blob: 07c9e3d9a84a78d09754e7eb2f157b6221cf862b [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. */
#include <openssl/ssl.h>
#include <assert.h>
#include <utility>
#include <openssl/rand.h>
#include "../crypto/internal.h"
#include "internal.h"
BSSL_NAMESPACE_BEGIN
SSL_HANDSHAKE::SSL_HANDSHAKE(SSL *ssl_arg)
: ssl(ssl_arg),
ech_present(false),
ech_is_inner_present(false),
scts_requested(false),
handshake_finalized(false),
accept_psk_mode(false),
cert_request(false),
certificate_status_expected(false),
ocsp_stapling_requested(false),
delegated_credential_requested(false),
should_ack_sni(false),
in_false_start(false),
in_early_data(false),
early_data_offered(false),
can_early_read(false),
can_early_write(false),
next_proto_neg_seen(false),
ticket_expected(false),
extended_master_secret(false),
pending_private_key_op(false),
handback(false),
hints_requested(false),
cert_compression_negotiated(false),
apply_jdk11_workaround(false),
can_release_private_key(false),
channel_id_negotiated(false) {
assert(ssl);
// Draw entropy for all GREASE values at once. This avoids calling
// |RAND_bytes| repeatedly and makes the values consistent within a
// connection. The latter is so the second ClientHello matches after
// HelloRetryRequest and so supported_groups and key_shares are consistent.
RAND_bytes(grease_seed, sizeof(grease_seed));
}
SSL_HANDSHAKE::~SSL_HANDSHAKE() {
ssl->ctx->x509_method->hs_flush_cached_ca_names(this);
}
void SSL_HANDSHAKE::ResizeSecrets(size_t hash_len) {
if (hash_len > SSL_MAX_MD_SIZE) {
abort();
}
hash_len_ = hash_len;
}
bool SSL_HANDSHAKE::GetClientHello(SSLMessage *out_msg,
SSL_CLIENT_HELLO *out_client_hello) {
if (!ech_client_hello_buf.empty()) {
// If the backing buffer is non-empty, the ClientHelloInner has been set.
out_msg->is_v2_hello = false;
out_msg->type = SSL3_MT_CLIENT_HELLO;
out_msg->raw = CBS(ech_client_hello_buf);
out_msg->body = MakeConstSpan(ech_client_hello_buf).subspan(4);
} else if (!ssl->method->get_message(ssl, out_msg)) {
// The message has already been read, so this cannot fail.
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
if (!ssl_client_hello_init(ssl, out_client_hello, out_msg->body)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CLIENTHELLO_PARSE_FAILED);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
return false;
}
return true;
}
UniquePtr<SSL_HANDSHAKE> ssl_handshake_new(SSL *ssl) {
UniquePtr<SSL_HANDSHAKE> hs = MakeUnique<SSL_HANDSHAKE>(ssl);
if (!hs || !hs->transcript.Init()) {
return nullptr;
}
hs->config = ssl->config.get();
if (!hs->config) {
assert(hs->config);
return nullptr;
}
return hs;
}
bool ssl_check_message_type(SSL *ssl, const SSLMessage &msg, int type) {
if (msg.type != type) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
ERR_add_error_dataf("got type %d, wanted type %d", msg.type, type);
return false;
}
return true;
}
bool ssl_add_message_cbb(SSL *ssl, CBB *cbb) {
Array<uint8_t> msg;
if (!ssl->method->finish_message(ssl, cbb, &msg) ||
!ssl->method->add_message(ssl, std::move(msg))) {
return false;
}
return true;
}
size_t ssl_max_handshake_message_len(const SSL *ssl) {
// kMaxMessageLen is the default maximum message size for handshakes which do
// not accept peer certificate chains.
static const size_t kMaxMessageLen = 16384;
if (SSL_in_init(ssl)) {
SSL_CONFIG *config = ssl->config.get(); // SSL_in_init() implies not NULL.
if ((!ssl->server || (config->verify_mode & SSL_VERIFY_PEER)) &&
kMaxMessageLen < ssl->max_cert_list) {
return ssl->max_cert_list;
}
return kMaxMessageLen;
}
if (ssl_protocol_version(ssl) < TLS1_3_VERSION) {
// In TLS 1.2 and below, the largest acceptable post-handshake message is
// a HelloRequest.
return 0;
}
if (ssl->server) {
// The largest acceptable post-handshake message for a server is a
// KeyUpdate. We will never initiate post-handshake auth.
return 1;
}
// Clients must accept NewSessionTicket, so allow the default size.
return kMaxMessageLen;
}
bool ssl_hash_message(SSL_HANDSHAKE *hs, const SSLMessage &msg) {
// V2ClientHello messages are pre-hashed.
if (msg.is_v2_hello) {
return true;
}
return hs->transcript.Update(msg.raw);
}
bool ssl_parse_extensions(const CBS *cbs, uint8_t *out_alert,
Span<const SSL_EXTENSION_TYPE> ext_types,
bool ignore_unknown) {
// Reset everything.
for (const SSL_EXTENSION_TYPE &ext_type : ext_types) {
*ext_type.out_present = false;
CBS_init(ext_type.out_data, nullptr, 0);
}
CBS copy = *cbs;
while (CBS_len(&copy) != 0) {
uint16_t type;
CBS data;
if (!CBS_get_u16(&copy, &type) ||
!CBS_get_u16_length_prefixed(&copy, &data)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
*out_alert = SSL_AD_DECODE_ERROR;
return false;
}
const SSL_EXTENSION_TYPE *found = nullptr;
for (const SSL_EXTENSION_TYPE &ext_type : ext_types) {
if (type == ext_type.type) {
found = &ext_type;
break;
}
}
if (found == nullptr) {
if (ignore_unknown) {
continue;
}
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION);
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
return false;
}
// Duplicate ext_types are forbidden.
if (*found->out_present) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_EXTENSION);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return false;
}
*found->out_present = 1;
*found->out_data = data;
}
return true;
}
enum ssl_verify_result_t ssl_verify_peer_cert(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
const SSL_SESSION *prev_session = ssl->s3->established_session.get();
if (prev_session != NULL) {
// If renegotiating, the server must not change the server certificate. See
// https://mitls.org/pages/attacks/3SHAKE. We never resume on renegotiation,
// so this check is sufficient to ensure the reported peer certificate never
// changes on renegotiation.
assert(!ssl->server);
if (sk_CRYPTO_BUFFER_num(prev_session->certs.get()) !=
sk_CRYPTO_BUFFER_num(hs->new_session->certs.get())) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_CERT_CHANGED);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_verify_invalid;
}
for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(hs->new_session->certs.get());
i++) {
const CRYPTO_BUFFER *old_cert =
sk_CRYPTO_BUFFER_value(prev_session->certs.get(), i);
const CRYPTO_BUFFER *new_cert =
sk_CRYPTO_BUFFER_value(hs->new_session->certs.get(), i);
if (CRYPTO_BUFFER_len(old_cert) != CRYPTO_BUFFER_len(new_cert) ||
OPENSSL_memcmp(CRYPTO_BUFFER_data(old_cert),
CRYPTO_BUFFER_data(new_cert),
CRYPTO_BUFFER_len(old_cert)) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SERVER_CERT_CHANGED);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_verify_invalid;
}
}
// The certificate is identical, so we may skip re-verifying the
// certificate. Since we only authenticated the previous one, copy other
// authentication from the established session and ignore what was newly
// received.
hs->new_session->ocsp_response = UpRef(prev_session->ocsp_response);
hs->new_session->signed_cert_timestamp_list =
UpRef(prev_session->signed_cert_timestamp_list);
hs->new_session->verify_result = prev_session->verify_result;
return ssl_verify_ok;
}
uint8_t alert = SSL_AD_CERTIFICATE_UNKNOWN;
enum ssl_verify_result_t ret;
if (hs->config->custom_verify_callback != nullptr) {
ret = hs->config->custom_verify_callback(ssl, &alert);
switch (ret) {
case ssl_verify_ok:
hs->new_session->verify_result = X509_V_OK;
break;
case ssl_verify_invalid:
// If |SSL_VERIFY_NONE|, the error is non-fatal, but we keep the result.
if (hs->config->verify_mode == SSL_VERIFY_NONE) {
ERR_clear_error();
ret = ssl_verify_ok;
}
hs->new_session->verify_result = X509_V_ERR_APPLICATION_VERIFICATION;
break;
case ssl_verify_retry:
break;
}
} else {
ret = ssl->ctx->x509_method->session_verify_cert_chain(
hs->new_session.get(), hs, &alert)
? ssl_verify_ok
: ssl_verify_invalid;
}
if (ret == ssl_verify_invalid) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED);
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
}
// Emulate OpenSSL's client OCSP callback. OpenSSL verifies certificates
// before it receives the OCSP, so it needs a second callback for OCSP.
if (ret == ssl_verify_ok && !ssl->server &&
hs->config->ocsp_stapling_enabled &&
ssl->ctx->legacy_ocsp_callback != nullptr) {
int cb_ret =
ssl->ctx->legacy_ocsp_callback(ssl, ssl->ctx->legacy_ocsp_callback_arg);
if (cb_ret <= 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OCSP_CB_ERROR);
ssl_send_alert(ssl, SSL3_AL_FATAL,
cb_ret == 0 ? SSL_AD_BAD_CERTIFICATE_STATUS_RESPONSE
: SSL_AD_INTERNAL_ERROR);
ret = ssl_verify_invalid;
}
}
return ret;
}
// Verifies a stored certificate when resuming a session. A few things are
// different from verify_peer_cert:
// 1. We can't be renegotiating if we're resuming a session.
// 2. The session is immutable, so we don't support verify_mode ==
// SSL_VERIFY_NONE
// 3. We don't call the OCSP callback.
// 4. We only support custom verify callbacks.
enum ssl_verify_result_t ssl_reverify_peer_cert(SSL_HANDSHAKE *hs,
bool send_alert) {
SSL *const ssl = hs->ssl;
assert(ssl->s3->established_session == nullptr);
assert(hs->config->verify_mode != SSL_VERIFY_NONE);
uint8_t alert = SSL_AD_CERTIFICATE_UNKNOWN;
enum ssl_verify_result_t ret = ssl_verify_invalid;
if (hs->config->custom_verify_callback != nullptr) {
ret = hs->config->custom_verify_callback(ssl, &alert);
}
if (ret == ssl_verify_invalid) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED);
if (send_alert) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
}
}
return ret;
}
static uint16_t grease_index_to_value(const SSL_HANDSHAKE *hs,
enum ssl_grease_index_t index) {
// This generates a random value of the form 0xωaωa, for all 0 ≤ ω < 16.
uint16_t ret = hs->grease_seed[index];
ret = (ret & 0xf0) | 0x0a;
ret |= ret << 8;
return ret;
}
uint16_t ssl_get_grease_value(const SSL_HANDSHAKE *hs,
enum ssl_grease_index_t index) {
uint16_t ret = grease_index_to_value(hs, index);
if (index == ssl_grease_extension2 &&
ret == grease_index_to_value(hs, ssl_grease_extension1)) {
// The two fake extensions must not have the same value. GREASE values are
// of the form 0x1a1a, 0x2a2a, 0x3a3a, etc., so XOR to generate a different
// one.
ret ^= 0x1010;
}
return ret;
}
enum ssl_hs_wait_t ssl_get_finished(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
SSLMessage msg;
if (!ssl->method->get_message(ssl, &msg)) {
return ssl_hs_read_message;
}
if (!ssl_check_message_type(ssl, msg, SSL3_MT_FINISHED)) {
return ssl_hs_error;
}
// Snapshot the finished hash before incorporating the new message.
uint8_t finished[EVP_MAX_MD_SIZE];
size_t finished_len;
if (!hs->transcript.GetFinishedMAC(finished, &finished_len,
ssl_handshake_session(hs), !ssl->server) ||
!ssl_hash_message(hs, msg)) {
return ssl_hs_error;
}
int finished_ok = CBS_mem_equal(&msg.body, finished, finished_len);
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
finished_ok = 1;
#endif
if (!finished_ok) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED);
return ssl_hs_error;
}
// Copy the Finished so we can use it for renegotiation checks.
if (finished_len > sizeof(ssl->s3->previous_client_finished) ||
finished_len > sizeof(ssl->s3->previous_server_finished)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return ssl_hs_error;
}
if (ssl->server) {
OPENSSL_memcpy(ssl->s3->previous_client_finished, finished, finished_len);
ssl->s3->previous_client_finished_len = finished_len;
} else {
OPENSSL_memcpy(ssl->s3->previous_server_finished, finished, finished_len);
ssl->s3->previous_server_finished_len = finished_len;
}
// The Finished message should be the end of a flight.
if (ssl->method->has_unprocessed_handshake_data(ssl)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA);
return ssl_hs_error;
}
ssl->method->next_message(ssl);
return ssl_hs_ok;
}
bool ssl_send_finished(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
const SSL_SESSION *session = ssl_handshake_session(hs);
uint8_t finished[EVP_MAX_MD_SIZE];
size_t finished_len;
if (!hs->transcript.GetFinishedMAC(finished, &finished_len, session,
ssl->server)) {
return 0;
}
// Log the master secret, if logging is enabled.
if (!ssl_log_secret(ssl, "CLIENT_RANDOM",
MakeConstSpan(session->secret, session->secret_length))) {
return 0;
}
// Copy the Finished so we can use it for renegotiation checks.
if (finished_len > sizeof(ssl->s3->previous_client_finished) ||
finished_len > sizeof(ssl->s3->previous_server_finished)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
if (ssl->server) {
OPENSSL_memcpy(ssl->s3->previous_server_finished, finished, finished_len);
ssl->s3->previous_server_finished_len = finished_len;
} else {
OPENSSL_memcpy(ssl->s3->previous_client_finished, finished, finished_len);
ssl->s3->previous_client_finished_len = finished_len;
}
ScopedCBB cbb;
CBB body;
if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_FINISHED) ||
!CBB_add_bytes(&body, finished, finished_len) ||
!ssl_add_message_cbb(ssl, cbb.get())) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
return 1;
}
bool ssl_output_cert_chain(SSL_HANDSHAKE *hs) {
ScopedCBB cbb;
CBB body;
if (!hs->ssl->method->init_message(hs->ssl, cbb.get(), &body,
SSL3_MT_CERTIFICATE) ||
!ssl_add_cert_chain(hs, &body) ||
!ssl_add_message_cbb(hs->ssl, cbb.get())) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
return true;
}
const SSL_SESSION *ssl_handshake_session(const SSL_HANDSHAKE *hs) {
if (hs->new_session) {
return hs->new_session.get();
}
return hs->ssl->session.get();
}
int ssl_run_handshake(SSL_HANDSHAKE *hs, bool *out_early_return) {
SSL *const ssl = hs->ssl;
for (;;) {
// Resolve the operation the handshake was waiting on. Each condition may
// halt the handshake by returning, or continue executing if the handshake
// may immediately proceed. Cases which halt the handshake can clear
// |hs->wait| to re-enter the state machine on the next iteration, or leave
// it set to keep the condition sticky.
switch (hs->wait) {
case ssl_hs_error:
ERR_restore_state(hs->error.get());
return -1;
case ssl_hs_flush: {
int ret = ssl->method->flush_flight(ssl);
if (ret <= 0) {
return ret;
}
break;
}
case ssl_hs_read_server_hello:
case ssl_hs_read_message:
case ssl_hs_read_change_cipher_spec: {
if (ssl->quic_method) {
// QUIC has no ChangeCipherSpec messages.
assert(hs->wait != ssl_hs_read_change_cipher_spec);
// The caller should call |SSL_provide_quic_data|. Clear |hs->wait| so
// the handshake can check if there is sufficient data next iteration.
ssl->s3->rwstate = SSL_ERROR_WANT_READ;
hs->wait = ssl_hs_ok;
return -1;
}
uint8_t alert = SSL_AD_DECODE_ERROR;
size_t consumed = 0;
ssl_open_record_t ret;
if (hs->wait == ssl_hs_read_change_cipher_spec) {
ret = ssl_open_change_cipher_spec(ssl, &consumed, &alert,
ssl->s3->read_buffer.span());
} else {
ret = ssl_open_handshake(ssl, &consumed, &alert,
ssl->s3->read_buffer.span());
}
if (ret == ssl_open_record_error &&
hs->wait == ssl_hs_read_server_hello) {
uint32_t err = ERR_peek_error();
if (ERR_GET_LIB(err) == ERR_LIB_SSL &&
ERR_GET_REASON(err) == SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE) {
// Add a dedicated error code to the queue for a handshake_failure
// alert in response to ClientHello. This matches NSS's client
// behavior and gives a better error on a (probable) failure to
// negotiate initial parameters. Note: this error code comes after
// the original one.
//
// See https://crbug.com/446505.
OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_FAILURE_ON_CLIENT_HELLO);
}
}
bool retry;
int bio_ret = ssl_handle_open_record(ssl, &retry, ret, consumed, alert);
if (bio_ret <= 0) {
return bio_ret;
}
if (retry) {
continue;
}
ssl->s3->read_buffer.DiscardConsumed();
break;
}
case ssl_hs_read_end_of_early_data: {
if (ssl->s3->hs->can_early_read) {
// While we are processing early data, the handshake returns early.
*out_early_return = true;
return 1;
}
hs->wait = ssl_hs_ok;
break;
}
case ssl_hs_certificate_selection_pending:
ssl->s3->rwstate = SSL_ERROR_PENDING_CERTIFICATE;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_handoff:
ssl->s3->rwstate = SSL_ERROR_HANDOFF;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_handback: {
int ret = ssl->method->flush_flight(ssl);
if (ret <= 0) {
return ret;
}
ssl->s3->rwstate = SSL_ERROR_HANDBACK;
hs->wait = ssl_hs_handback;
return -1;
}
// The following cases are associated with callback APIs which expect to
// be called each time the state machine runs. Thus they set |hs->wait|
// to |ssl_hs_ok| so that, next time, we re-enter the state machine and
// call the callback again.
case ssl_hs_x509_lookup:
ssl->s3->rwstate = SSL_ERROR_WANT_X509_LOOKUP;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_private_key_operation:
ssl->s3->rwstate = SSL_ERROR_WANT_PRIVATE_KEY_OPERATION;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_pending_session:
ssl->s3->rwstate = SSL_ERROR_PENDING_SESSION;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_pending_ticket:
ssl->s3->rwstate = SSL_ERROR_PENDING_TICKET;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_certificate_verify:
ssl->s3->rwstate = SSL_ERROR_WANT_CERTIFICATE_VERIFY;
hs->wait = ssl_hs_ok;
return -1;
case ssl_hs_early_data_rejected:
assert(ssl->s3->early_data_reason != ssl_early_data_unknown);
assert(!hs->can_early_write);
ssl->s3->rwstate = SSL_ERROR_EARLY_DATA_REJECTED;
return -1;
case ssl_hs_early_return:
*out_early_return = true;
hs->wait = ssl_hs_ok;
return 1;
case ssl_hs_hints_ready:
ssl->s3->rwstate = SSL_ERROR_HANDSHAKE_HINTS_READY;
return -1;
case ssl_hs_ok:
break;
}
// Run the state machine again.
hs->wait = ssl->do_handshake(hs);
if (hs->wait == ssl_hs_error) {
hs->error.reset(ERR_save_state());
return -1;
}
if (hs->wait == ssl_hs_ok) {
// The handshake has completed.
*out_early_return = false;
return 1;
}
// Otherwise, loop to the beginning and resolve what was blocking the
// handshake.
}
}
BSSL_NAMESPACE_END