); | 
|  | if (!EVP_DigestSign(copy.get(), actual.data(), &len, input.data(), | 
|  | input.size()) || | 
|  | !t->GetBytes(&output, "Output")) { | 
|  | return false; | 
|  | } | 
|  | actual.resize(len); | 
|  | EXPECT_EQ(Bytes(output), Bytes(actual)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr)); | 
|  | if (!ctx || | 
|  | !key_op_init(ctx.get()) || | 
|  | (digest != nullptr && | 
|  | !EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) || | 
|  | !SetupContext(t, key_map, ctx.get())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> copy(EVP_PKEY_CTX_dup(ctx.get())); | 
|  | if (!copy) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (is_verify) { | 
|  | return EVP_PKEY_verify(ctx.get(), output.data(), output.size(), | 
|  | input.data(), input.size()) && | 
|  | EVP_PKEY_verify(copy.get(), output.data(), output.size(), | 
|  | input.data(), input.size()); | 
|  | } | 
|  |  | 
|  | for (EVP_PKEY_CTX *pctx : {ctx.get(), copy.get()}) { | 
|  | size_t len; | 
|  | if (!key_op(pctx, nullptr, &len, input.data(), input.size())) { | 
|  | return false; | 
|  | } | 
|  | actual.resize(len); | 
|  | if (!key_op(pctx, actual.data(), &len, input.data(), input.size())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (t->HasAttribute("CheckDecrypt")) { | 
|  | // Encryption is non-deterministic, so we check by decrypting. | 
|  | size_t plaintext_len; | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> decrypt_ctx(EVP_PKEY_CTX_new(key, nullptr)); | 
|  | if (!decrypt_ctx || | 
|  | !EVP_PKEY_decrypt_init(decrypt_ctx.get()) || | 
|  | (digest != nullptr && | 
|  | !EVP_PKEY_CTX_set_signature_md(decrypt_ctx.get(), digest)) || | 
|  | !SetupContext(t, key_map, decrypt_ctx.get()) || | 
|  | !EVP_PKEY_decrypt(decrypt_ctx.get(), nullptr, &plaintext_len, | 
|  | actual.data(), actual.size())) { | 
|  | return false; | 
|  | } | 
|  | output.resize(plaintext_len); | 
|  | if (!EVP_PKEY_decrypt(decrypt_ctx.get(), output.data(), &plaintext_len, | 
|  | actual.data(), actual.size())) { | 
|  | ADD_FAILURE() << "Could not decrypt result."; | 
|  | return false; | 
|  | } | 
|  | output.resize(plaintext_len); | 
|  | EXPECT_EQ(Bytes(input), Bytes(output)) << "Decrypted result mismatch."; | 
|  | } else if (t->HasAttribute("CheckVerify")) { | 
|  | // Some signature schemes are non-deterministic, so we check by verifying. | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> verify_ctx(EVP_PKEY_CTX_new(key, nullptr)); | 
|  | if (!verify_ctx || | 
|  | !EVP_PKEY_verify_init(verify_ctx.get()) || | 
|  | (digest != nullptr && | 
|  | !EVP_PKEY_CTX_set_signature_md(verify_ctx.get(), digest)) || | 
|  | !SetupContext(t, key_map, verify_ctx.get())) { | 
|  | return false; | 
|  | } | 
|  | if (t->HasAttribute("VerifyPSSSaltLength")) { | 
|  | if (!EVP_PKEY_CTX_set_rsa_pss_saltlen( | 
|  | verify_ctx.get(), | 
|  | atoi(t->GetAttributeOrDie("VerifyPSSSaltLength").c_str()))) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | EXPECT_TRUE(EVP_PKEY_verify(verify_ctx.get(), actual.data(), | 
|  | actual.size(), input.data(), input.size())) | 
|  | << "Could not verify result."; | 
|  | } else { | 
|  | // By default, check by comparing the result against Output. | 
|  | if (!t->GetBytes(&output, "Output")) { | 
|  | return false; | 
|  | } | 
|  | actual.resize(len); | 
|  | EXPECT_EQ(Bytes(output), Bytes(actual)); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, TestVectors) { | 
|  | KeyMap key_map; | 
|  | FileTestGTest("crypto/evp/evp_tests.txt", [&](FileTest *t) { | 
|  | bool result = TestEVP(t, &key_map); | 
|  | if (t->HasAttribute("Error")) { | 
|  | ASSERT_FALSE(result) << "Operation unexpectedly succeeded."; | 
|  | uint32_t err = ERR_peek_error(); | 
|  | EXPECT_EQ(t->GetAttributeOrDie("Error"), ERR_reason_error_string(err)); | 
|  | } else if (!result) { | 
|  | ADD_FAILURE() << "Operation unexpectedly failed."; | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | static void RunWycheproofVerifyTest(const char *path) { | 
|  | SCOPED_TRACE(path); | 
|  | FileTestGTest(path, [](FileTest *t) { | 
|  | t->IgnoreAllUnusedInstructions(); | 
|  |  | 
|  | std::vector<uint8_t> der; | 
|  | ASSERT_TRUE(t->GetInstructionBytes(&der, "keyDer")); | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, der.data(), der.size()); | 
|  | bssl::UniquePtr<EVP_PKEY> key(EVP_parse_public_key(&cbs)); | 
|  | ASSERT_TRUE(key); | 
|  |  | 
|  | const EVP_MD *md = nullptr; | 
|  | if (t->HasInstruction("sha")) { | 
|  | md = GetWycheproofDigest(t, "sha", true); | 
|  | ASSERT_TRUE(md); | 
|  | } | 
|  |  | 
|  | bool is_pss = t->HasInstruction("mgf"); | 
|  | const EVP_MD *mgf1_md = nullptr; | 
|  | int pss_salt_len = -1; | 
|  | if (is_pss) { | 
|  | ASSERT_EQ("MGF1", t->GetInstructionOrDie("mgf")); | 
|  | mgf1_md = GetWycheproofDigest(t, "mgfSha", true); | 
|  |  | 
|  | std::string s_len; | 
|  | ASSERT_TRUE(t->GetInstruction(&s_len, "sLen")); | 
|  | pss_salt_len = atoi(s_len.c_str()); | 
|  | } | 
|  |  | 
|  | std::vector<uint8_t> msg; | 
|  | ASSERT_TRUE(t->GetBytes(&msg, "msg")); | 
|  | std::vector<uint8_t> sig; | 
|  | ASSERT_TRUE(t->GetBytes(&sig, "sig")); | 
|  | WycheproofResult result; | 
|  | ASSERT_TRUE(GetWycheproofResult(t, &result)); | 
|  |  | 
|  | if (EVP_PKEY_id(key.get()) == EVP_PKEY_DSA) { | 
|  | // DSA is deprecated and is not usable via EVP. | 
|  | DSA *dsa = EVP_PKEY_get0_DSA(key.get()); | 
|  | uint8_t digest[EVP_MAX_MD_SIZE]; | 
|  | unsigned digest_len; | 
|  | ASSERT_TRUE( | 
|  | EVP_Digest(msg.data(), msg.size(), digest, &digest_len, md, nullptr)); | 
|  | int valid; | 
|  | bool sig_ok = DSA_check_signature(&valid, digest, digest_len, sig.data(), | 
|  | sig.size(), dsa) && | 
|  | valid; | 
|  | EXPECT_EQ(sig_ok, result.IsValid()); | 
|  | } else { | 
|  | bssl::ScopedEVP_MD_CTX ctx; | 
|  | EVP_PKEY_CTX *pctx; | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestVerifyInit(ctx.get(), &pctx, md, nullptr, key.get())); | 
|  | if (is_pss) { | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING)); | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(pctx, mgf1_md)); | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, pss_salt_len)); | 
|  | } | 
|  | int ret = EVP_DigestVerify(ctx.get(), sig.data(), sig.size(), msg.data(), | 
|  | msg.size()); | 
|  | // BoringSSL does not enforce policies on weak keys and leaves it to the | 
|  | // caller. | 
|  | EXPECT_EQ(ret, | 
|  | result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"}) | 
|  | ? 1 | 
|  | : 0); | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofDSA) { | 
|  | RunWycheproofVerifyTest("third_party/wycheproof_testvectors/dsa_test.txt"); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofECDSAP224) { | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha224_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha256_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha512_test.txt"); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofECDSAP256) { | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha256_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha512_test.txt"); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofECDSAP384) { | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha384_test.txt"); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofECDSAP521) { | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha512_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/ecdsa_secp521r1_sha512_test.txt"); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofEdDSA) { | 
|  | RunWycheproofVerifyTest("third_party/wycheproof_testvectors/eddsa_test.txt"); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofRSAPKCS1) { | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_signature_2048_sha224_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_signature_2048_sha256_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_signature_2048_sha384_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_signature_2048_sha512_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_signature_3072_sha256_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_signature_3072_sha384_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_signature_3072_sha512_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_signature_4096_sha384_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_signature_4096_sha512_test.txt"); | 
|  | // TODO(davidben): Is this file redundant with the tests above? | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_signature_test.txt"); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofRSAPKCS1Sign) { | 
|  | FileTestGTest( | 
|  | "third_party/wycheproof_testvectors/rsa_sig_gen_misc_test.txt", | 
|  | [](FileTest *t) { | 
|  | t->IgnoreAllUnusedInstructions(); | 
|  |  | 
|  | std::vector<uint8_t> pkcs8; | 
|  | ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8")); | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, pkcs8.data(), pkcs8.size()); | 
|  | bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs)); | 
|  | ASSERT_TRUE(key); | 
|  |  | 
|  | const EVP_MD *md = GetWycheproofDigest(t, "sha", true); | 
|  | ASSERT_TRUE(md); | 
|  |  | 
|  | std::vector<uint8_t> msg, sig; | 
|  | ASSERT_TRUE(t->GetBytes(&msg, "msg")); | 
|  | ASSERT_TRUE(t->GetBytes(&sig, "sig")); | 
|  | WycheproofResult result; | 
|  | ASSERT_TRUE(GetWycheproofResult(t, &result)); | 
|  |  | 
|  | bssl::ScopedEVP_MD_CTX ctx; | 
|  | EVP_PKEY_CTX *pctx; | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr, key.get())); | 
|  | std::vector<uint8_t> out(EVP_PKEY_size(key.get())); | 
|  | size_t len = out.size(); | 
|  | int ret = | 
|  | EVP_DigestSign(ctx.get(), out.data(), &len, msg.data(), msg.size()); | 
|  | // BoringSSL does not enforce policies on weak keys and leaves it to the | 
|  | // caller. | 
|  | bool is_valid = | 
|  | result.IsValid({"SmallModulus", "SmallPublicKey", "WeakHash"}); | 
|  | EXPECT_EQ(ret, is_valid ? 1 : 0); | 
|  | if (is_valid) { | 
|  | out.resize(len); | 
|  | EXPECT_EQ(Bytes(sig), Bytes(out)); | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofRSAPSS) { | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_pss_2048_sha1_mgf1_20_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_pss_2048_sha256_mgf1_0_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_pss_2048_sha256_mgf1_32_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_pss_3072_sha256_mgf1_32_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_pss_4096_sha256_mgf1_32_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_pss_4096_sha512_mgf1_32_test.txt"); | 
|  | RunWycheproofVerifyTest( | 
|  | "third_party/wycheproof_testvectors/rsa_pss_misc_test.txt"); | 
|  | } | 
|  |  | 
|  | static void RunWycheproofDecryptTest( | 
|  | const char *path, | 
|  | std::function<void(FileTest *, EVP_PKEY_CTX *)> setup_cb) { | 
|  | FileTestGTest(path, [&](FileTest *t) { | 
|  | t->IgnoreAllUnusedInstructions(); | 
|  |  | 
|  | std::vector<uint8_t> pkcs8; | 
|  | ASSERT_TRUE(t->GetInstructionBytes(&pkcs8, "privateKeyPkcs8")); | 
|  | CBS cbs; | 
|  | CBS_init(&cbs, pkcs8.data(), pkcs8.size()); | 
|  | bssl::UniquePtr<EVP_PKEY> key(EVP_parse_private_key(&cbs)); | 
|  | ASSERT_TRUE(key); | 
|  |  | 
|  | std::vector<uint8_t> ct, msg; | 
|  | ASSERT_TRUE(t->GetBytes(&ct, "ct")); | 
|  | ASSERT_TRUE(t->GetBytes(&msg, "msg")); | 
|  | WycheproofResult result; | 
|  | ASSERT_TRUE(GetWycheproofResult(t, &result)); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key.get(), nullptr)); | 
|  | ASSERT_TRUE(ctx); | 
|  | ASSERT_TRUE(EVP_PKEY_decrypt_init(ctx.get())); | 
|  | ASSERT_NO_FATAL_FAILURE(setup_cb(t, ctx.get())); | 
|  | std::vector<uint8_t> out(EVP_PKEY_size(key.get())); | 
|  | size_t len = out.size(); | 
|  | int ret = | 
|  | EVP_PKEY_decrypt(ctx.get(), out.data(), &len, ct.data(), ct.size()); | 
|  | // BoringSSL does not enforce policies on weak keys and leaves it to the | 
|  | // caller. | 
|  | bool is_valid = result.IsValid({"SmallModulus"}); | 
|  | EXPECT_EQ(ret, is_valid ? 1 : 0); | 
|  | if (is_valid) { | 
|  | out.resize(len); | 
|  | EXPECT_EQ(Bytes(msg), Bytes(out)); | 
|  | } | 
|  | }); | 
|  | } | 
|  |  | 
|  | static void RunWycheproofOAEPTest(const char *path) { | 
|  | RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) { | 
|  | const EVP_MD *md = GetWycheproofDigest(t, "sha", true); | 
|  | ASSERT_TRUE(md); | 
|  | const EVP_MD *mgf1_md = GetWycheproofDigest(t, "mgfSha", true); | 
|  | ASSERT_TRUE(mgf1_md); | 
|  | std::vector<uint8_t> label; | 
|  | ASSERT_TRUE(t->GetBytes(&label, "label")); | 
|  |  | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING)); | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md)); | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, mgf1_md)); | 
|  | bssl::UniquePtr<uint8_t> label_copy( | 
|  | static_cast<uint8_t *>(OPENSSL_memdup(label.data(), label.size()))); | 
|  | ASSERT_TRUE(label_copy || label.empty()); | 
|  | ASSERT_TRUE( | 
|  | EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, label_copy.get(), label.size())); | 
|  | // |EVP_PKEY_CTX_set0_rsa_oaep_label| takes ownership on success. | 
|  | label_copy.release(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofRSAOAEP2048) { | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_2048_sha1_mgf1sha1_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_2048_sha224_mgf1sha1_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_2048_sha224_mgf1sha224_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_2048_sha256_mgf1sha1_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_2048_sha256_mgf1sha256_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_2048_sha384_mgf1sha1_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_2048_sha384_mgf1sha384_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_2048_sha512_mgf1sha1_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_2048_sha512_mgf1sha512_test.txt"); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofRSAOAEP3072) { | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_3072_sha256_mgf1sha1_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_3072_sha256_mgf1sha256_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_3072_sha512_mgf1sha1_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_3072_sha512_mgf1sha512_test.txt"); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofRSAOAEP4096) { | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_4096_sha256_mgf1sha1_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_4096_sha256_mgf1sha256_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_4096_sha512_mgf1sha1_test.txt"); | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/" | 
|  | "rsa_oaep_4096_sha512_mgf1sha512_test.txt"); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofRSAOAEPMisc) { | 
|  | RunWycheproofOAEPTest( | 
|  | "third_party/wycheproof_testvectors/rsa_oaep_misc_test.txt"); | 
|  | } | 
|  |  | 
|  | static void RunWycheproofPKCS1DecryptTest(const char *path) { | 
|  | RunWycheproofDecryptTest(path, [](FileTest *t, EVP_PKEY_CTX *ctx) { | 
|  | // No setup needed. PKCS#1 is, sadly, the default. | 
|  | }); | 
|  | } | 
|  |  | 
|  | TEST(EVPTest, WycheproofRSAPKCS1Decrypt) { | 
|  | RunWycheproofPKCS1DecryptTest( | 
|  | "third_party/wycheproof_testvectors/rsa_pkcs1_2048_test.txt"); | 
|  | RunWycheproofPKCS1DecryptTest( | 
|  | "third_party/wycheproof_testvectors/rsa_pkcs1_3072_test.txt"); | 
|  | RunWycheproofPKCS1DecryptTest( | 
|  | "third_party/wycheproof_testvectors/rsa_pkcs1_4096_test.txt"); | 
|  | } |