| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <openssl/base.h> |
| |
| #if !defined(OPENSSL_WINDOWS) |
| #include <arpa/inet.h> |
| #include <netinet/in.h> |
| #include <netinet/tcp.h> |
| #include <signal.h> |
| #include <sys/socket.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| #else |
| #include <io.h> |
| #pragma warning(push, 3) |
| #include <winsock2.h> |
| #include <ws2tcpip.h> |
| #pragma warning(pop) |
| |
| #pragma comment(lib, "Ws2_32.lib") |
| #endif |
| |
| #include <string.h> |
| #include <sys/types.h> |
| |
| #include <openssl/bio.h> |
| #include <openssl/buf.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/cipher.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include <openssl/hmac.h> |
| #include <openssl/obj.h> |
| #include <openssl/rand.h> |
| #include <openssl/ssl.h> |
| |
| #include <memory> |
| #include <string> |
| #include <vector> |
| |
| #include "../../crypto/test/scoped_types.h" |
| #include "async_bio.h" |
| #include "packeted_bio.h" |
| #include "scoped_types.h" |
| #include "test_config.h" |
| |
| |
| #if !defined(OPENSSL_WINDOWS) |
| static int closesocket(int sock) { |
| return close(sock); |
| } |
| |
| static void PrintSocketError(const char *func) { |
| perror(func); |
| } |
| #else |
| static void PrintSocketError(const char *func) { |
| fprintf(stderr, "%s: %d\n", func, WSAGetLastError()); |
| } |
| #endif |
| |
| static int Usage(const char *program) { |
| fprintf(stderr, "Usage: %s [flags...]\n", program); |
| return 1; |
| } |
| |
| struct TestState { |
| TestState() { |
| // MSVC cannot initialize these inline. |
| memset(&clock, 0, sizeof(clock)); |
| memset(&clock_delta, 0, sizeof(clock_delta)); |
| } |
| |
| // async_bio is async BIO which pauses reads and writes. |
| BIO *async_bio = nullptr; |
| // clock is the current time for the SSL connection. |
| timeval clock; |
| // clock_delta is how far the clock advanced in the most recent failed |
| // |BIO_read|. |
| timeval clock_delta; |
| ScopedEVP_PKEY channel_id; |
| bool cert_ready = false; |
| ScopedSSL_SESSION session; |
| ScopedSSL_SESSION pending_session; |
| bool early_callback_called = false; |
| bool handshake_done = false; |
| // private_key is the underlying private key used when testing custom keys. |
| ScopedEVP_PKEY private_key; |
| std::vector<uint8_t> private_key_result; |
| // private_key_retries is the number of times an asynchronous private key |
| // operation has been retried. |
| unsigned private_key_retries = 0; |
| bool got_new_session = false; |
| }; |
| |
| static void TestStateExFree(void *parent, void *ptr, CRYPTO_EX_DATA *ad, |
| int index, long argl, void *argp) { |
| delete ((TestState *)ptr); |
| } |
| |
| static int g_config_index = 0; |
| static int g_state_index = 0; |
| |
| static bool SetConfigPtr(SSL *ssl, const TestConfig *config) { |
| return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1; |
| } |
| |
| static const TestConfig *GetConfigPtr(const SSL *ssl) { |
| return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index); |
| } |
| |
| static bool SetTestState(SSL *ssl, std::unique_ptr<TestState> async) { |
| if (SSL_set_ex_data(ssl, g_state_index, (void *)async.get()) == 1) { |
| async.release(); |
| return true; |
| } |
| return false; |
| } |
| |
| static TestState *GetTestState(const SSL *ssl) { |
| return (TestState *)SSL_get_ex_data(ssl, g_state_index); |
| } |
| |
| static ScopedEVP_PKEY LoadPrivateKey(const std::string &file) { |
| ScopedBIO bio(BIO_new(BIO_s_file())); |
| if (!bio || !BIO_read_filename(bio.get(), file.c_str())) { |
| return nullptr; |
| } |
| ScopedEVP_PKEY pkey(PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL)); |
| return pkey; |
| } |
| |
| static int AsyncPrivateKeyType(SSL *ssl) { |
| return EVP_PKEY_id(GetTestState(ssl)->private_key.get()); |
| } |
| |
| static size_t AsyncPrivateKeyMaxSignatureLen(SSL *ssl) { |
| return EVP_PKEY_size(GetTestState(ssl)->private_key.get()); |
| } |
| |
| static ssl_private_key_result_t AsyncPrivateKeySign( |
| SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, |
| const EVP_MD *md, const uint8_t *in, size_t in_len) { |
| TestState *test_state = GetTestState(ssl); |
| if (!test_state->private_key_result.empty()) { |
| fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n"); |
| abort(); |
| } |
| |
| ScopedEVP_PKEY_CTX ctx(EVP_PKEY_CTX_new(test_state->private_key.get(), |
| nullptr)); |
| if (!ctx) { |
| return ssl_private_key_failure; |
| } |
| |
| // Write the signature into |test_state|. |
| size_t len = 0; |
| if (!EVP_PKEY_sign_init(ctx.get()) || |
| !EVP_PKEY_CTX_set_signature_md(ctx.get(), md) || |
| !EVP_PKEY_sign(ctx.get(), nullptr, &len, in, in_len)) { |
| return ssl_private_key_failure; |
| } |
| test_state->private_key_result.resize(len); |
| if (!EVP_PKEY_sign(ctx.get(), test_state->private_key_result.data(), &len, in, |
| in_len)) { |
| return ssl_private_key_failure; |
| } |
| test_state->private_key_result.resize(len); |
| |
| // The signature will be released asynchronously in |
| // |AsyncPrivateKeySignComplete|. |
| return ssl_private_key_retry; |
| } |
| |
| static ssl_private_key_result_t AsyncPrivateKeySignComplete( |
| SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { |
| TestState *test_state = GetTestState(ssl); |
| if (test_state->private_key_result.empty()) { |
| fprintf(stderr, |
| "AsyncPrivateKeySignComplete called without operation pending.\n"); |
| abort(); |
| } |
| |
| if (test_state->private_key_retries < 2) { |
| // Only return the signature on the second attempt, to test both incomplete |
| // |sign| and |sign_complete|. |
| return ssl_private_key_retry; |
| } |
| |
| if (max_out < test_state->private_key_result.size()) { |
| fprintf(stderr, "Output buffer too small.\n"); |
| return ssl_private_key_failure; |
| } |
| memcpy(out, test_state->private_key_result.data(), |
| test_state->private_key_result.size()); |
| *out_len = test_state->private_key_result.size(); |
| |
| test_state->private_key_result.clear(); |
| test_state->private_key_retries = 0; |
| return ssl_private_key_success; |
| } |
| |
| static ssl_private_key_result_t AsyncPrivateKeyDecrypt( |
| SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, |
| const uint8_t *in, size_t in_len) { |
| TestState *test_state = GetTestState(ssl); |
| if (!test_state->private_key_result.empty()) { |
| fprintf(stderr, |
| "AsyncPrivateKeyDecrypt called with operation pending.\n"); |
| abort(); |
| } |
| |
| RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get()); |
| if (rsa == NULL) { |
| fprintf(stderr, |
| "AsyncPrivateKeyDecrypt called with incorrect key type.\n"); |
| abort(); |
| } |
| test_state->private_key_result.resize(RSA_size(rsa)); |
| if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(), |
| RSA_size(rsa), in, in_len, RSA_NO_PADDING)) { |
| return ssl_private_key_failure; |
| } |
| |
| test_state->private_key_result.resize(*out_len); |
| |
| // The decryption will be released asynchronously in |
| // |AsyncPrivateKeyDecryptComplete|. |
| return ssl_private_key_retry; |
| } |
| |
| static ssl_private_key_result_t AsyncPrivateKeyDecryptComplete( |
| SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out) { |
| TestState *test_state = GetTestState(ssl); |
| if (test_state->private_key_result.empty()) { |
| fprintf(stderr, |
| "AsyncPrivateKeyDecryptComplete called without operation " |
| "pending.\n"); |
| abort(); |
| } |
| |
| if (test_state->private_key_retries < 2) { |
| // Only return the decryption on the second attempt, to test both incomplete |
| // |decrypt| and |decrypt_complete|. |
| return ssl_private_key_retry; |
| } |
| |
| if (max_out < test_state->private_key_result.size()) { |
| fprintf(stderr, "Output buffer too small.\n"); |
| return ssl_private_key_failure; |
| } |
| memcpy(out, test_state->private_key_result.data(), |
| test_state->private_key_result.size()); |
| *out_len = test_state->private_key_result.size(); |
| |
| test_state->private_key_result.clear(); |
| test_state->private_key_retries = 0; |
| return ssl_private_key_success; |
| } |
| |
| static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = { |
| AsyncPrivateKeyType, |
| AsyncPrivateKeyMaxSignatureLen, |
| AsyncPrivateKeySign, |
| AsyncPrivateKeySignComplete, |
| AsyncPrivateKeyDecrypt, |
| AsyncPrivateKeyDecryptComplete |
| }; |
| |
| template<typename T> |
| struct Free { |
| void operator()(T *buf) { |
| free(buf); |
| } |
| }; |
| |
| static bool InstallCertificate(SSL *ssl) { |
| const TestConfig *config = GetConfigPtr(ssl); |
| TestState *test_state = GetTestState(ssl); |
| |
| if (!config->digest_prefs.empty()) { |
| std::unique_ptr<char, Free<char>> digest_prefs( |
| strdup(config->digest_prefs.c_str())); |
| std::vector<int> digest_list; |
| |
| for (;;) { |
| char *token = |
| strtok(digest_list.empty() ? digest_prefs.get() : nullptr, ","); |
| if (token == nullptr) { |
| break; |
| } |
| |
| digest_list.push_back(EVP_MD_type(EVP_get_digestbyname(token))); |
| } |
| |
| if (!SSL_set_private_key_digest_prefs(ssl, digest_list.data(), |
| digest_list.size())) { |
| return false; |
| } |
| } |
| |
| if (!config->key_file.empty()) { |
| if (config->async) { |
| test_state->private_key = LoadPrivateKey(config->key_file.c_str()); |
| if (!test_state->private_key) { |
| return false; |
| } |
| SSL_set_private_key_method(ssl, &g_async_private_key_method); |
| } else if (!SSL_use_PrivateKey_file(ssl, config->key_file.c_str(), |
| SSL_FILETYPE_PEM)) { |
| return false; |
| } |
| } |
| if (!config->cert_file.empty() && |
| !SSL_use_certificate_file(ssl, config->cert_file.c_str(), |
| SSL_FILETYPE_PEM)) { |
| return false; |
| } |
| if (!config->ocsp_response.empty() && |
| !SSL_CTX_set_ocsp_response(ssl->ctx, |
| (const uint8_t *)config->ocsp_response.data(), |
| config->ocsp_response.size())) { |
| return false; |
| } |
| return true; |
| } |
| |
| static int SelectCertificateCallback(const struct ssl_early_callback_ctx *ctx) { |
| const TestConfig *config = GetConfigPtr(ctx->ssl); |
| GetTestState(ctx->ssl)->early_callback_called = true; |
| |
| if (!config->expected_server_name.empty()) { |
| const uint8_t *extension_data; |
| size_t extension_len; |
| CBS extension, server_name_list, host_name; |
| uint8_t name_type; |
| |
| if (!SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_server_name, |
| &extension_data, |
| &extension_len)) { |
| fprintf(stderr, "Could not find server_name extension.\n"); |
| return -1; |
| } |
| |
| CBS_init(&extension, extension_data, extension_len); |
| if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) || |
| CBS_len(&extension) != 0 || |
| !CBS_get_u8(&server_name_list, &name_type) || |
| name_type != TLSEXT_NAMETYPE_host_name || |
| !CBS_get_u16_length_prefixed(&server_name_list, &host_name) || |
| CBS_len(&server_name_list) != 0) { |
| fprintf(stderr, "Could not decode server_name extension.\n"); |
| return -1; |
| } |
| |
| if (!CBS_mem_equal(&host_name, |
| (const uint8_t*)config->expected_server_name.data(), |
| config->expected_server_name.size())) { |
| fprintf(stderr, "Server name mismatch.\n"); |
| } |
| } |
| |
| if (config->fail_early_callback) { |
| return -1; |
| } |
| |
| // Install the certificate in the early callback. |
| if (config->use_early_callback) { |
| if (config->async) { |
| // Install the certificate asynchronously. |
| return 0; |
| } |
| if (!InstallCertificate(ctx->ssl)) { |
| return -1; |
| } |
| } |
| return 1; |
| } |
| |
| static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { |
| SSL* ssl = (SSL*)X509_STORE_CTX_get_ex_data(store_ctx, |
| SSL_get_ex_data_X509_STORE_CTX_idx()); |
| const TestConfig *config = GetConfigPtr(ssl); |
| |
| if (!config->expected_ocsp_response.empty()) { |
| const uint8_t *data; |
| size_t len; |
| SSL_get0_ocsp_response(ssl, &data, &len); |
| if (len == 0) { |
| fprintf(stderr, "OCSP response not available in verify callback\n"); |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int VerifyFail(X509_STORE_CTX *store_ctx, void *arg) { |
| store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION; |
| return 0; |
| } |
| |
| static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out, |
| unsigned int *out_len, void *arg) { |
| const TestConfig *config = GetConfigPtr(ssl); |
| if (config->advertise_npn.empty()) { |
| return SSL_TLSEXT_ERR_NOACK; |
| } |
| |
| *out = (const uint8_t*)config->advertise_npn.data(); |
| *out_len = config->advertise_npn.size(); |
| return SSL_TLSEXT_ERR_OK; |
| } |
| |
| static int NextProtoSelectCallback(SSL* ssl, uint8_t** out, uint8_t* outlen, |
| const uint8_t* in, unsigned inlen, void* arg) { |
| const TestConfig *config = GetConfigPtr(ssl); |
| if (config->select_next_proto.empty()) { |
| return SSL_TLSEXT_ERR_NOACK; |
| } |
| |
| *out = (uint8_t*)config->select_next_proto.data(); |
| *outlen = config->select_next_proto.size(); |
| return SSL_TLSEXT_ERR_OK; |
| } |
| |
| static int AlpnSelectCallback(SSL* ssl, const uint8_t** out, uint8_t* outlen, |
| const uint8_t* in, unsigned inlen, void* arg) { |
| const TestConfig *config = GetConfigPtr(ssl); |
| if (config->select_alpn.empty()) { |
| return SSL_TLSEXT_ERR_NOACK; |
| } |
| |
| if (!config->expected_advertised_alpn.empty() && |
| (config->expected_advertised_alpn.size() != inlen || |
| memcmp(config->expected_advertised_alpn.data(), |
| in, inlen) != 0)) { |
| fprintf(stderr, "bad ALPN select callback inputs\n"); |
| exit(1); |
| } |
| |
| *out = (const uint8_t*)config->select_alpn.data(); |
| *outlen = config->select_alpn.size(); |
| return SSL_TLSEXT_ERR_OK; |
| } |
| |
| static unsigned PskClientCallback(SSL *ssl, const char *hint, |
| char *out_identity, |
| unsigned max_identity_len, |
| uint8_t *out_psk, unsigned max_psk_len) { |
| const TestConfig *config = GetConfigPtr(ssl); |
| |
| if (strcmp(hint ? hint : "", config->psk_identity.c_str()) != 0) { |
| fprintf(stderr, "Server PSK hint did not match.\n"); |
| return 0; |
| } |
| |
| // Account for the trailing '\0' for the identity. |
| if (config->psk_identity.size() >= max_identity_len || |
| config->psk.size() > max_psk_len) { |
| fprintf(stderr, "PSK buffers too small\n"); |
| return 0; |
| } |
| |
| BUF_strlcpy(out_identity, config->psk_identity.c_str(), |
| max_identity_len); |
| memcpy(out_psk, config->psk.data(), config->psk.size()); |
| return config->psk.size(); |
| } |
| |
| static unsigned PskServerCallback(SSL *ssl, const char *identity, |
| uint8_t *out_psk, unsigned max_psk_len) { |
| const TestConfig *config = GetConfigPtr(ssl); |
| |
| if (strcmp(identity, config->psk_identity.c_str()) != 0) { |
| fprintf(stderr, "Client PSK identity did not match.\n"); |
| return 0; |
| } |
| |
| if (config->psk.size() > max_psk_len) { |
| fprintf(stderr, "PSK buffers too small\n"); |
| return 0; |
| } |
| |
| memcpy(out_psk, config->psk.data(), config->psk.size()); |
| return config->psk.size(); |
| } |
| |
| static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) { |
| *out_clock = GetTestState(ssl)->clock; |
| } |
| |
| static void ChannelIdCallback(SSL *ssl, EVP_PKEY **out_pkey) { |
| *out_pkey = GetTestState(ssl)->channel_id.release(); |
| } |
| |
| static int CertCallback(SSL *ssl, void *arg) { |
| if (!GetTestState(ssl)->cert_ready) { |
| return -1; |
| } |
| if (!InstallCertificate(ssl)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static SSL_SESSION *GetSessionCallback(SSL *ssl, uint8_t *data, int len, |
| int *copy) { |
| TestState *async_state = GetTestState(ssl); |
| if (async_state->session) { |
| *copy = 0; |
| return async_state->session.release(); |
| } else if (async_state->pending_session) { |
| return SSL_magic_pending_session_ptr(); |
| } else { |
| return NULL; |
| } |
| } |
| |
| static int DDoSCallback(const struct ssl_early_callback_ctx *early_context) { |
| const TestConfig *config = GetConfigPtr(early_context->ssl); |
| static int callback_num = 0; |
| |
| callback_num++; |
| if (config->fail_ddos_callback || |
| (config->fail_second_ddos_callback && callback_num == 2)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static void InfoCallback(const SSL *ssl, int type, int val) { |
| if (type == SSL_CB_HANDSHAKE_DONE) { |
| if (GetConfigPtr(ssl)->handshake_never_done) { |
| fprintf(stderr, "handshake completed\n"); |
| // Abort before any expected error code is printed, to ensure the overall |
| // test fails. |
| abort(); |
| } |
| GetTestState(ssl)->handshake_done = true; |
| } |
| } |
| |
| static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) { |
| GetTestState(ssl)->got_new_session = true; |
| // BoringSSL passes a reference to |session|. |
| SSL_SESSION_free(session); |
| return 1; |
| } |
| |
| static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv, |
| EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, |
| int encrypt) { |
| // This is just test code, so use the all-zeros key. |
| static const uint8_t kZeros[16] = {0}; |
| |
| if (encrypt) { |
| memcpy(key_name, kZeros, sizeof(kZeros)); |
| RAND_bytes(iv, 16); |
| } else if (memcmp(key_name, kZeros, 16) != 0) { |
| return 0; |
| } |
| |
| if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) || |
| !EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) { |
| return -1; |
| } |
| |
| if (!encrypt) { |
| return GetConfigPtr(ssl)->renew_ticket ? 2 : 1; |
| } |
| return 1; |
| } |
| |
| // kCustomExtensionValue is the extension value that the custom extension |
| // callbacks will add. |
| static const uint16_t kCustomExtensionValue = 1234; |
| static void *const kCustomExtensionAddArg = |
| reinterpret_cast<void *>(kCustomExtensionValue); |
| static void *const kCustomExtensionParseArg = |
| reinterpret_cast<void *>(kCustomExtensionValue + 1); |
| static const char kCustomExtensionContents[] = "custom extension"; |
| |
| static int CustomExtensionAddCallback(SSL *ssl, unsigned extension_value, |
| const uint8_t **out, size_t *out_len, |
| int *out_alert_value, void *add_arg) { |
| if (extension_value != kCustomExtensionValue || |
| add_arg != kCustomExtensionAddArg) { |
| abort(); |
| } |
| |
| if (GetConfigPtr(ssl)->custom_extension_skip) { |
| return 0; |
| } |
| if (GetConfigPtr(ssl)->custom_extension_fail_add) { |
| return -1; |
| } |
| |
| *out = reinterpret_cast<const uint8_t*>(kCustomExtensionContents); |
| *out_len = sizeof(kCustomExtensionContents) - 1; |
| |
| return 1; |
| } |
| |
| static void CustomExtensionFreeCallback(SSL *ssl, unsigned extension_value, |
| const uint8_t *out, void *add_arg) { |
| if (extension_value != kCustomExtensionValue || |
| add_arg != kCustomExtensionAddArg || |
| out != reinterpret_cast<const uint8_t *>(kCustomExtensionContents)) { |
| abort(); |
| } |
| } |
| |
| static int CustomExtensionParseCallback(SSL *ssl, unsigned extension_value, |
| const uint8_t *contents, |
| size_t contents_len, |
| int *out_alert_value, void *parse_arg) { |
| if (extension_value != kCustomExtensionValue || |
| parse_arg != kCustomExtensionParseArg) { |
| abort(); |
| } |
| |
| if (contents_len != sizeof(kCustomExtensionContents) - 1 || |
| memcmp(contents, kCustomExtensionContents, contents_len) != 0) { |
| *out_alert_value = SSL_AD_DECODE_ERROR; |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| // Connect returns a new socket connected to localhost on |port| or -1 on |
| // error. |
| static int Connect(uint16_t port) { |
| int sock = socket(AF_INET, SOCK_STREAM, 0); |
| if (sock == -1) { |
| PrintSocketError("socket"); |
| return -1; |
| } |
| int nodelay = 1; |
| if (setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, |
| reinterpret_cast<const char*>(&nodelay), sizeof(nodelay)) != 0) { |
| PrintSocketError("setsockopt"); |
| closesocket(sock); |
| return -1; |
| } |
| sockaddr_in sin; |
| memset(&sin, 0, sizeof(sin)); |
| sin.sin_family = AF_INET; |
| sin.sin_port = htons(port); |
| if (!inet_pton(AF_INET, "127.0.0.1", &sin.sin_addr)) { |
| PrintSocketError("inet_pton"); |
| closesocket(sock); |
| return -1; |
| } |
| if (connect(sock, reinterpret_cast<const sockaddr*>(&sin), |
| sizeof(sin)) != 0) { |
| PrintSocketError("connect"); |
| closesocket(sock); |
| return -1; |
| } |
| return sock; |
| } |
| |
| class SocketCloser { |
| public: |
| explicit SocketCloser(int sock) : sock_(sock) {} |
| ~SocketCloser() { |
| // Half-close and drain the socket before releasing it. This seems to be |
| // necessary for graceful shutdown on Windows. It will also avoid write |
| // failures in the test runner. |
| #if defined(OPENSSL_WINDOWS) |
| shutdown(sock_, SD_SEND); |
| #else |
| shutdown(sock_, SHUT_WR); |
| #endif |
| while (true) { |
| char buf[1024]; |
| if (recv(sock_, buf, sizeof(buf), 0) <= 0) { |
| break; |
| } |
| } |
| closesocket(sock_); |
| } |
| |
| private: |
| const int sock_; |
| }; |
| |
| static ScopedSSL_CTX SetupCtx(const TestConfig *config) { |
| ScopedSSL_CTX ssl_ctx(SSL_CTX_new( |
| config->is_dtls ? DTLS_method() : TLS_method())); |
| if (!ssl_ctx) { |
| return nullptr; |
| } |
| |
| std::string cipher_list = "ALL"; |
| if (!config->cipher.empty()) { |
| cipher_list = config->cipher; |
| SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE); |
| } |
| if (!SSL_CTX_set_cipher_list(ssl_ctx.get(), cipher_list.c_str())) { |
| return nullptr; |
| } |
| |
| if (!config->cipher_tls10.empty() && |
| !SSL_CTX_set_cipher_list_tls10(ssl_ctx.get(), |
| config->cipher_tls10.c_str())) { |
| return nullptr; |
| } |
| if (!config->cipher_tls11.empty() && |
| !SSL_CTX_set_cipher_list_tls11(ssl_ctx.get(), |
| config->cipher_tls11.c_str())) { |
| return nullptr; |
| } |
| |
| ScopedDH dh(DH_get_2048_256(NULL)); |
| |
| if (config->use_sparse_dh_prime) { |
| // This prime number is 2^1024 + 643 – a value just above a power of two. |
| // Because of its form, values modulo it are essentially certain to be one |
| // byte shorter. This is used to test padding of these values. |
| if (BN_hex2bn( |
| &dh->p, |
| "1000000000000000000000000000000000000000000000000000000000000000" |
| "0000000000000000000000000000000000000000000000000000000000000000" |
| "0000000000000000000000000000000000000000000000000000000000000000" |
| "0000000000000000000000000000000000000000000000000000000000000028" |
| "3") == 0 || |
| !BN_set_word(dh->g, 2)) { |
| return nullptr; |
| } |
| dh->priv_length = 0; |
| } |
| |
| if (!dh || !SSL_CTX_set_tmp_dh(ssl_ctx.get(), dh.get())) { |
| return nullptr; |
| } |
| |
| if (config->async && config->is_server) { |
| // Disable the internal session cache. To test asynchronous session lookup, |
| // we use an external session cache. |
| SSL_CTX_set_session_cache_mode( |
| ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL); |
| SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback); |
| } else { |
| SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH); |
| } |
| |
| SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback); |
| |
| SSL_CTX_set_next_protos_advertised_cb( |
| ssl_ctx.get(), NextProtosAdvertisedCallback, NULL); |
| if (!config->select_next_proto.empty()) { |
| SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback, |
| NULL); |
| } |
| |
| if (!config->select_alpn.empty()) { |
| SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL); |
| } |
| |
| SSL_CTX_enable_tls_channel_id(ssl_ctx.get()); |
| SSL_CTX_set_channel_id_cb(ssl_ctx.get(), ChannelIdCallback); |
| |
| ssl_ctx->current_time_cb = CurrentTimeCallback; |
| |
| SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback); |
| SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback); |
| |
| if (config->use_ticket_callback) { |
| SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback); |
| } |
| |
| if (config->enable_client_custom_extension && |
| !SSL_CTX_add_client_custom_ext( |
| ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback, |
| CustomExtensionFreeCallback, kCustomExtensionAddArg, |
| CustomExtensionParseCallback, kCustomExtensionParseArg)) { |
| return nullptr; |
| } |
| |
| if (config->enable_server_custom_extension && |
| !SSL_CTX_add_server_custom_ext( |
| ssl_ctx.get(), kCustomExtensionValue, CustomExtensionAddCallback, |
| CustomExtensionFreeCallback, kCustomExtensionAddArg, |
| CustomExtensionParseCallback, kCustomExtensionParseArg)) { |
| return nullptr; |
| } |
| |
| if (config->verify_fail) { |
| SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifyFail, NULL); |
| } else { |
| SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), VerifySucceed, NULL); |
| } |
| |
| if (!config->signed_cert_timestamps.empty() && |
| !SSL_CTX_set_signed_cert_timestamp_list( |
| ssl_ctx.get(), (const uint8_t *)config->signed_cert_timestamps.data(), |
| config->signed_cert_timestamps.size())) { |
| return nullptr; |
| } |
| |
| return ssl_ctx; |
| } |
| |
| // RetryAsync is called after a failed operation on |ssl| with return code |
| // |ret|. If the operation should be retried, it simulates one asynchronous |
| // event and returns true. Otherwise it returns false. |
| static bool RetryAsync(SSL *ssl, int ret) { |
| // No error; don't retry. |
| if (ret >= 0) { |
| return false; |
| } |
| |
| const TestConfig *config = GetConfigPtr(ssl); |
| TestState *test_state = GetTestState(ssl); |
| if (test_state->clock_delta.tv_usec != 0 || |
| test_state->clock_delta.tv_sec != 0) { |
| // Process the timeout and retry. |
| test_state->clock.tv_usec += test_state->clock_delta.tv_usec; |
| test_state->clock.tv_sec += test_state->clock.tv_usec / 1000000; |
| test_state->clock.tv_usec %= 1000000; |
| test_state->clock.tv_sec += test_state->clock_delta.tv_sec; |
| memset(&test_state->clock_delta, 0, sizeof(test_state->clock_delta)); |
| |
| // The DTLS retransmit logic silently ignores write failures. So the test |
| // may progress, allow writes through synchronously. |
| if (config->async) { |
| AsyncBioEnforceWriteQuota(test_state->async_bio, false); |
| } |
| int timeout_ret = DTLSv1_handle_timeout(ssl); |
| if (config->async) { |
| AsyncBioEnforceWriteQuota(test_state->async_bio, true); |
| } |
| |
| if (timeout_ret < 0) { |
| fprintf(stderr, "Error retransmitting.\n"); |
| return false; |
| } |
| return true; |
| } |
| |
| // See if we needed to read or write more. If so, allow one byte through on |
| // the appropriate end to maximally stress the state machine. |
| switch (SSL_get_error(ssl, ret)) { |
| case SSL_ERROR_WANT_READ: |
| AsyncBioAllowRead(test_state->async_bio, 1); |
| return true; |
| case SSL_ERROR_WANT_WRITE: |
| AsyncBioAllowWrite(test_state->async_bio, 1); |
| return true; |
| case SSL_ERROR_WANT_CHANNEL_ID_LOOKUP: { |
| ScopedEVP_PKEY pkey = LoadPrivateKey(GetConfigPtr(ssl)->send_channel_id); |
| if (!pkey) { |
| return false; |
| } |
| test_state->channel_id = std::move(pkey); |
| return true; |
| } |
| case SSL_ERROR_WANT_X509_LOOKUP: |
| test_state->cert_ready = true; |
| return true; |
| case SSL_ERROR_PENDING_SESSION: |
| test_state->session = std::move(test_state->pending_session); |
| return true; |
| case SSL_ERROR_PENDING_CERTIFICATE: |
| // The handshake will resume without a second call to the early callback. |
| return InstallCertificate(ssl); |
| case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: |
| test_state->private_key_retries++; |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // DoRead reads from |ssl|, resolving any asynchronous operations. It returns |
| // the result value of the final |SSL_read| call. |
| static int DoRead(SSL *ssl, uint8_t *out, size_t max_out) { |
| const TestConfig *config = GetConfigPtr(ssl); |
| TestState *test_state = GetTestState(ssl); |
| int ret; |
| do { |
| if (config->async) { |
| // The DTLS retransmit logic silently ignores write failures. So the test |
| // may progress, allow writes through synchronously. |SSL_read| may |
| // trigger a retransmit, so disconnect the write quota. |
| AsyncBioEnforceWriteQuota(test_state->async_bio, false); |
| } |
| ret = SSL_read(ssl, out, max_out); |
| if (config->async) { |
| AsyncBioEnforceWriteQuota(test_state->async_bio, true); |
| } |
| } while (config->async && RetryAsync(ssl, ret)); |
| return ret; |
| } |
| |
| // WriteAll writes |in_len| bytes from |in| to |ssl|, resolving any asynchronous |
| // operations. It returns the result of the final |SSL_write| call. |
| static int WriteAll(SSL *ssl, const uint8_t *in, size_t in_len) { |
| const TestConfig *config = GetConfigPtr(ssl); |
| int ret; |
| do { |
| ret = SSL_write(ssl, in, in_len); |
| if (ret > 0) { |
| in += ret; |
| in_len -= ret; |
| } |
| } while ((config->async && RetryAsync(ssl, ret)) || (ret > 0 && in_len > 0)); |
| return ret; |
| } |
| |
| // DoShutdown calls |SSL_shutdown|, resolving any asynchronous operations. It |
| // returns the result of the final |SSL_shutdown| call. |
| static int DoShutdown(SSL *ssl) { |
| const TestConfig *config = GetConfigPtr(ssl); |
| int ret; |
| do { |
| ret = SSL_shutdown(ssl); |
| } while (config->async && RetryAsync(ssl, ret)); |
| return ret; |
| } |
| |
| // CheckHandshakeProperties checks, immediately after |ssl| completes its |
| // initial handshake (or False Starts), whether all the properties are |
| // consistent with the test configuration and invariants. |
| static bool CheckHandshakeProperties(SSL *ssl, bool is_resume) { |
| const TestConfig *config = GetConfigPtr(ssl); |
| |
| if (SSL_get_current_cipher(ssl) == nullptr) { |
| fprintf(stderr, "null cipher after handshake\n"); |
| return false; |
| } |
| |
| if (is_resume && |
| (!!SSL_session_reused(ssl) == config->expect_session_miss)) { |
| fprintf(stderr, "session was%s reused\n", |
| SSL_session_reused(ssl) ? "" : " not"); |
| return false; |
| } |
| |
| bool expect_handshake_done = is_resume || !config->false_start; |
| if (expect_handshake_done != GetTestState(ssl)->handshake_done) { |
| fprintf(stderr, "handshake was%s completed\n", |
| GetTestState(ssl)->handshake_done ? "" : " not"); |
| return false; |
| } |
| |
| if (expect_handshake_done && !config->is_server) { |
| bool expect_new_session = |
| !config->expect_no_session && |
| (!SSL_session_reused(ssl) || config->expect_ticket_renewal); |
| if (expect_new_session != GetTestState(ssl)->got_new_session) { |
| fprintf(stderr, |
| "new session was%s cached, but we expected the opposite\n", |
| GetTestState(ssl)->got_new_session ? "" : " not"); |
| return false; |
| } |
| } |
| |
| if (config->is_server && !GetTestState(ssl)->early_callback_called) { |
| fprintf(stderr, "early callback not called\n"); |
| return false; |
| } |
| |
| if (!config->expected_server_name.empty()) { |
| const char *server_name = |
| SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name); |
| if (server_name != config->expected_server_name) { |
| fprintf(stderr, "servername mismatch (got %s; want %s)\n", |
| server_name, config->expected_server_name.c_str()); |
| return false; |
| } |
| } |
| |
| if (!config->expected_certificate_types.empty()) { |
| const uint8_t *certificate_types; |
| size_t certificate_types_len = |
| SSL_get0_certificate_types(ssl, &certificate_types); |
| if (certificate_types_len != config->expected_certificate_types.size() || |
| memcmp(certificate_types, |
| config->expected_certificate_types.data(), |
| certificate_types_len) != 0) { |
| fprintf(stderr, "certificate types mismatch\n"); |
| return false; |
| } |
| } |
| |
| if (!config->expected_next_proto.empty()) { |
| const uint8_t *next_proto; |
| unsigned next_proto_len; |
| SSL_get0_next_proto_negotiated(ssl, &next_proto, &next_proto_len); |
| if (next_proto_len != config->expected_next_proto.size() || |
| memcmp(next_proto, config->expected_next_proto.data(), |
| next_proto_len) != 0) { |
| fprintf(stderr, "negotiated next proto mismatch\n"); |
| return false; |
| } |
| } |
| |
| if (!config->expected_alpn.empty()) { |
| const uint8_t *alpn_proto; |
| unsigned alpn_proto_len; |
| SSL_get0_alpn_selected(ssl, &alpn_proto, &alpn_proto_len); |
| if (alpn_proto_len != config->expected_alpn.size() || |
| memcmp(alpn_proto, config->expected_alpn.data(), |
| alpn_proto_len) != 0) { |
| fprintf(stderr, "negotiated alpn proto mismatch\n"); |
| return false; |
| } |
| } |
| |
| if (!config->expected_channel_id.empty()) { |
| uint8_t channel_id[64]; |
| if (!SSL_get_tls_channel_id(ssl, channel_id, sizeof(channel_id))) { |
| fprintf(stderr, "no channel id negotiated\n"); |
| return false; |
| } |
| if (config->expected_channel_id.size() != 64 || |
| memcmp(config->expected_channel_id.data(), |
| channel_id, 64) != 0) { |
| fprintf(stderr, "channel id mismatch\n"); |
| return false; |
| } |
| } |
| |
| if (config->expect_extended_master_secret) { |
| if (!ssl->session->extended_master_secret) { |
| fprintf(stderr, "No EMS for session when expected"); |
| return false; |
| } |
| } |
| |
| if (!config->expected_ocsp_response.empty()) { |
| const uint8_t *data; |
| size_t len; |
| SSL_get0_ocsp_response(ssl, &data, &len); |
| if (config->expected_ocsp_response.size() != len || |
| memcmp(config->expected_ocsp_response.data(), data, len) != 0) { |
| fprintf(stderr, "OCSP response mismatch\n"); |
| return false; |
| } |
| } |
| |
| if (!config->expected_signed_cert_timestamps.empty()) { |
| const uint8_t *data; |
| size_t len; |
| SSL_get0_signed_cert_timestamp_list(ssl, &data, &len); |
| if (config->expected_signed_cert_timestamps.size() != len || |
| memcmp(config->expected_signed_cert_timestamps.data(), |
| data, len) != 0) { |
| fprintf(stderr, "SCT list mismatch\n"); |
| return false; |
| } |
| } |
| |
| if (config->expect_verify_result) { |
| int expected_verify_result = config->verify_fail ? |
| X509_V_ERR_APPLICATION_VERIFICATION : |
| X509_V_OK; |
| |
| if (SSL_get_verify_result(ssl) != expected_verify_result) { |
| fprintf(stderr, "Wrong certificate verification result\n"); |
| return false; |
| } |
| } |
| |
| if (config->expect_server_key_exchange_hash != 0 && |
| config->expect_server_key_exchange_hash != |
| SSL_get_server_key_exchange_hash(ssl)) { |
| fprintf(stderr, "ServerKeyExchange hash was %d, wanted %d.\n", |
| SSL_get_server_key_exchange_hash(ssl), |
| config->expect_server_key_exchange_hash); |
| return false; |
| } |
| |
| if (!config->is_server) { |
| /* Clients should expect a peer certificate chain iff this was not a PSK |
| * cipher suite. */ |
| if (config->psk.empty()) { |
| if (SSL_get_peer_cert_chain(ssl) == nullptr) { |
| fprintf(stderr, "Missing peer certificate chain!\n"); |
| return false; |
| } |
| } else if (SSL_get_peer_cert_chain(ssl) != nullptr) { |
| fprintf(stderr, "Unexpected peer certificate chain!\n"); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| // DoExchange runs a test SSL exchange against the peer. On success, it returns |
| // true and sets |*out_session| to the negotiated SSL session. If the test is a |
| // resumption attempt, |is_resume| is true and |session| is the session from the |
| // previous exchange. |
| static bool DoExchange(ScopedSSL_SESSION *out_session, SSL_CTX *ssl_ctx, |
| const TestConfig *config, bool is_resume, |
| SSL_SESSION *session) { |
| ScopedSSL ssl(SSL_new(ssl_ctx)); |
| if (!ssl) { |
| return false; |
| } |
| |
| if (!SetConfigPtr(ssl.get(), config) || |
| !SetTestState(ssl.get(), std::unique_ptr<TestState>(new TestState))) { |
| return false; |
| } |
| |
| if (config->fallback_scsv && |
| !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) { |
| return false; |
| } |
| if (!config->use_early_callback) { |
| if (config->async) { |
| // TODO(davidben): Also test |s->ctx->client_cert_cb| on the client. |
| SSL_set_cert_cb(ssl.get(), CertCallback, NULL); |
| } else if (!InstallCertificate(ssl.get())) { |
| return false; |
| } |
| } |
| if (config->require_any_client_certificate) { |
| SSL_set_verify(ssl.get(), SSL_VERIFY_PEER|SSL_VERIFY_FAIL_IF_NO_PEER_CERT, |
| NULL); |
| } |
| if (config->verify_peer) { |
| SSL_set_verify(ssl.get(), SSL_VERIFY_PEER, NULL); |
| } |
| if (config->false_start) { |
| SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START); |
| } |
| if (config->cbc_record_splitting) { |
| SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING); |
| } |
| if (config->partial_write) { |
| SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE); |
| } |
| if (config->no_tls12) { |
| SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2); |
| } |
| if (config->no_tls11) { |
| SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1); |
| } |
| if (config->no_tls1) { |
| SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1); |
| } |
| if (config->no_ssl3) { |
| SSL_set_options(ssl.get(), SSL_OP_NO_SSLv3); |
| } |
| if (config->tls_d5_bug) { |
| SSL_set_options(ssl.get(), SSL_OP_TLS_D5_BUG); |
| } |
| if (config->microsoft_big_sslv3_buffer) { |
| SSL_set_options(ssl.get(), SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER); |
| } |
| if (config->no_legacy_server_connect) { |
| SSL_clear_options(ssl.get(), SSL_OP_LEGACY_SERVER_CONNECT); |
| } |
| if (!config->expected_channel_id.empty()) { |
| SSL_enable_tls_channel_id(ssl.get()); |
| } |
| if (!config->send_channel_id.empty()) { |
| SSL_enable_tls_channel_id(ssl.get()); |
| if (!config->async) { |
| // The async case will be supplied by |ChannelIdCallback|. |
| ScopedEVP_PKEY pkey = LoadPrivateKey(config->send_channel_id); |
| if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) { |
| return false; |
| } |
| } |
| } |
| if (!config->host_name.empty() && |
| !SSL_set_tlsext_host_name(ssl.get(), config->host_name.c_str())) { |
| return false; |
| } |
| if (!config->advertise_alpn.empty() && |
| SSL_set_alpn_protos(ssl.get(), |
| (const uint8_t *)config->advertise_alpn.data(), |
| config->advertise_alpn.size()) != 0) { |
| return false; |
| } |
| if (!config->psk.empty()) { |
| SSL_set_psk_client_callback(ssl.get(), PskClientCallback); |
| SSL_set_psk_server_callback(ssl.get(), PskServerCallback); |
| } |
| if (!config->psk_identity.empty() && |
| !SSL_use_psk_identity_hint(ssl.get(), config->psk_identity.c_str())) { |
| return false; |
| } |
| if (!config->srtp_profiles.empty() && |
| !SSL_set_srtp_profiles(ssl.get(), config->srtp_profiles.c_str())) { |
| return false; |
| } |
| if (config->enable_ocsp_stapling && |
| !SSL_enable_ocsp_stapling(ssl.get())) { |
| return false; |
| } |
| if (config->enable_signed_cert_timestamps && |
| !SSL_enable_signed_cert_timestamps(ssl.get())) { |
| return false; |
| } |
| if (config->min_version != 0) { |
| SSL_set_min_version(ssl.get(), (uint16_t)config->min_version); |
| } |
| if (config->max_version != 0) { |
| SSL_set_max_version(ssl.get(), (uint16_t)config->max_version); |
| } |
| if (config->mtu != 0) { |
| SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU); |
| SSL_set_mtu(ssl.get(), config->mtu); |
| } |
| if (config->install_ddos_callback) { |
| SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback); |
| } |
| if (config->renegotiate_once) { |
| SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once); |
| } |
| if (config->renegotiate_freely) { |
| SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely); |
| } |
| if (config->renegotiate_ignore) { |
| SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore); |
| } |
| if (!config->check_close_notify) { |
| SSL_set_quiet_shutdown(ssl.get(), 1); |
| } |
| if (config->disable_npn) { |
| SSL_set_options(ssl.get(), SSL_OP_DISABLE_NPN); |
| } |
| if (config->p384_only) { |
| int nid = NID_secp384r1; |
| if (!SSL_set1_curves(ssl.get(), &nid, 1)) { |
| return false; |
| } |
| } |
| |
| int sock = Connect(config->port); |
| if (sock == -1) { |
| return false; |
| } |
| SocketCloser closer(sock); |
| |
| ScopedBIO bio(BIO_new_socket(sock, BIO_NOCLOSE)); |
| if (!bio) { |
| return false; |
| } |
| if (config->is_dtls) { |
| ScopedBIO packeted = |
| PacketedBioCreate(&GetTestState(ssl.get())->clock_delta); |
| BIO_push(packeted.get(), bio.release()); |
| bio = std::move(packeted); |
| } |
| if (config->async) { |
| ScopedBIO async_scoped = |
| config->is_dtls ? AsyncBioCreateDatagram() : AsyncBioCreate(); |
| BIO_push(async_scoped.get(), bio.release()); |
| GetTestState(ssl.get())->async_bio = async_scoped.get(); |
| bio = std::move(async_scoped); |
| } |
| SSL_set_bio(ssl.get(), bio.get(), bio.get()); |
| bio.release(); // SSL_set_bio takes ownership. |
| |
| if (session != NULL) { |
| if (!config->is_server) { |
| if (SSL_set_session(ssl.get(), session) != 1) { |
| return false; |
| } |
| } else if (config->async) { |
| // The internal session cache is disabled, so install the session |
| // manually. |
| GetTestState(ssl.get())->pending_session.reset( |
| SSL_SESSION_up_ref(session)); |
| } |
| } |
| |
| if (SSL_get_current_cipher(ssl.get()) != nullptr) { |
| fprintf(stderr, "non-null cipher before handshake\n"); |
| return false; |
| } |
| |
| int ret; |
| if (config->implicit_handshake) { |
| if (config->is_server) { |
| SSL_set_accept_state(ssl.get()); |
| } else { |
| SSL_set_connect_state(ssl.get()); |
| } |
| } else { |
| do { |
| if (config->is_server) { |
| ret = SSL_accept(ssl.get()); |
| } else { |
| ret = SSL_connect(ssl.get()); |
| } |
| } while (config->async && RetryAsync(ssl.get(), ret)); |
| if (ret != 1 || |
| !CheckHandshakeProperties(ssl.get(), is_resume)) { |
| return false; |
| } |
| |
| // Reset the state to assert later that the callback isn't called in |
| // renegotations. |
| GetTestState(ssl.get())->got_new_session = false; |
| } |
| |
| if (config->export_keying_material > 0) { |
| std::vector<uint8_t> result( |
| static_cast<size_t>(config->export_keying_material)); |
| if (!SSL_export_keying_material( |
| ssl.get(), result.data(), result.size(), |
| config->export_label.data(), config->export_label.size(), |
| reinterpret_cast<const uint8_t*>(config->export_context.data()), |
| config->export_context.size(), config->use_export_context)) { |
| fprintf(stderr, "failed to export keying material\n"); |
| return false; |
| } |
| if (WriteAll(ssl.get(), result.data(), result.size()) < 0) { |
| return false; |
| } |
| } |
| |
| if (config->tls_unique) { |
| uint8_t tls_unique[16]; |
| size_t tls_unique_len; |
| if (!SSL_get_tls_unique(ssl.get(), tls_unique, &tls_unique_len, |
| sizeof(tls_unique))) { |
| fprintf(stderr, "failed to get tls-unique\n"); |
| return false; |
| } |
| |
| if (tls_unique_len != 12) { |
| fprintf(stderr, "expected 12 bytes of tls-unique but got %u", |
| static_cast<unsigned>(tls_unique_len)); |
| return false; |
| } |
| |
| if (WriteAll(ssl.get(), tls_unique, tls_unique_len) < 0) { |
| return false; |
| } |
| } |
| |
| if (config->write_different_record_sizes) { |
| if (config->is_dtls) { |
| fprintf(stderr, "write_different_record_sizes not supported for DTLS\n"); |
| return false; |
| } |
| // This mode writes a number of different record sizes in an attempt to |
| // trip up the CBC record splitting code. |
| static const size_t kBufLen = 32769; |
| std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]); |
| memset(buf.get(), 0x42, kBufLen); |
| static const size_t kRecordSizes[] = { |
| 0, 1, 255, 256, 257, 16383, 16384, 16385, 32767, 32768, 32769}; |
| for (size_t i = 0; i < sizeof(kRecordSizes) / sizeof(kRecordSizes[0]); |
| i++) { |
| const size_t len = kRecordSizes[i]; |
| if (len > kBufLen) { |
| fprintf(stderr, "Bad kRecordSizes value.\n"); |
| return false; |
| } |
| if (WriteAll(ssl.get(), buf.get(), len) < 0) { |
| return false; |
| } |
| } |
| } else { |
| if (config->shim_writes_first) { |
| if (WriteAll(ssl.get(), reinterpret_cast<const uint8_t *>("hello"), |
| 5) < 0) { |
| return false; |
| } |
| } |
| if (!config->shim_shuts_down) { |
| for (;;) { |
| static const size_t kBufLen = 16384; |
| std::unique_ptr<uint8_t[]> buf(new uint8_t[kBufLen]); |
| |
| // Read only 512 bytes at a time in TLS to ensure records may be |
| // returned in multiple reads. |
| int n = DoRead(ssl.get(), buf.get(), config->is_dtls ? kBufLen : 512); |
| int err = SSL_get_error(ssl.get(), n); |
| if (err == SSL_ERROR_ZERO_RETURN || |
| (n == 0 && err == SSL_ERROR_SYSCALL)) { |
| if (n != 0) { |
| fprintf(stderr, "Invalid SSL_get_error output\n"); |
| return false; |
| } |
| // Stop on either clean or unclean shutdown. |
| break; |
| } else if (err != SSL_ERROR_NONE) { |
| if (n > 0) { |
| fprintf(stderr, "Invalid SSL_get_error output\n"); |
| return false; |
| } |
| return false; |
| } |
| // Successfully read data. |
| if (n <= 0) { |
| fprintf(stderr, "Invalid SSL_get_error output\n"); |
| return false; |
| } |
| |
| // After a successful read, with or without False Start, the handshake |
| // must be complete. |
| if (!GetTestState(ssl.get())->handshake_done) { |
| fprintf(stderr, "handshake was not completed after SSL_read\n"); |
| return false; |
| } |
| |
| for (int i = 0; i < n; i++) { |
| buf[i] ^= 0xff; |
| } |
| if (WriteAll(ssl.get(), buf.get(), n) < 0) { |
| return false; |
| } |
| } |
| } |
| } |
| |
| if (!config->is_server && !config->false_start && |
| !config->implicit_handshake && |
| GetTestState(ssl.get())->got_new_session) { |
| fprintf(stderr, "new session was established after the handshake\n"); |
| return false; |
| } |
| |
| if (out_session) { |
| out_session->reset(SSL_get1_session(ssl.get())); |
| } |
| |
| ret = DoShutdown(ssl.get()); |
| |
| if (config->shim_shuts_down && config->check_close_notify) { |
| // We initiate shutdown, so |SSL_shutdown| will return in two stages. First |
| // it returns zero when our close_notify is sent, then one when the peer's |
| // is received. |
| if (ret != 0) { |
| fprintf(stderr, "Unexpected SSL_shutdown result: %d != 0\n", ret); |
| return false; |
| } |
| ret = DoShutdown(ssl.get()); |
| } |
| |
| if (ret != 1) { |
| fprintf(stderr, "Unexpected SSL_shutdown result: %d != 1\n", ret); |
| return false; |
| } |
| |
| if (SSL_total_renegotiations(ssl.get()) != |
| config->expect_total_renegotiations) { |
| fprintf(stderr, "Expected %d renegotiations, got %d\n", |
| config->expect_total_renegotiations, |
| SSL_total_renegotiations(ssl.get())); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| int main(int argc, char **argv) { |
| #if defined(OPENSSL_WINDOWS) |
| /* Initialize Winsock. */ |
| WORD wsa_version = MAKEWORD(2, 2); |
| WSADATA wsa_data; |
| int wsa_err = WSAStartup(wsa_version, &wsa_data); |
| if (wsa_err != 0) { |
| fprintf(stderr, "WSAStartup failed: %d\n", wsa_err); |
| return 1; |
| } |
| if (wsa_data.wVersion != wsa_version) { |
| fprintf(stderr, "Didn't get expected version: %x\n", wsa_data.wVersion); |
| return 1; |
| } |
| #else |
| signal(SIGPIPE, SIG_IGN); |
| #endif |
| |
| CRYPTO_library_init(); |
| g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL); |
| g_state_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, TestStateExFree); |
| if (g_config_index < 0 || g_state_index < 0) { |
| return 1; |
| } |
| |
| TestConfig config; |
| if (!ParseConfig(argc - 1, argv + 1, &config)) { |
| return Usage(argv[0]); |
| } |
| |
| ScopedSSL_CTX ssl_ctx = SetupCtx(&config); |
| if (!ssl_ctx) { |
| ERR_print_errors_fp(stderr); |
| return 1; |
| } |
| |
| ScopedSSL_SESSION session; |
| if (!DoExchange(&session, ssl_ctx.get(), &config, false /* is_resume */, |
| NULL /* session */)) { |
| ERR_print_errors_fp(stderr); |
| return 1; |
| } |
| |
| if (config.resume && |
| !DoExchange(NULL, ssl_ctx.get(), &config, true /* is_resume */, |
| session.get())) { |
| ERR_print_errors_fp(stderr); |
| return 1; |
| } |
| |
| return 0; |
| } |