blob: 314ac3d2f0a00911461ee08e6601cacfe7e5db17 [file] [log] [blame]
/* Copyright (c) 2016, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <limits.h>
#include <stdio.h>
#include <map>
#include <string>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/asn1.h>
#include <openssl/asn1t.h>
#include <openssl/bio.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/pem.h>
#include <openssl/posix_time.h>
#include <openssl/span.h>
#include <openssl/x509.h>
#include "../test/test_util.h"
#include "internal.h"
#if defined(OPENSSL_THREADS)
#include <thread>
#endif
// |obj| and |i2d_func| require different template parameters because C++ may
// deduce, say, |ASN1_STRING*| via |obj| and |const ASN1_STRING*| via
// |i2d_func|. Template argument deduction then fails. The language is not able
// to resolve this by observing that |const ASN1_STRING*| works for both.
template <typename T, typename U>
void TestSerialize(T obj, int (*i2d_func)(U a, uint8_t **pp),
bssl::Span<const uint8_t> expected) {
static_assert(std::is_convertible<T, U>::value,
"incompatible parameter to i2d_func");
// Test the allocating version first. It is easiest to debug.
uint8_t *ptr = nullptr;
int len = i2d_func(obj, &ptr);
ASSERT_GT(len, 0);
EXPECT_EQ(Bytes(expected), Bytes(ptr, len));
OPENSSL_free(ptr);
len = i2d_func(obj, nullptr);
ASSERT_GT(len, 0);
EXPECT_EQ(len, static_cast<int>(expected.size()));
std::vector<uint8_t> buf(len);
ptr = buf.data();
len = i2d_func(obj, &ptr);
ASSERT_EQ(len, static_cast<int>(expected.size()));
EXPECT_EQ(ptr, buf.data() + buf.size());
EXPECT_EQ(Bytes(expected), Bytes(buf));
}
// Historically, unknown universal tags were represented in |ASN1_TYPE| as
// |ASN1_STRING|s with the type matching the tag number. This can collide with
// |V_ASN_NEG|, which was one of the causes of CVE-2016-2108. We now represent
// unsupported values with |V_ASN1_OTHER|, but retain the |V_ASN1_MAX_UNIVERSAL|
// limit.
TEST(ASN1Test, UnknownTags) {
// kTag258 is an ASN.1 structure with a universal tag with number 258.
static const uint8_t kTag258[] = {0x1f, 0x82, 0x02, 0x01, 0x00};
static_assert(
V_ASN1_NEG_INTEGER == 258,
"V_ASN1_NEG_INTEGER changed. Update kTag258 to collide with it.");
const uint8_t *p = kTag258;
bssl::UniquePtr<ASN1_TYPE> obj(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag258)));
EXPECT_FALSE(obj) << "Parsed value with illegal tag" << obj->type;
ERR_clear_error();
// kTagOverflow is an ASN.1 structure with a universal tag with number 2^35-1,
// which will not fit in an int.
static const uint8_t kTagOverflow[] = {0x1f, 0xff, 0xff, 0xff,
0xff, 0x7f, 0x01, 0x00};
p = kTagOverflow;
obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTagOverflow)));
EXPECT_FALSE(obj) << "Parsed value with tag overflow" << obj->type;
ERR_clear_error();
// kTag128 is an ASN.1 structure with a universal tag with number 128. It
// should be parsed as |V_ASN1_OTHER|.
static const uint8_t kTag128[] = {0x1f, 0x81, 0x00, 0x01, 0x00};
p = kTag128;
obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag128)));
ASSERT_TRUE(obj);
EXPECT_EQ(V_ASN1_OTHER, obj->type);
EXPECT_EQ(Bytes(kTag128), Bytes(obj->value.asn1_string->data,
obj->value.asn1_string->length));
TestSerialize(obj.get(), i2d_ASN1_TYPE, kTag128);
// The historical in-memory representation of |kTag128| was for both
// |obj->type| and |obj->value.asn1_string->type| to be 128. This is no
// longer used but is still accepted by the encoder.
//
// TODO(crbug.com/boringssl/412): The encoder should reject it. However, it is
// still needed to support some edge cases in |ASN1_PRINTABLE|. When that is
// fixed, test that we reject it.
obj.reset(ASN1_TYPE_new());
ASSERT_TRUE(obj);
obj->type = 128;
obj->value.asn1_string = ASN1_STRING_type_new(128);
ASSERT_TRUE(obj->value.asn1_string);
const uint8_t zero = 0;
ASSERT_TRUE(ASN1_STRING_set(obj->value.asn1_string, &zero, sizeof(zero)));
TestSerialize(obj.get(), i2d_ASN1_TYPE, kTag128);
// If a tag is known, but has the wrong constructed bit, it should be
// rejected, not placed in |V_ASN1_OTHER|.
static const uint8_t kConstructedOctetString[] = {0x24, 0x00};
p = kConstructedOctetString;
obj.reset(d2i_ASN1_TYPE(nullptr, &p, sizeof(kConstructedOctetString)));
EXPECT_FALSE(obj);
static const uint8_t kPrimitiveSequence[] = {0x10, 0x00};
p = kPrimitiveSequence;
obj.reset(d2i_ASN1_TYPE(nullptr, &p, sizeof(kPrimitiveSequence)));
EXPECT_FALSE(obj);
}
static bssl::UniquePtr<BIGNUM> BIGNUMPow2(unsigned bit) {
bssl::UniquePtr<BIGNUM> bn(BN_new());
if (!bn ||
!BN_set_bit(bn.get(), bit)) {
return nullptr;
}
return bn;
}
TEST(ASN1Test, Integer) {
bssl::UniquePtr<BIGNUM> int64_min = BIGNUMPow2(63);
ASSERT_TRUE(int64_min);
BN_set_negative(int64_min.get(), 1);
bssl::UniquePtr<BIGNUM> int64_max = BIGNUMPow2(63);
ASSERT_TRUE(int64_max);
ASSERT_TRUE(BN_sub_word(int64_max.get(), 1));
bssl::UniquePtr<BIGNUM> int32_min = BIGNUMPow2(31);
ASSERT_TRUE(int32_min);
BN_set_negative(int32_min.get(), 1);
bssl::UniquePtr<BIGNUM> int32_max = BIGNUMPow2(31);
ASSERT_TRUE(int32_max);
ASSERT_TRUE(BN_sub_word(int32_max.get(), 1));
struct {
// der is the DER encoding of the INTEGER, including the tag and length.
std::vector<uint8_t> der;
// type and data are the corresponding fields of the |ASN1_STRING|
// representation.
int type;
std::vector<uint8_t> data;
// bn_asc is the |BIGNUM| representation, as parsed by the |BN_asc2bn|
// function.
const char *bn_asc;
} kTests[] = {
// -2^64 - 1
{{0x02, 0x09, 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
V_ASN1_NEG_INTEGER,
{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
"-0x10000000000000001"},
// -2^64
{{0x02, 0x09, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
V_ASN1_NEG_INTEGER,
{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
"-0x10000000000000000"},
// -2^64 + 1
{{0x02, 0x09, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
V_ASN1_NEG_INTEGER,
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
"-0xffffffffffffffff"},
// -2^63 - 1
{{0x02, 0x09, 0xff, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
V_ASN1_NEG_INTEGER,
{0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
"-0x8000000000000001"},
// -2^63 (INT64_MIN)
{{0x02, 0x08, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
V_ASN1_NEG_INTEGER,
{0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
"-0x8000000000000000"},
// -2^63 + 1
{{0x02, 0x08, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
V_ASN1_NEG_INTEGER,
{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
"-0x7fffffffffffffff"},
// -2^32 - 1
{{0x02, 0x05, 0xfe, 0xff, 0xff, 0xff, 0xff},
V_ASN1_NEG_INTEGER,
{0x01, 0x00, 0x00, 0x00, 0x01},
"-0x100000001"},
// -2^32
{{0x02, 0x05, 0xff, 0x00, 0x00, 0x00, 0x00},
V_ASN1_NEG_INTEGER,
{0x01, 0x00, 0x00, 0x00, 0x00},
"-0x100000000"},
// -2^32 + 1
{{0x02, 0x05, 0xff, 0x00, 0x00, 0x00, 0x01},
V_ASN1_NEG_INTEGER,
{0xff, 0xff, 0xff, 0xff},
"-0xffffffff"},
// -2^31 - 1
{{0x02, 0x05, 0xff, 0x7f, 0xff, 0xff, 0xff},
V_ASN1_NEG_INTEGER,
{0x80, 0x00, 0x00, 0x01},
"-0x80000001"},
// -2^31 (INT32_MIN)
{{0x02, 0x04, 0x80, 0x00, 0x00, 0x00},
V_ASN1_NEG_INTEGER,
{0x80, 0x00, 0x00, 0x00},
"-0x80000000"},
// -2^31 + 1
{{0x02, 0x04, 0x80, 0x00, 0x00, 0x01},
V_ASN1_NEG_INTEGER,
{0x7f, 0xff, 0xff, 0xff},
"-0x7fffffff"},
// -257
{{0x02, 0x02, 0xfe, 0xff}, V_ASN1_NEG_INTEGER, {0x01, 0x01}, "-257"},
// -256
{{0x02, 0x02, 0xff, 0x00}, V_ASN1_NEG_INTEGER, {0x01, 0x00}, "-256"},
// -255
{{0x02, 0x02, 0xff, 0x01}, V_ASN1_NEG_INTEGER, {0xff}, "-255"},
// -129
{{0x02, 0x02, 0xff, 0x7f}, V_ASN1_NEG_INTEGER, {0x81}, "-129"},
// -128
{{0x02, 0x01, 0x80}, V_ASN1_NEG_INTEGER, {0x80}, "-128"},
// -127
{{0x02, 0x01, 0x81}, V_ASN1_NEG_INTEGER, {0x7f}, "-127"},
// -1
{{0x02, 0x01, 0xff}, V_ASN1_NEG_INTEGER, {0x01}, "-1"},
// 0
{{0x02, 0x01, 0x00}, V_ASN1_INTEGER, {}, "0"},
// 1
{{0x02, 0x01, 0x01}, V_ASN1_INTEGER, {0x01}, "1"},
// 127
{{0x02, 0x01, 0x7f}, V_ASN1_INTEGER, {0x7f}, "127"},
// 128
{{0x02, 0x02, 0x00, 0x80}, V_ASN1_INTEGER, {0x80}, "128"},
// 129
{{0x02, 0x02, 0x00, 0x81}, V_ASN1_INTEGER, {0x81}, "129"},
// 255
{{0x02, 0x02, 0x00, 0xff}, V_ASN1_INTEGER, {0xff}, "255"},
// 256
{{0x02, 0x02, 0x01, 0x00}, V_ASN1_INTEGER, {0x01, 0x00}, "256"},
// 257
{{0x02, 0x02, 0x01, 0x01}, V_ASN1_INTEGER, {0x01, 0x01}, "257"},
// 2^31 - 2
{{0x02, 0x04, 0x7f, 0xff, 0xff, 0xfe},
V_ASN1_INTEGER,
{0x7f, 0xff, 0xff, 0xfe},
"0x7ffffffe"},
// 2^31 - 1 (INT32_MAX)
{{0x02, 0x04, 0x7f, 0xff, 0xff, 0xff},
V_ASN1_INTEGER,
{0x7f, 0xff, 0xff, 0xff},
"0x7fffffff"},
// 2^31
{{0x02, 0x05, 0x00, 0x80, 0x00, 0x00, 0x00},
V_ASN1_INTEGER,
{0x80, 0x00, 0x00, 0x00},
"0x80000000"},
// 2^32 - 2
{{0x02, 0x05, 0x00, 0xff, 0xff, 0xff, 0xfe},
V_ASN1_INTEGER,
{0xff, 0xff, 0xff, 0xfe},
"0xfffffffe"},
// 2^32 - 1 (UINT32_MAX)
{{0x02, 0x05, 0x00, 0xff, 0xff, 0xff, 0xff},
V_ASN1_INTEGER,
{0xff, 0xff, 0xff, 0xff},
"0xffffffff"},
// 2^32
{{0x02, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00},
V_ASN1_INTEGER,
{0x01, 0x00, 0x00, 0x00, 0x00},
"0x100000000"},
// 2^63 - 2
{{0x02, 0x08, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe},
V_ASN1_INTEGER,
{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe},
"0x7ffffffffffffffe"},
// 2^63 - 1 (INT64_MAX)
{{0x02, 0x08, 0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
V_ASN1_INTEGER,
{0x7f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
"0x7fffffffffffffff"},
// 2^63
{{0x02, 0x09, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
V_ASN1_INTEGER,
{0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
"0x8000000000000000"},
// 2^64 - 2
{{0x02, 0x09, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe},
V_ASN1_INTEGER,
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe},
"0xfffffffffffffffe"},
// 2^64 - 1 (UINT64_MAX)
{{0x02, 0x09, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
V_ASN1_INTEGER,
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
"0xffffffffffffffff"},
// 2^64
{{0x02, 0x09, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
V_ASN1_INTEGER,
{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
"0x10000000000000000"},
// 2^64 + 1
{{0x02, 0x09, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
V_ASN1_INTEGER,
{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
"0x10000000000000001"},
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.bn_asc);
// Collect a map of different ways to construct the integer. The key is the
// method used and is only retained to aid debugging.
std::map<std::string, bssl::UniquePtr<ASN1_INTEGER>> objs;
// Construct |ASN1_INTEGER| by setting the type and data manually.
bssl::UniquePtr<ASN1_INTEGER> by_data(ASN1_STRING_type_new(t.type));
ASSERT_TRUE(by_data);
ASSERT_TRUE(ASN1_STRING_set(by_data.get(), t.data.data(), t.data.size()));
objs["data"] = std::move(by_data);
// Construct |ASN1_INTEGER| from a |BIGNUM|.
BIGNUM *bn_raw = nullptr;
ASSERT_TRUE(BN_asc2bn(&bn_raw, t.bn_asc));
bssl::UniquePtr<BIGNUM> bn(bn_raw);
bssl::UniquePtr<ASN1_INTEGER> by_bn(BN_to_ASN1_INTEGER(bn.get(), nullptr));
ASSERT_TRUE(by_bn);
objs["bn"] = std::move(by_bn);
// Construct |ASN1_INTEGER| from decoding.
const uint8_t *ptr = t.der.data();
bssl::UniquePtr<ASN1_INTEGER> by_der(
d2i_ASN1_INTEGER(nullptr, &ptr, t.der.size()));
ASSERT_TRUE(by_der);
EXPECT_EQ(ptr, t.der.data() + t.der.size());
objs["der"] = std::move(by_der);
// Construct |ASN1_INTEGER| from various C types, if it fits.
bool fits_in_long = false, fits_in_i64 = false, fits_in_u64 = false;
uint64_t u64 = 0;
int64_t i64 = 0;
long l = 0;
uint64_t abs_u64;
if (BN_get_u64(bn.get(), &abs_u64)) {
fits_in_u64 = !BN_is_negative(bn.get());
if (fits_in_u64) {
u64 = abs_u64;
bssl::UniquePtr<ASN1_INTEGER> by_u64(ASN1_INTEGER_new());
ASSERT_TRUE(by_u64);
ASSERT_TRUE(ASN1_INTEGER_set_uint64(by_u64.get(), u64));
objs["u64"] = std::move(by_u64);
}
fits_in_i64 = BN_cmp(int64_min.get(), bn.get()) <= 0 &&
BN_cmp(bn.get(), int64_max.get()) <= 0;
if (fits_in_i64) {
if (BN_is_negative(bn.get())) {
i64 = static_cast<int64_t>(0u - abs_u64);
} else {
i64 = static_cast<int64_t>(abs_u64);
}
bssl::UniquePtr<ASN1_INTEGER> by_i64(ASN1_INTEGER_new());
ASSERT_TRUE(by_i64);
ASSERT_TRUE(ASN1_INTEGER_set_int64(by_i64.get(), i64));
objs["i64"] = std::move(by_i64);
}
if (sizeof(long) == 8) {
fits_in_long = fits_in_i64;
} else {
ASSERT_EQ(4u, sizeof(long));
fits_in_long = BN_cmp(int32_min.get(), bn.get()) <= 0 &&
BN_cmp(bn.get(), int32_max.get()) <= 0;
}
if (fits_in_long) {
l = static_cast<long>(i64);
bssl::UniquePtr<ASN1_INTEGER> by_long(ASN1_INTEGER_new());
ASSERT_TRUE(by_long);
ASSERT_TRUE(ASN1_INTEGER_set(by_long.get(), l));
objs["long"] = std::move(by_long);
}
}
// Default construction should return the zero |ASN1_INTEGER|.
if (BN_is_zero(bn.get())) {
bssl::UniquePtr<ASN1_INTEGER> by_default(ASN1_INTEGER_new());
ASSERT_TRUE(by_default);
objs["default"] = std::move(by_default);
}
// Test that every |ASN1_INTEGER| constructed behaves as expected.
for (const auto &pair : objs) {
// The fields should be as expected.
SCOPED_TRACE(pair.first);
const ASN1_INTEGER *obj = pair.second.get();
EXPECT_EQ(t.type, ASN1_STRING_type(obj));
EXPECT_EQ(Bytes(t.data), Bytes(ASN1_STRING_get0_data(obj),
ASN1_STRING_length(obj)));
// The object should encode correctly.
TestSerialize(obj, i2d_ASN1_INTEGER, t.der);
bssl::UniquePtr<BIGNUM> bn2(ASN1_INTEGER_to_BN(obj, nullptr));
ASSERT_TRUE(bn2);
EXPECT_EQ(0, BN_cmp(bn.get(), bn2.get()));
if (fits_in_u64) {
uint64_t v;
ASSERT_TRUE(ASN1_INTEGER_get_uint64(&v, obj));
EXPECT_EQ(v, u64);
} else {
uint64_t v;
EXPECT_FALSE(ASN1_INTEGER_get_uint64(&v, obj));
}
if (fits_in_i64) {
int64_t v;
ASSERT_TRUE(ASN1_INTEGER_get_int64(&v, obj));
EXPECT_EQ(v, i64);
} else {
int64_t v;
EXPECT_FALSE(ASN1_INTEGER_get_int64(&v, obj));
}
if (fits_in_long) {
EXPECT_EQ(l, ASN1_INTEGER_get(obj));
} else {
EXPECT_EQ(-1, ASN1_INTEGER_get(obj));
}
// All variations of integers should compare as equal to each other, as
// strings or integers. (Functions like |ASN1_TYPE_cmp| rely on
// string-based comparison.)
for (const auto &pair2 : objs) {
SCOPED_TRACE(pair2.first);
EXPECT_EQ(0, ASN1_INTEGER_cmp(obj, pair2.second.get()));
EXPECT_EQ(0, ASN1_STRING_cmp(obj, pair2.second.get()));
}
}
// Although our parsers will never output non-minimal |ASN1_INTEGER|s, it is
// possible to construct them manually. They should encode correctly.
std::vector<uint8_t> data = t.data;
const int kMaxExtraBytes = 5;
for (int i = 0; i < kMaxExtraBytes; i++) {
data.insert(data.begin(), 0x00);
SCOPED_TRACE(Bytes(data));
bssl::UniquePtr<ASN1_INTEGER> non_minimal(ASN1_STRING_type_new(t.type));
ASSERT_TRUE(non_minimal);
ASSERT_TRUE(ASN1_STRING_set(non_minimal.get(), data.data(), data.size()));
TestSerialize(non_minimal.get(), i2d_ASN1_INTEGER, t.der);
}
}
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kTests); i++) {
SCOPED_TRACE(Bytes(kTests[i].der));
const uint8_t *ptr = kTests[i].der.data();
bssl::UniquePtr<ASN1_INTEGER> a(
d2i_ASN1_INTEGER(nullptr, &ptr, kTests[i].der.size()));
ASSERT_TRUE(a);
for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(kTests); j++) {
SCOPED_TRACE(Bytes(kTests[j].der));
ptr = kTests[j].der.data();
bssl::UniquePtr<ASN1_INTEGER> b(
d2i_ASN1_INTEGER(nullptr, &ptr, kTests[j].der.size()));
ASSERT_TRUE(b);
// |ASN1_INTEGER_cmp| should compare numerically. |ASN1_STRING_cmp| does
// not but should preserve equality.
if (i < j) {
EXPECT_LT(ASN1_INTEGER_cmp(a.get(), b.get()), 0);
EXPECT_NE(ASN1_STRING_cmp(a.get(), b.get()), 0);
} else if (i > j) {
EXPECT_GT(ASN1_INTEGER_cmp(a.get(), b.get()), 0);
EXPECT_NE(ASN1_STRING_cmp(a.get(), b.get()), 0);
} else {
EXPECT_EQ(ASN1_INTEGER_cmp(a.get(), b.get()), 0);
EXPECT_EQ(ASN1_STRING_cmp(a.get(), b.get()), 0);
}
}
}
std::vector<uint8_t> kInvalidTests[] = {
// The empty string is not an integer.
{0x02, 0x00},
// Integers must be minimally-encoded.
{0x02, 0x02, 0x00, 0x00},
{0x02, 0x02, 0x00, 0x7f},
{0x02, 0x02, 0xff, 0xff},
{0x02, 0x02, 0xff, 0x80},
};
for (const auto &invalid : kInvalidTests) {
SCOPED_TRACE(Bytes(invalid));
const uint8_t *ptr = invalid.data();
bssl::UniquePtr<ASN1_INTEGER> integer(
d2i_ASN1_INTEGER(nullptr, &ptr, invalid.size()));
EXPECT_FALSE(integer);
}
// Callers expect |ASN1_INTEGER_get| and |ASN1_ENUMERATED_get| to return zero
// given NULL.
EXPECT_EQ(0, ASN1_INTEGER_get(nullptr));
EXPECT_EQ(0, ASN1_ENUMERATED_get(nullptr));
}
// Although invalid, a negative zero should encode correctly.
TEST(ASN1Test, NegativeZero) {
bssl::UniquePtr<ASN1_INTEGER> neg_zero(
ASN1_STRING_type_new(V_ASN1_NEG_INTEGER));
ASSERT_TRUE(neg_zero);
EXPECT_EQ(0, ASN1_INTEGER_get(neg_zero.get()));
static const uint8_t kDER[] = {0x02, 0x01, 0x00};
TestSerialize(neg_zero.get(), i2d_ASN1_INTEGER, kDER);
}
TEST(ASN1Test, SerializeObject) {
static const uint8_t kDER[] = {0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
0xf7, 0x0d, 0x01, 0x01, 0x01};
const ASN1_OBJECT *obj = OBJ_nid2obj(NID_rsaEncryption);
TestSerialize(obj, i2d_ASN1_OBJECT, kDER);
}
TEST(ASN1Test, Boolean) {
static const uint8_t kTrue[] = {0x01, 0x01, 0xff};
TestSerialize(0xff, i2d_ASN1_BOOLEAN, kTrue);
// Other constants are also correctly encoded as TRUE.
TestSerialize(1, i2d_ASN1_BOOLEAN, kTrue);
TestSerialize(0x100, i2d_ASN1_BOOLEAN, kTrue);
const uint8_t *ptr = kTrue;
EXPECT_EQ(0xff, d2i_ASN1_BOOLEAN(nullptr, &ptr, sizeof(kTrue)));
EXPECT_EQ(ptr, kTrue + sizeof(kTrue));
static const uint8_t kFalse[] = {0x01, 0x01, 0x00};
TestSerialize(0x00, i2d_ASN1_BOOLEAN, kFalse);
ptr = kFalse;
EXPECT_EQ(0, d2i_ASN1_BOOLEAN(nullptr, &ptr, sizeof(kFalse)));
EXPECT_EQ(ptr, kFalse + sizeof(kFalse));
const std::vector<uint8_t> kInvalidBooleans[] = {
// No tag header.
{},
// No length.
{0x01},
// Truncated contents.
{0x01, 0x01},
// Contents too short or too long.
{0x01, 0x00},
{0x01, 0x02, 0x00, 0x00},
// Wrong tag number.
{0x02, 0x01, 0x00},
// Wrong tag class.
{0x81, 0x01, 0x00},
// Element is constructed.
{0x21, 0x01, 0x00},
// Not a DER encoding of TRUE.
{0x01, 0x01, 0x01},
// Non-minimal tag length.
{0x01, 0x81, 0x01, 0xff},
};
for (const auto &invalid : kInvalidBooleans) {
SCOPED_TRACE(Bytes(invalid));
ptr = invalid.data();
EXPECT_EQ(-1, d2i_ASN1_BOOLEAN(nullptr, &ptr, invalid.size()));
ERR_clear_error();
}
}
// The templates go through a different codepath, so test them separately.
TEST(ASN1Test, SerializeEmbeddedBoolean) {
bssl::UniquePtr<BASIC_CONSTRAINTS> val(BASIC_CONSTRAINTS_new());
ASSERT_TRUE(val);
// BasicConstraints defaults to FALSE, so the encoding should be empty.
static const uint8_t kLeaf[] = {0x30, 0x00};
val->ca = 0;
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kLeaf);
// TRUE should always be encoded as 0xff, independent of what value the caller
// placed in the |ASN1_BOOLEAN|.
static const uint8_t kCA[] = {0x30, 0x03, 0x01, 0x01, 0xff};
val->ca = 0xff;
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA);
val->ca = 1;
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA);
val->ca = 0x100;
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA);
}
TEST(ASN1Test, ASN1Type) {
const struct {
int type;
std::vector<uint8_t> der;
} kTests[] = {
// BOOLEAN { TRUE }
{V_ASN1_BOOLEAN, {0x01, 0x01, 0xff}},
// BOOLEAN { FALSE }
{V_ASN1_BOOLEAN, {0x01, 0x01, 0x00}},
// OCTET_STRING { "a" }
{V_ASN1_OCTET_STRING, {0x04, 0x01, 0x61}},
// OCTET_STRING { }
{V_ASN1_OCTET_STRING, {0x04, 0x00}},
// BIT_STRING { `01` `00` }
{V_ASN1_BIT_STRING, {0x03, 0x02, 0x01, 0x00}},
// INTEGER { -1 }
{V_ASN1_INTEGER, {0x02, 0x01, 0xff}},
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2 }
{V_ASN1_OBJECT,
{0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x02}},
// NULL {}
{V_ASN1_NULL, {0x05, 0x00}},
// SEQUENCE {}
{V_ASN1_SEQUENCE, {0x30, 0x00}},
// SET {}
{V_ASN1_SET, {0x31, 0x00}},
// [0] { UTF8String { "a" } }
{V_ASN1_OTHER, {0xa0, 0x03, 0x0c, 0x01, 0x61}},
};
for (const auto &t : kTests) {
SCOPED_TRACE(Bytes(t.der));
// The input should successfully parse.
const uint8_t *ptr = t.der.data();
bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, t.der.size()));
ASSERT_TRUE(val);
EXPECT_EQ(ASN1_TYPE_get(val.get()), t.type);
EXPECT_EQ(val->type, t.type);
TestSerialize(val.get(), i2d_ASN1_TYPE, t.der);
}
}
// Test that reading |value.ptr| from a FALSE |ASN1_TYPE| behaves correctly. The
// type historically supported this, so maintain the invariant in case external
// code relies on it.
TEST(ASN1Test, UnusedBooleanBits) {
// OCTET_STRING { "a" }
static const uint8_t kDER[] = {0x04, 0x01, 0x61};
const uint8_t *ptr = kDER;
bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, sizeof(kDER)));
ASSERT_TRUE(val);
EXPECT_EQ(V_ASN1_OCTET_STRING, val->type);
EXPECT_TRUE(val->value.ptr);
// Set |val| to a BOOLEAN containing FALSE.
ASN1_TYPE_set(val.get(), V_ASN1_BOOLEAN, NULL);
EXPECT_EQ(V_ASN1_BOOLEAN, val->type);
EXPECT_FALSE(val->value.ptr);
}
TEST(ASN1Test, ParseASN1Object) {
// 1.2.840.113554.4.1.72585.2, an arbitrary unknown OID.
static const uint8_t kOID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x02};
ASN1_OBJECT *obj = ASN1_OBJECT_create(NID_undef, kOID, sizeof(kOID),
"short name", "long name");
ASSERT_TRUE(obj);
// OBJECT_IDENTIFIER { 1.3.101.112 }
static const uint8_t kDER[] = {0x06, 0x03, 0x2b, 0x65, 0x70};
const uint8_t *ptr = kDER;
// Parse an |ASN1_OBJECT| with object reuse.
EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER)));
EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj));
ASN1_OBJECT_free(obj);
// Repeat the test, this time overriding a static |ASN1_OBJECT|. It should
// detect this and construct a new one.
obj = OBJ_nid2obj(NID_rsaEncryption);
ptr = kDER;
EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER)));
EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj));
ASN1_OBJECT_free(obj);
const std::vector<uint8_t> kInvalidObjects[] = {
// No tag header.
{},
// No length.
{0x06},
// Truncated contents.
{0x06, 0x01},
// An OID may not be empty.
{0x06, 0x00},
// The last byte may not be a continuation byte (high bit set).
{0x06, 0x03, 0x2b, 0x65, 0xf0},
// Each component must be minimally-encoded.
{0x06, 0x03, 0x2b, 0x65, 0x80, 0x70},
{0x06, 0x03, 0x80, 0x2b, 0x65, 0x70},
// Wrong tag number.
{0x01, 0x03, 0x2b, 0x65, 0x70},
// Wrong tag class.
{0x86, 0x03, 0x2b, 0x65, 0x70},
// Element is constructed.
{0x26, 0x03, 0x2b, 0x65, 0x70},
// Non-minimal tag length.
{0x06, 0x81, 0x03, 0x2b, 0x65, 0x70},
};
for (const auto &invalid : kInvalidObjects) {
SCOPED_TRACE(Bytes(invalid));
ptr = invalid.data();
obj = d2i_ASN1_OBJECT(nullptr, &ptr, invalid.size());
EXPECT_FALSE(obj);
ASN1_OBJECT_free(obj);
ERR_clear_error();
}
}
TEST(ASN1Test, BitString) {
const size_t kNotWholeBytes = static_cast<size_t>(-1);
const struct {
std::vector<uint8_t> in;
size_t num_bytes;
} kValidInputs[] = {
// Empty bit string
{{0x03, 0x01, 0x00}, 0},
// 0b1
{{0x03, 0x02, 0x07, 0x80}, kNotWholeBytes},
// 0b1010
{{0x03, 0x02, 0x04, 0xa0}, kNotWholeBytes},
// 0b1010101
{{0x03, 0x02, 0x01, 0xaa}, kNotWholeBytes},
// 0b10101010
{{0x03, 0x02, 0x00, 0xaa}, 1},
// Bits 0 and 63 are set
{{0x03, 0x09, 0x00, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01}, 8},
// 64 zero bits
{{0x03, 0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 8},
};
for (const auto &test : kValidInputs) {
SCOPED_TRACE(Bytes(test.in));
// The input should parse and round-trip correctly.
const uint8_t *ptr = test.in.data();
bssl::UniquePtr<ASN1_BIT_STRING> val(
d2i_ASN1_BIT_STRING(nullptr, &ptr, test.in.size()));
ASSERT_TRUE(val);
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, test.in);
// Check the byte count.
size_t num_bytes;
if (test.num_bytes == kNotWholeBytes) {
EXPECT_FALSE(ASN1_BIT_STRING_num_bytes(val.get(), &num_bytes));
} else {
ASSERT_TRUE(ASN1_BIT_STRING_num_bytes(val.get(), &num_bytes));
EXPECT_EQ(num_bytes, test.num_bytes);
}
}
const std::vector<uint8_t> kInvalidInputs[] = {
// Wrong tag
{0x04, 0x01, 0x00},
// Missing leading byte
{0x03, 0x00},
// Leading byte too high
{0x03, 0x02, 0x08, 0x00},
{0x03, 0x02, 0xff, 0x00},
// Empty bit strings must have a zero leading byte.
{0x03, 0x01, 0x01},
// Unused bits must all be zero.
{0x03, 0x02, 0x06, 0xc1 /* 0b11000001 */},
};
for (const auto &test : kInvalidInputs) {
SCOPED_TRACE(Bytes(test));
const uint8_t *ptr = test.data();
bssl::UniquePtr<ASN1_BIT_STRING> val(
d2i_ASN1_BIT_STRING(nullptr, &ptr, test.size()));
EXPECT_FALSE(val);
}
}
TEST(ASN1Test, SetBit) {
bssl::UniquePtr<ASN1_BIT_STRING> val(ASN1_BIT_STRING_new());
ASSERT_TRUE(val);
static const uint8_t kBitStringEmpty[] = {0x03, 0x01, 0x00};
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringEmpty);
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 0));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 100));
// Set a few bits via |ASN1_BIT_STRING_set_bit|.
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 0, 1));
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 1, 1));
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 2, 0));
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 3, 1));
static const uint8_t kBitString1101[] = {0x03, 0x02, 0x04, 0xd0};
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1101);
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0));
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 1));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2));
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 3));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4));
// Bits that were set may be cleared.
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 1, 0));
static const uint8_t kBitString1001[] = {0x03, 0x02, 0x04, 0x90};
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1001);
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 1));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2));
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 3));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4));
// Clearing trailing bits truncates the string.
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 3, 0));
static const uint8_t kBitString1[] = {0x03, 0x02, 0x07, 0x80};
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1);
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 1));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 2));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 3));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 4));
// Bits may be set beyond the end of the string.
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 1));
static const uint8_t kBitStringLong[] = {0x03, 0x09, 0x00, 0x80, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01};
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringLong);
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62));
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 63));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64));
// The string can be truncated back down again.
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 0));
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1);
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64));
// |ASN1_BIT_STRING_set_bit| also truncates when starting from a parsed
// string.
const uint8_t *ptr = kBitStringLong;
val.reset(d2i_ASN1_BIT_STRING(nullptr, &ptr, sizeof(kBitStringLong)));
ASSERT_TRUE(val);
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringLong);
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 63, 0));
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1);
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64));
// A parsed bit string preserves trailing zero bits.
static const uint8_t kBitString10010[] = {0x03, 0x02, 0x03, 0x90};
ptr = kBitString10010;
val.reset(d2i_ASN1_BIT_STRING(nullptr, &ptr, sizeof(kBitString10010)));
ASSERT_TRUE(val);
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString10010);
// But |ASN1_BIT_STRING_set_bit| will truncate it even if otherwise a no-op.
ASSERT_TRUE(ASN1_BIT_STRING_set_bit(val.get(), 0, 1));
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitString1001);
EXPECT_EQ(1, ASN1_BIT_STRING_get_bit(val.get(), 0));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 62));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 63));
EXPECT_EQ(0, ASN1_BIT_STRING_get_bit(val.get(), 64));
// By default, a BIT STRING implicitly truncates trailing zeros.
val.reset(ASN1_BIT_STRING_new());
ASSERT_TRUE(val);
static const uint8_t kZeros[64] = {0};
ASSERT_TRUE(ASN1_STRING_set(val.get(), kZeros, sizeof(kZeros)));
TestSerialize(val.get(), i2d_ASN1_BIT_STRING, kBitStringEmpty);
}
TEST(ASN1Test, StringToUTF8) {
static const struct {
std::vector<uint8_t> in;
int type;
const char *expected;
} kTests[] = {
// Non-minimal, two-byte UTF-8.
{{0xc0, 0x81}, V_ASN1_UTF8STRING, nullptr},
// Non-minimal, three-byte UTF-8.
{{0xe0, 0x80, 0x81}, V_ASN1_UTF8STRING, nullptr},
// Non-minimal, four-byte UTF-8.
{{0xf0, 0x80, 0x80, 0x81}, V_ASN1_UTF8STRING, nullptr},
// Truncated, four-byte UTF-8.
{{0xf0, 0x80, 0x80}, V_ASN1_UTF8STRING, nullptr},
// Low-surrogate value.
{{0xed, 0xa0, 0x80}, V_ASN1_UTF8STRING, nullptr},
// High-surrogate value.
{{0xed, 0xb0, 0x81}, V_ASN1_UTF8STRING, nullptr},
// Initial BOMs should be rejected from UCS-2 and UCS-4.
{{0xfe, 0xff, 0, 88}, V_ASN1_BMPSTRING, nullptr},
{{0, 0, 0xfe, 0xff, 0, 0, 0, 88}, V_ASN1_UNIVERSALSTRING, nullptr},
// Otherwise, BOMs should pass through.
{{0, 88, 0xfe, 0xff}, V_ASN1_BMPSTRING, "X\xef\xbb\xbf"},
{{0, 0, 0, 88, 0, 0, 0xfe, 0xff}, V_ASN1_UNIVERSALSTRING,
"X\xef\xbb\xbf"},
// The maximum code-point should pass though.
{{0, 16, 0xff, 0xfd}, V_ASN1_UNIVERSALSTRING, "\xf4\x8f\xbf\xbd"},
// Values outside the Unicode space should not.
{{0, 17, 0, 0}, V_ASN1_UNIVERSALSTRING, nullptr},
// Non-characters should be rejected.
{{0, 1, 0xff, 0xff}, V_ASN1_UNIVERSALSTRING, nullptr},
{{0, 1, 0xff, 0xfe}, V_ASN1_UNIVERSALSTRING, nullptr},
{{0, 0, 0xfd, 0xd5}, V_ASN1_UNIVERSALSTRING, nullptr},
// BMPString is UCS-2, not UTF-16, so surrogate pairs are invalid.
{{0xd8, 0, 0xdc, 1}, V_ASN1_BMPSTRING, nullptr},
// INTEGERs are stored as strings, but cannot be converted to UTF-8.
{{0x01}, V_ASN1_INTEGER, nullptr},
};
for (const auto &test : kTests) {
SCOPED_TRACE(Bytes(test.in));
SCOPED_TRACE(test.type);
bssl::UniquePtr<ASN1_STRING> s(ASN1_STRING_type_new(test.type));
ASSERT_TRUE(s);
ASSERT_TRUE(ASN1_STRING_set(s.get(), test.in.data(), test.in.size()));
uint8_t *utf8;
const int utf8_len = ASN1_STRING_to_UTF8(&utf8, s.get());
EXPECT_EQ(utf8_len < 0, test.expected == nullptr);
if (utf8_len >= 0) {
if (test.expected != nullptr) {
EXPECT_EQ(Bytes(test.expected), Bytes(utf8, utf8_len));
}
OPENSSL_free(utf8);
} else {
ERR_clear_error();
}
}
}
static std::string ASN1StringToStdString(const ASN1_STRING *str) {
return std::string(ASN1_STRING_get0_data(str),
ASN1_STRING_get0_data(str) + ASN1_STRING_length(str));
}
static bool ASN1Time_check_posix(const ASN1_TIME *s, int64_t t) {
struct tm stm, ttm;
int day, sec;
switch (ASN1_STRING_type(s)) {
case V_ASN1_GENERALIZEDTIME:
if (!asn1_generalizedtime_to_tm(&stm, s)) {
return false;
}
break;
case V_ASN1_UTCTIME:
if (!asn1_utctime_to_tm(&stm, s, /*allow_timezone_offset=*/1)) {
return false;
}
break;
default:
return false;
}
if (!OPENSSL_posix_to_tm(t, &ttm) ||
!OPENSSL_gmtime_diff(&day, &sec, &ttm, &stm)) {
return false;
}
return day == 0 && sec ==0;
}
static std::string PrintStringToBIO(const ASN1_STRING *str,
int (*print_func)(BIO *,
const ASN1_STRING *)) {
const uint8_t *data;
size_t len;
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
if (!bio || //
!print_func(bio.get(), str) ||
!BIO_mem_contents(bio.get(), &data, &len)) {
ADD_FAILURE() << "Could not print to BIO";
return "";
}
return std::string(data, data + len);
}
TEST(ASN1Test, SetTime) {
static const struct {
int64_t time;
const char *generalized;
const char *utc;
const char *printed;
} kTests[] = {
{-631152001, "19491231235959Z", nullptr, "Dec 31 23:59:59 1949 GMT"},
{-631152000, "19500101000000Z", "500101000000Z",
"Jan 1 00:00:00 1950 GMT"},
{0, "19700101000000Z", "700101000000Z", "Jan 1 00:00:00 1970 GMT"},
{981173106, "20010203040506Z", "010203040506Z",
"Feb 3 04:05:06 2001 GMT"},
{951804000, "20000229060000Z", "000229060000Z",
"Feb 29 06:00:00 2000 GMT"},
// NASA says this is the correct time for posterity.
{-16751025, "19690621025615Z", "690621025615Z",
"Jun 21 02:56:15 1969 GMT"},
// -1 is sometimes used as an error value. Ensure we correctly handle it.
{-1, "19691231235959Z", "691231235959Z", "Dec 31 23:59:59 1969 GMT"},
{2524607999, "20491231235959Z", "491231235959Z",
"Dec 31 23:59:59 2049 GMT"},
{2524608000, "20500101000000Z", nullptr, "Jan 1 00:00:00 2050 GMT"},
// Test boundary conditions.
{-62167219200, "00000101000000Z", nullptr, "Jan 1 00:00:00 0 GMT"},
{-62167219201, nullptr, nullptr, nullptr},
{253402300799, "99991231235959Z", nullptr, "Dec 31 23:59:59 9999 GMT"},
{253402300800, nullptr, nullptr, nullptr},
};
for (const auto &t : kTests) {
int64_t tt;
SCOPED_TRACE(t.time);
bssl::UniquePtr<ASN1_UTCTIME> utc(ASN1_UTCTIME_set(nullptr, t.time));
if (t.utc) {
ASSERT_TRUE(utc);
EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(utc.get()));
EXPECT_EQ(t.utc, ASN1StringToStdString(utc.get()));
EXPECT_TRUE(ASN1Time_check_posix(utc.get(), t.time));
EXPECT_EQ(ASN1_TIME_to_posix(utc.get(), &tt), 1);
EXPECT_EQ(tt, t.time);
EXPECT_EQ(PrintStringToBIO(utc.get(), &ASN1_UTCTIME_print), t.printed);
EXPECT_EQ(PrintStringToBIO(utc.get(), &ASN1_TIME_print), t.printed);
} else {
EXPECT_FALSE(utc);
}
bssl::UniquePtr<ASN1_GENERALIZEDTIME> generalized(
ASN1_GENERALIZEDTIME_set(nullptr, t.time));
if (t.generalized) {
ASSERT_TRUE(generalized);
EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(generalized.get()));
EXPECT_EQ(t.generalized, ASN1StringToStdString(generalized.get()));
EXPECT_TRUE(ASN1Time_check_posix(generalized.get(), t.time));
EXPECT_EQ(ASN1_TIME_to_posix(generalized.get(), &tt), 1);
EXPECT_EQ(tt, t.time);
EXPECT_EQ(
PrintStringToBIO(generalized.get(), &ASN1_GENERALIZEDTIME_print),
t.printed);
EXPECT_EQ(PrintStringToBIO(generalized.get(), &ASN1_TIME_print),
t.printed);
} else {
EXPECT_FALSE(generalized);
}
bssl::UniquePtr<ASN1_TIME> choice(ASN1_TIME_set_posix(nullptr, t.time));
if (t.generalized) {
ASSERT_TRUE(choice);
if (t.utc) {
EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(choice.get()));
EXPECT_EQ(t.utc, ASN1StringToStdString(choice.get()));
} else {
EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(choice.get()));
EXPECT_EQ(t.generalized, ASN1StringToStdString(choice.get()));
}
EXPECT_TRUE(ASN1Time_check_posix(choice.get(), t.time));
EXPECT_EQ(ASN1_TIME_to_posix(choice.get(), &tt), 1);
EXPECT_EQ(tt, t.time);
} else {
EXPECT_FALSE(choice);
}
}
}
TEST(ASN1Test, TimeSetString) {
bssl::UniquePtr<ASN1_STRING> s(ASN1_STRING_new());
ASSERT_TRUE(s);
ASSERT_TRUE(ASN1_UTCTIME_set_string(s.get(), "700101000000Z"));
EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get()));
EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get()));
ASSERT_TRUE(ASN1_GENERALIZEDTIME_set_string(s.get(), "19700101000000Z"));
EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get()));
EXPECT_EQ("19700101000000Z", ASN1StringToStdString(s.get()));
// |ASN1_TIME_set_string| accepts either format. It relies on there being no
// overlap between the two.
ASSERT_TRUE(ASN1_TIME_set_string(s.get(), "700101000000Z"));
EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get()));
EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get()));
ASSERT_TRUE(ASN1_TIME_set_string(s.get(), "19700101000000Z"));
EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get()));
EXPECT_EQ("19700101000000Z", ASN1StringToStdString(s.get()));
// |ASN1_TIME_set_string_X509| behaves similarly except it additionally
// converts GeneralizedTime to UTCTime if it fits.
ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "700101000000Z"));
EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get()));
EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get()));
ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "19700101000000Z"));
EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get()));
EXPECT_EQ("700101000000Z", ASN1StringToStdString(s.get()));
ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "19500101000000Z"));
EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get()));
EXPECT_EQ("500101000000Z", ASN1StringToStdString(s.get()));
ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "19491231235959Z"));
EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get()));
EXPECT_EQ("19491231235959Z", ASN1StringToStdString(s.get()));
ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "20491231235959Z"));
EXPECT_EQ(V_ASN1_UTCTIME, ASN1_STRING_type(s.get()));
EXPECT_EQ("491231235959Z", ASN1StringToStdString(s.get()));
ASSERT_TRUE(ASN1_TIME_set_string_X509(s.get(), "20500101000000Z"));
EXPECT_EQ(V_ASN1_GENERALIZEDTIME, ASN1_STRING_type(s.get()));
EXPECT_EQ("20500101000000Z", ASN1StringToStdString(s.get()));
// Invalid inputs are rejected.
EXPECT_FALSE(ASN1_UTCTIME_set_string(s.get(), "nope"));
EXPECT_FALSE(ASN1_UTCTIME_set_string(s.get(), "19700101000000Z"));
EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(s.get(), "nope"));
EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(s.get(), "700101000000Z"));
EXPECT_FALSE(ASN1_TIME_set_string(s.get(), "nope"));
// If passed a null object, the functions validate the input without writing
// to anything.
EXPECT_TRUE(ASN1_UTCTIME_set_string(nullptr, "700101000000Z"));
EXPECT_TRUE(ASN1_TIME_set_string(nullptr, "700101000000Z"));
EXPECT_TRUE(ASN1_TIME_set_string_X509(nullptr, "700101000000Z"));
EXPECT_TRUE(ASN1_GENERALIZEDTIME_set_string(nullptr, "19700101000000Z"));
EXPECT_TRUE(ASN1_TIME_set_string(nullptr, "19700101000000Z"));
EXPECT_TRUE(ASN1_TIME_set_string_X509(nullptr, "19700101000000Z"));
// Test an input |ASN1_TIME_set_string_X509| won't convert to UTCTime.
EXPECT_TRUE(ASN1_GENERALIZEDTIME_set_string(nullptr, "20500101000000Z"));
EXPECT_TRUE(ASN1_TIME_set_string(nullptr, "20500101000000Z"));
EXPECT_TRUE(ASN1_TIME_set_string_X509(nullptr, "20500101000000Z"));
EXPECT_FALSE(ASN1_UTCTIME_set_string(nullptr, "nope"));
EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(nullptr, "nope"));
EXPECT_FALSE(ASN1_TIME_set_string(nullptr, "nope"));
EXPECT_FALSE(ASN1_TIME_set_string_X509(nullptr, "nope"));
// Timezone offsets are not allowed by DER.
EXPECT_FALSE(ASN1_UTCTIME_set_string(nullptr, "700101000000-0400"));
EXPECT_FALSE(ASN1_TIME_set_string(nullptr, "700101000000-0400"));
EXPECT_FALSE(ASN1_TIME_set_string_X509(nullptr, "700101000000-0400"));
EXPECT_FALSE(ASN1_GENERALIZEDTIME_set_string(nullptr, "19700101000000-0400"));
EXPECT_FALSE(ASN1_TIME_set_string(nullptr, "19700101000000-0400"));
EXPECT_FALSE(ASN1_TIME_set_string_X509(nullptr, "19700101000000-0400"));
}
TEST(ASN1Test, AdjTime) {
struct tm tm1, tm2;
int days, secs;
EXPECT_TRUE(OPENSSL_posix_to_tm(0, &tm1));
EXPECT_TRUE(OPENSSL_posix_to_tm(0, &tm2));
// Test values that are too large and should be rejected.
EXPECT_FALSE(OPENSSL_gmtime_adj(&tm1, INT_MIN, INT_MIN));
EXPECT_FALSE(OPENSSL_gmtime_adj(&tm1, INT_MAX, INT_MAX));
// Basic functionality.
EXPECT_TRUE(OPENSSL_gmtime_adj(&tm2, 1, 1));
EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm1, &tm2));
EXPECT_EQ(days, 1);
EXPECT_EQ(secs, 1);
EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm2, &tm1));
EXPECT_EQ(days, -1);
EXPECT_EQ(secs, -1);
// Test a value of days that is very large, but valid.
EXPECT_TRUE(OPENSSL_gmtime_adj(&tm2, 2932800, 0));
EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm1, &tm2));
EXPECT_EQ(days, 2932801);
EXPECT_EQ(secs, 1);
EXPECT_TRUE(OPENSSL_gmtime_diff(&days, &secs, &tm2, &tm1));
EXPECT_EQ(days, -2932801);
EXPECT_EQ(secs, -1);
}
static std::vector<uint8_t> StringToVector(const std::string &str) {
return std::vector<uint8_t>(str.begin(), str.end());
}
TEST(ASN1Test, StringPrintEx) {
const struct {
int type;
std::vector<uint8_t> data;
int str_flags;
unsigned long flags;
std::string expected;
} kTests[] = {
// A string like "hello" is never escaped or quoted.
// |ASN1_STRFLGS_ESC_QUOTE| only introduces quotes when needed. Note
// OpenSSL interprets T61String as Latin-1.
{V_ASN1_T61STRING, StringToVector("hello"), 0, 0, "hello"},
{V_ASN1_T61STRING, StringToVector("hello"), 0,
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB,
"hello"},
{V_ASN1_T61STRING, StringToVector("hello"), 0,
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB |
ASN1_STRFLGS_ESC_QUOTE,
"hello"},
// By default, 8-bit characters are printed without escaping.
{V_ASN1_T61STRING,
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'},
0,
0,
std::string(1, '\0') + "\n\x80\xff,+\"\\<>;"},
// Flags control different escapes. Note that any escape flag will cause
// blackslashes to be escaped.
{V_ASN1_T61STRING,
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'},
0,
ASN1_STRFLGS_ESC_2253,
std::string(1, '\0') + "\n\x80\xff\\,\\+\\\"\\\\\\<\\>\\;"},
{V_ASN1_T61STRING,
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'},
0,
ASN1_STRFLGS_ESC_CTRL,
"\\00\\0A\x80\xff,+\"\\\\<>;"},
{V_ASN1_T61STRING,
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'},
0,
ASN1_STRFLGS_ESC_MSB,
std::string(1, '\0') + "\n\\80\\FF,+\"\\\\<>;"},
{V_ASN1_T61STRING,
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'},
0,
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB,
"\\00\\0A\\80\\FF\\,\\+\\\"\\\\\\<\\>\\;"},
// When quoted, fewer characters need to be escaped in RFC 2253.
{V_ASN1_T61STRING,
{0, '\n', 0x80, 0xff, ',', '+', '"', '\\', '<', '>', ';'},
0,
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB |
ASN1_STRFLGS_ESC_QUOTE,
"\"\\00\\0A\\80\\FF,+\\\"\\\\<>;\""},
// If no characters benefit from quotes, no quotes are added.
{V_ASN1_T61STRING,
{0, '\n', 0x80, 0xff, '"', '\\'},
0,
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_CTRL | ASN1_STRFLGS_ESC_MSB |
ASN1_STRFLGS_ESC_QUOTE,
"\\00\\0A\\80\\FF\\\"\\\\"},
// RFC 2253 only escapes spaces at the start and end of a string.
{V_ASN1_T61STRING, StringToVector(" "), 0, ASN1_STRFLGS_ESC_2253,
"\\ \\ "},
{V_ASN1_T61STRING, StringToVector(" "), 0,
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_UTF8_CONVERT, "\\ \\ "},
{V_ASN1_T61STRING, StringToVector(" "), 0,
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_QUOTE, "\" \""},
// RFC 2253 only escapes # at the start of a string.
{V_ASN1_T61STRING, StringToVector("###"), 0, ASN1_STRFLGS_ESC_2253,
"\\###"},
{V_ASN1_T61STRING, StringToVector("###"), 0,
ASN1_STRFLGS_ESC_2253 | ASN1_STRFLGS_ESC_QUOTE, "\"###\""},
// By default, strings are decoded and Unicode code points are
// individually escaped.
{V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"),
0, ASN1_STRFLGS_ESC_MSB, "a\\80\\U0100\\W00010000"},
{V_ASN1_BMPSTRING,
{0x00, 'a', 0x00, 0x80, 0x01, 0x00},
0,
ASN1_STRFLGS_ESC_MSB,
"a\\80\\U0100"},
{V_ASN1_UNIVERSALSTRING,
{0x00, 0x00, 0x00, 'a', //
0x00, 0x00, 0x00, 0x80, //
0x00, 0x00, 0x01, 0x00, //
0x00, 0x01, 0x00, 0x00},
0,
ASN1_STRFLGS_ESC_MSB,
"a\\80\\U0100\\W00010000"},
// |ASN1_STRFLGS_UTF8_CONVERT| normalizes everything to UTF-8 and then
// escapes individual bytes.
{V_ASN1_IA5STRING, StringToVector("a\x80"), 0,
ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, "a\\C2\\80"},
{V_ASN1_T61STRING, StringToVector("a\x80"), 0,
ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT, "a\\C2\\80"},
{V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"),
0, ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT,
"a\\C2\\80\\C4\\80\\F0\\90\\80\\80"},
{V_ASN1_BMPSTRING,
{0x00, 'a', 0x00, 0x80, 0x01, 0x00},
0,
ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT,
"a\\C2\\80\\C4\\80"},
{V_ASN1_UNIVERSALSTRING,
{0x00, 0x00, 0x00, 'a', //
0x00, 0x00, 0x00, 0x80, //
0x00, 0x00, 0x01, 0x00, //
0x00, 0x01, 0x00, 0x00},
0,
ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT,
"a\\C2\\80\\C4\\80\\F0\\90\\80\\80"},
// The same as above, but without escaping the UTF-8 encoding.
{V_ASN1_IA5STRING, StringToVector("a\x80"), 0, ASN1_STRFLGS_UTF8_CONVERT,
"a\xc2\x80"},
{V_ASN1_T61STRING, StringToVector("a\x80"), 0, ASN1_STRFLGS_UTF8_CONVERT,
"a\xc2\x80"},
{V_ASN1_UTF8STRING, StringToVector("a\xc2\x80\xc4\x80\xf0\x90\x80\x80"),
0, ASN1_STRFLGS_UTF8_CONVERT, "a\xc2\x80\xc4\x80\xf0\x90\x80\x80"},
{V_ASN1_BMPSTRING,
{0x00, 'a', 0x00, 0x80, 0x01, 0x00},
0,
ASN1_STRFLGS_UTF8_CONVERT,
"a\xc2\x80\xc4\x80"},
{V_ASN1_UNIVERSALSTRING,
{0x00, 0x00, 0x00, 'a', //
0x00, 0x00, 0x00, 0x80, //
0x00, 0x00, 0x01, 0x00, //
0x00, 0x01, 0x00, 0x00},
0,
ASN1_STRFLGS_UTF8_CONVERT,
"a\xc2\x80\xc4\x80\xf0\x90\x80\x80"},
// Types that cannot be decoded are, by default, treated as a byte string.
{V_ASN1_OCTET_STRING, {0xff}, 0, 0, "\xff"},
{-1, {0xff}, 0, 0, "\xff"},
{100, {0xff}, 0, 0, "\xff"},
// |ASN1_STRFLGS_UTF8_CONVERT| still converts these bytes to UTF-8.
//
// TODO(davidben): This seems like a bug. Although it's unclear because
// the non-RFC-2253 options aren't especially sound. Can we just remove
// them?
{V_ASN1_OCTET_STRING, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"},
{-1, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"},
{100, {0xff}, 0, ASN1_STRFLGS_UTF8_CONVERT, "\xc3\xbf"},
// |ASN1_STRFLGS_IGNORE_TYPE| causes the string type to be ignored, so it
// is always treated as a byte string, even if it is not a valid encoding.
{V_ASN1_UTF8STRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"},
{V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"},
{V_ASN1_UNIVERSALSTRING, {0xff}, 0, ASN1_STRFLGS_IGNORE_TYPE, "\xff"},
// |ASN1_STRFLGS_SHOW_TYPE| prepends the type name.
{V_ASN1_UTF8STRING, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "UTF8STRING:a"},
{-1, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "(unknown):a"},
{100, {'a'}, 0, ASN1_STRFLGS_SHOW_TYPE, "(unknown):a"},
// |ASN1_STRFLGS_DUMP_ALL| and |ASN1_STRFLGS_DUMP_UNKNOWN| cause
// non-string types to be printed in hex, though without the DER wrapper
// by default.
{V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0,
ASN1_STRFLGS_DUMP_UNKNOWN, "\\U2603"},
{V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0,
ASN1_STRFLGS_DUMP_ALL, "#E29883"},
{V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0,
ASN1_STRFLGS_DUMP_UNKNOWN, "#E29883"},
{V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0,
ASN1_STRFLGS_DUMP_ALL, "#E29883"},
// |ASN1_STRFLGS_DUMP_DER| includes the entire element.
{V_ASN1_UTF8STRING, StringToVector("\xe2\x98\x83"), 0,
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, "#0C03E29883"},
{V_ASN1_OCTET_STRING, StringToVector("\xe2\x98\x83"), 0,
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER, "#0403E29883"},
{V_ASN1_BIT_STRING,
{0x80},
ASN1_STRING_FLAG_BITS_LEFT | 4,
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER,
"#03020480"},
// INTEGER { 1 }
{V_ASN1_INTEGER,
{0x01},
0,
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER,
"#020101"},
// INTEGER { -1 }
{V_ASN1_NEG_INTEGER,
{0x01},
0,
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER,
"#0201FF"},
// ENUMERATED { 1 }
{V_ASN1_ENUMERATED,
{0x01},
0,
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER,
"#0A0101"},
// ENUMERATED { -1 }
{V_ASN1_NEG_ENUMERATED,
{0x01},
0,
ASN1_STRFLGS_DUMP_ALL | ASN1_STRFLGS_DUMP_DER,
"#0A01FF"},
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.type);
SCOPED_TRACE(Bytes(t.data));
SCOPED_TRACE(t.str_flags);
SCOPED_TRACE(t.flags);
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(t.type));
ASSERT_TRUE(str);
ASSERT_TRUE(ASN1_STRING_set(str.get(), t.data.data(), t.data.size()));
str->flags = t.str_flags;
// If the |BIO| is null, it should measure the size.
int len = ASN1_STRING_print_ex(nullptr, str.get(), t.flags);
EXPECT_EQ(len, static_cast<int>(t.expected.size()));
// Measuring the size should also work for the |FILE| version
len = ASN1_STRING_print_ex_fp(nullptr, str.get(), t.flags);
EXPECT_EQ(len, static_cast<int>(t.expected.size()));
// Actually print the string.
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(bio);
len = ASN1_STRING_print_ex(bio.get(), str.get(), t.flags);
EXPECT_EQ(len, static_cast<int>(t.expected.size()));
const uint8_t *bio_contents;
size_t bio_len;
ASSERT_TRUE(BIO_mem_contents(bio.get(), &bio_contents, &bio_len));
EXPECT_EQ(t.expected, std::string(bio_contents, bio_contents + bio_len));
}
const struct {
int type;
std::vector<uint8_t> data;
int str_flags;
unsigned long flags;
} kUnprintableTests[] = {
// It is an error if the string cannot be decoded.
{V_ASN1_UTF8STRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB},
{V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB},
{V_ASN1_BMPSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB},
{V_ASN1_UNIVERSALSTRING, {0xff}, 0, ASN1_STRFLGS_ESC_MSB},
// Invalid codepoints are errors.
{V_ASN1_UTF8STRING, {0xed, 0xa0, 0x80}, 0, ASN1_STRFLGS_ESC_MSB},
{V_ASN1_BMPSTRING, {0xd8, 0x00}, 0, ASN1_STRFLGS_ESC_MSB},
{V_ASN1_UNIVERSALSTRING,
{0x00, 0x00, 0xd8, 0x00},
0,
ASN1_STRFLGS_ESC_MSB},
// Even when re-encoding UTF-8 back into UTF-8, we should check validity.
{V_ASN1_UTF8STRING,
{0xff},
0,
ASN1_STRFLGS_ESC_MSB | ASN1_STRFLGS_UTF8_CONVERT},
};
for (const auto &t : kUnprintableTests) {
SCOPED_TRACE(t.type);
SCOPED_TRACE(Bytes(t.data));
SCOPED_TRACE(t.str_flags);
SCOPED_TRACE(t.flags);
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(t.type));
ASSERT_TRUE(str);
ASSERT_TRUE(ASN1_STRING_set(str.get(), t.data.data(), t.data.size()));
str->flags = t.str_flags;
// If the |BIO| is null, it should measure the size.
int len = ASN1_STRING_print_ex(nullptr, str.get(), t.flags);
EXPECT_EQ(len, -1);
ERR_clear_error();
// Measuring the size should also work for the |FILE| version
len = ASN1_STRING_print_ex_fp(nullptr, str.get(), t.flags);
EXPECT_EQ(len, -1);
ERR_clear_error();
// Actually print the string.
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(bio);
len = ASN1_STRING_print_ex(bio.get(), str.get(), t.flags);
EXPECT_EQ(len, -1);
ERR_clear_error();
}
}
TEST(ASN1Test, MBString) {
const unsigned long kAll = B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING |
B_ASN1_T61STRING | B_ASN1_BMPSTRING |
B_ASN1_UNIVERSALSTRING | B_ASN1_UTF8STRING;
const struct {
int format;
std::vector<uint8_t> in;
unsigned long mask;
int expected_type;
std::vector<uint8_t> expected_data;
int num_codepoints;
} kTests[] = {
// Given a choice of formats, we pick the smallest that fits.
{MBSTRING_UTF8, {}, kAll, V_ASN1_PRINTABLESTRING, {}, 0},
{MBSTRING_UTF8, {'a'}, kAll, V_ASN1_PRINTABLESTRING, {'a'}, 1},
{MBSTRING_UTF8,
{'a', 'A', '0', '\'', '(', ')', '+', ',', '-', '.', '/', ':', '=', '?'},
kAll,
V_ASN1_PRINTABLESTRING,
{'a', 'A', '0', '\'', '(', ')', '+', ',', '-', '.', '/', ':', '=', '?'},
14},
{MBSTRING_UTF8, {'*'}, kAll, V_ASN1_IA5STRING, {'*'}, 1},
{MBSTRING_UTF8, {'\n'}, kAll, V_ASN1_IA5STRING, {'\n'}, 1},
{MBSTRING_UTF8,
{0xc2, 0x80 /* U+0080 */},
kAll,
V_ASN1_T61STRING,
{0x80},
1},
{MBSTRING_UTF8,
{0xc4, 0x80 /* U+0100 */},
kAll,
V_ASN1_BMPSTRING,
{0x01, 0x00},
1},
{MBSTRING_UTF8,
{0xf0, 0x90, 0x80, 0x80 /* U+10000 */},
kAll,
V_ASN1_UNIVERSALSTRING,
{0x00, 0x01, 0x00, 0x00},
1},
{MBSTRING_UTF8,
{0xf0, 0x90, 0x80, 0x80 /* U+10000 */},
kAll & ~B_ASN1_UNIVERSALSTRING,
V_ASN1_UTF8STRING,
{0xf0, 0x90, 0x80, 0x80},
1},
// NUL is not printable. It should also not terminate iteration.
{MBSTRING_UTF8, {0}, kAll, V_ASN1_IA5STRING, {0}, 1},
{MBSTRING_UTF8, {0, 'a'}, kAll, V_ASN1_IA5STRING, {0, 'a'}, 2},
// When a particular format is specified, we use it.
{MBSTRING_UTF8,
{'a'},
B_ASN1_PRINTABLESTRING,
V_ASN1_PRINTABLESTRING,
{'a'},
1},
{MBSTRING_UTF8, {'a'}, B_ASN1_IA5STRING, V_ASN1_IA5STRING, {'a'}, 1},
{MBSTRING_UTF8, {'a'}, B_ASN1_T61STRING, V_ASN1_T61STRING, {'a'}, 1},
{MBSTRING_UTF8, {'a'}, B_ASN1_UTF8STRING, V_ASN1_UTF8STRING, {'a'}, 1},
{MBSTRING_UTF8,
{'a'},
B_ASN1_BMPSTRING,
V_ASN1_BMPSTRING,
{0x00, 'a'},
1},
{MBSTRING_UTF8,
{'a'},
B_ASN1_UNIVERSALSTRING,
V_ASN1_UNIVERSALSTRING,
{0x00, 0x00, 0x00, 'a'},
1},
// A long string with characters of many widths, to test sizes are
// measured in code points.
{MBSTRING_UTF8,
{
'a', //
0xc2, 0x80, // U+0080
0xc4, 0x80, // U+0100
0xf0, 0x90, 0x80, 0x80, // U+10000
},
B_ASN1_UNIVERSALSTRING,
V_ASN1_UNIVERSALSTRING,
{
0x00, 0x00, 0x00, 'a', //
0x00, 0x00, 0x00, 0x80, //
0x00, 0x00, 0x01, 0x00, //
0x00, 0x01, 0x00, 0x00, //
},
4},
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.format);
SCOPED_TRACE(Bytes(t.in));
SCOPED_TRACE(t.mask);
// Passing in nullptr should do a dry run.
EXPECT_EQ(t.expected_type,
ASN1_mbstring_copy(nullptr, t.in.data(), t.in.size(), t.format,
t.mask));
// Test allocating a new object.
ASN1_STRING *str = nullptr;
EXPECT_EQ(
t.expected_type,
ASN1_mbstring_copy(&str, t.in.data(), t.in.size(), t.format, t.mask));
ASSERT_TRUE(str);
EXPECT_EQ(t.expected_type, ASN1_STRING_type(str));
EXPECT_EQ(Bytes(t.expected_data),
Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str)));
// Test writing into an existing object.
ASN1_STRING_free(str);
str = ASN1_STRING_new();
ASSERT_TRUE(str);
ASN1_STRING *old_str = str;
EXPECT_EQ(
t.expected_type,
ASN1_mbstring_copy(&str, t.in.data(), t.in.size(), t.format, t.mask));
ASSERT_EQ(old_str, str);
EXPECT_EQ(t.expected_type, ASN1_STRING_type(str));
EXPECT_EQ(Bytes(t.expected_data),
Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str)));
ASN1_STRING_free(str);
str = nullptr;
// minsize and maxsize should be enforced, even in a dry run.
EXPECT_EQ(t.expected_type,
ASN1_mbstring_ncopy(nullptr, t.in.data(), t.in.size(), t.format,
t.mask, /*minsize=*/t.num_codepoints,
/*maxsize=*/t.num_codepoints));
EXPECT_EQ(t.expected_type,
ASN1_mbstring_ncopy(&str, t.in.data(), t.in.size(), t.format,
t.mask, /*minsize=*/t.num_codepoints,
/*maxsize=*/t.num_codepoints));
ASSERT_TRUE(str);
EXPECT_EQ(t.expected_type, ASN1_STRING_type(str));
EXPECT_EQ(Bytes(t.expected_data),
Bytes(ASN1_STRING_get0_data(str), ASN1_STRING_length(str)));
ASN1_STRING_free(str);
str = nullptr;
EXPECT_EQ(-1, ASN1_mbstring_ncopy(
nullptr, t.in.data(), t.in.size(), t.format, t.mask,
/*minsize=*/t.num_codepoints + 1, /*maxsize=*/0));
ERR_clear_error();
EXPECT_EQ(-1, ASN1_mbstring_ncopy(
&str, t.in.data(), t.in.size(), t.format, t.mask,
/*minsize=*/t.num_codepoints + 1, /*maxsize=*/0));
EXPECT_FALSE(str);
ERR_clear_error();
if (t.num_codepoints > 1) {
EXPECT_EQ(-1, ASN1_mbstring_ncopy(
nullptr, t.in.data(), t.in.size(), t.format, t.mask,
/*minsize=*/0, /*maxsize=*/t.num_codepoints - 1));
ERR_clear_error();
EXPECT_EQ(-1, ASN1_mbstring_ncopy(
&str, t.in.data(), t.in.size(), t.format, t.mask,
/*minsize=*/0, /*maxsize=*/t.num_codepoints - 1));
EXPECT_FALSE(str);
ERR_clear_error();
}
}
const struct {
int format;
std::vector<uint8_t> in;
unsigned long mask;
} kInvalidTests[] = {
// Invalid encodings are rejected.
{MBSTRING_UTF8, {0xff}, B_ASN1_UTF8STRING},
{MBSTRING_BMP, {0xff}, B_ASN1_UTF8STRING},
{MBSTRING_UNIV, {0xff}, B_ASN1_UTF8STRING},
// Lone surrogates are not code points.
{MBSTRING_UTF8, {0xed, 0xa0, 0x80}, B_ASN1_UTF8STRING},
{MBSTRING_BMP, {0xd8, 0x00}, B_ASN1_UTF8STRING},
{MBSTRING_UNIV, {0x00, 0x00, 0xd8, 0x00}, B_ASN1_UTF8STRING},
// The input does not fit in the allowed output types.
{MBSTRING_UTF8, {'\n'}, B_ASN1_PRINTABLESTRING},
{MBSTRING_UTF8,
{0xc2, 0x80 /* U+0080 */},
B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING},
{MBSTRING_UTF8,
{0xc4, 0x80 /* U+0100 */},
B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING | B_ASN1_T61STRING},
{MBSTRING_UTF8,
{0xf0, 0x90, 0x80, 0x80 /* U+10000 */},
B_ASN1_PRINTABLESTRING | B_ASN1_IA5STRING | B_ASN1_T61STRING |
B_ASN1_BMPSTRING},
// Unrecognized bits are ignored.
{MBSTRING_UTF8, {'\n'}, B_ASN1_PRINTABLESTRING | B_ASN1_SEQUENCE},
};
for (const auto &t : kInvalidTests) {
SCOPED_TRACE(t.format);
SCOPED_TRACE(Bytes(t.in));
SCOPED_TRACE(t.mask);
EXPECT_EQ(-1, ASN1_mbstring_copy(nullptr, t.in.data(), t.in.size(),
t.format, t.mask));
ERR_clear_error();
ASN1_STRING *str = nullptr;
EXPECT_EQ(-1, ASN1_mbstring_copy(&str, t.in.data(), t.in.size(),
t.format, t.mask));
ERR_clear_error();
EXPECT_EQ(nullptr, str);
}
}
TEST(ASN1Test, StringByNID) {
// |ASN1_mbstring_*| tests above test most of the interactions with |inform|,
// so all tests below use UTF-8.
const struct {
int nid;
std::string in;
int expected_type;
std::string expected;
} kTests[] = {
// Although DirectoryString and PKCS9String allow many types of strings,
// we prefer UTF8String.
{NID_commonName, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_commonName, "\xe2\x98\x83", V_ASN1_UTF8STRING, "\xe2\x98\x83"},
{NID_localityName, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_stateOrProvinceName, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_organizationName, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_organizationalUnitName, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_pkcs9_unstructuredName, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_pkcs9_challengePassword, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_pkcs9_unstructuredAddress, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_givenName, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_surname, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_initials, "abc", V_ASN1_UTF8STRING, "abc"},
{NID_name, "abc", V_ASN1_UTF8STRING, "abc"},
// Some attribute types use a particular string type.
{NID_countryName, "US", V_ASN1_PRINTABLESTRING, "US"},
{NID_pkcs9_emailAddress, "example@example.com", V_ASN1_IA5STRING,
"example@example.com"},
{NID_serialNumber, "1234", V_ASN1_PRINTABLESTRING, "1234"},
{NID_friendlyName, "abc", V_ASN1_BMPSTRING,
std::string({'\0', 'a', '\0', 'b', '\0', 'c'})},
{NID_dnQualifier, "US", V_ASN1_PRINTABLESTRING, "US"},
{NID_domainComponent, "com", V_ASN1_IA5STRING, "com"},
{NID_ms_csp_name, "abc", V_ASN1_BMPSTRING,
std::string({'\0', 'a', '\0', 'b', '\0', 'c'})},
// Unknown NIDs default to UTF8String.
{NID_rsaEncryption, "abc", V_ASN1_UTF8STRING, "abc"},
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.nid);
SCOPED_TRACE(t.in);
// Test allocating a new object.
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID(
nullptr, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(),
MBSTRING_UTF8, t.nid));
ASSERT_TRUE(str);
EXPECT_EQ(t.expected_type, ASN1_STRING_type(str.get()));
EXPECT_EQ(Bytes(t.expected), Bytes(ASN1_STRING_get0_data(str.get()),
ASN1_STRING_length(str.get())));
// Test writing into an existing object.
str.reset(ASN1_STRING_new());
ASSERT_TRUE(str);
ASN1_STRING *old_str = str.get();
ASSERT_TRUE(ASN1_STRING_set_by_NID(
&old_str, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(),
MBSTRING_UTF8, t.nid));
ASSERT_EQ(old_str, str.get());
EXPECT_EQ(t.expected_type, ASN1_STRING_type(str.get()));
EXPECT_EQ(Bytes(t.expected), Bytes(ASN1_STRING_get0_data(str.get()),
ASN1_STRING_length(str.get())));
}
const struct {
int nid;
std::string in;
} kInvalidTests[] = {
// DirectoryString forbids empty inputs.
{NID_commonName, ""},
{NID_localityName, ""},
{NID_stateOrProvinceName, ""},
{NID_organizationName, ""},
{NID_organizationalUnitName, ""},
{NID_pkcs9_unstructuredName, ""},
{NID_pkcs9_challengePassword, ""},
{NID_pkcs9_unstructuredAddress, ""},
{NID_givenName, ""},
{NID_givenName, ""},
{NID_givenName, ""},
{NID_surname, ""},
{NID_initials, ""},
{NID_name, ""},
// Test upper bounds from RFC 5280.
{NID_name, std::string(32769, 'a')},
{NID_commonName, std::string(65, 'a')},
{NID_localityName, std::string(129, 'a')},
{NID_stateOrProvinceName, std::string(129, 'a')},
{NID_organizationName, std::string(65, 'a')},
{NID_organizationalUnitName, std::string(65, 'a')},
{NID_pkcs9_emailAddress, std::string(256, 'a')},
{NID_serialNumber, std::string(65, 'a')},
// X520countryName must be exactly two characters.
{NID_countryName, "A"},
{NID_countryName, "AAA"},
// Some string types cannot represent all codepoints.
{NID_countryName, "\xe2\x98\x83"},
{NID_pkcs9_emailAddress, "\xe2\x98\x83"},
{NID_serialNumber, "\xe2\x98\x83"},
{NID_dnQualifier, "\xe2\x98\x83"},
{NID_domainComponent, "\xe2\x98\x83"},
};
for (const auto &t : kInvalidTests) {
SCOPED_TRACE(t.nid);
SCOPED_TRACE(t.in);
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID(
nullptr, reinterpret_cast<const uint8_t *>(t.in.data()), t.in.size(),
MBSTRING_UTF8, t.nid));
EXPECT_FALSE(str);
ERR_clear_error();
}
}
TEST(ASN1Test, StringByCustomNID) {
// This test affects library-global state. We rely on nothing else in the test
// suite using these OIDs.
int nid1 = OBJ_create("1.2.840.113554.4.1.72585.1000", "custom OID 1000",
"custom OID 1000");
ASSERT_NE(NID_undef, nid1);
int nid2 = OBJ_create("1.2.840.113554.4.1.72585.1001", "custom OID 1001",
"custom OID 1001");
ASSERT_NE(NID_undef, nid2);
// Values registered in the string table should be picked up.
ASSERT_TRUE(ASN1_STRING_TABLE_add(nid1, 5, 10, V_ASN1_PRINTABLESTRING,
STABLE_NO_MASK));
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID(
nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8,
nid1));
ASSERT_TRUE(str);
EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get()));
EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()),
ASN1_STRING_length(str.get())));
// Minimum and maximum lengths are enforced.
str.reset(ASN1_STRING_set_by_NID(
nullptr, reinterpret_cast<const uint8_t *>("1234"), 4, MBSTRING_UTF8,
nid1));
EXPECT_FALSE(str);
ERR_clear_error();
str.reset(ASN1_STRING_set_by_NID(
nullptr, reinterpret_cast<const uint8_t *>("12345678901"), 11,
MBSTRING_UTF8, nid1));
EXPECT_FALSE(str);
ERR_clear_error();
// Without |STABLE_NO_MASK|, we always pick UTF8String. -1 means there is no
// length limit.
ASSERT_TRUE(ASN1_STRING_TABLE_add(nid2, -1, -1, DIRSTRING_TYPE, 0));
str.reset(ASN1_STRING_set_by_NID(nullptr,
reinterpret_cast<const uint8_t *>("12345"),
5, MBSTRING_UTF8, nid2));
ASSERT_TRUE(str);
EXPECT_EQ(V_ASN1_UTF8STRING, ASN1_STRING_type(str.get()));
EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()),
ASN1_STRING_length(str.get())));
// Overriding existing entries, built-in or custom, is an error.
EXPECT_FALSE(
ASN1_STRING_TABLE_add(NID_countryName, -1, -1, DIRSTRING_TYPE, 0));
EXPECT_FALSE(ASN1_STRING_TABLE_add(nid1, -1, -1, DIRSTRING_TYPE, 0));
}
#if defined(OPENSSL_THREADS)
TEST(ASN1Test, StringByCustomNIDThreads) {
// This test affects library-global state. We rely on nothing else in the test
// suite using these OIDs.
int nid1 = OBJ_create("1.2.840.113554.4.1.72585.1002", "custom OID 1002",
"custom OID 1002");
ASSERT_NE(NID_undef, nid1);
int nid2 = OBJ_create("1.2.840.113554.4.1.72585.1003", "custom OID 1003",
"custom OID 1003");
ASSERT_NE(NID_undef, nid2);
std::vector<std::thread> threads;
threads.emplace_back([&] {
ASSERT_TRUE(ASN1_STRING_TABLE_add(nid1, 5, 10, V_ASN1_PRINTABLESTRING,
STABLE_NO_MASK));
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID(
nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8,
nid1));
ASSERT_TRUE(str);
EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get()));
EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()),
ASN1_STRING_length(str.get())));
});
threads.emplace_back([&] {
ASSERT_TRUE(ASN1_STRING_TABLE_add(nid2, 5, 10, V_ASN1_PRINTABLESTRING,
STABLE_NO_MASK));
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_set_by_NID(
nullptr, reinterpret_cast<const uint8_t *>("12345"), 5, MBSTRING_UTF8,
nid2));
ASSERT_TRUE(str);
EXPECT_EQ(V_ASN1_PRINTABLESTRING, ASN1_STRING_type(str.get()));
EXPECT_EQ(Bytes("12345"), Bytes(ASN1_STRING_get0_data(str.get()),
ASN1_STRING_length(str.get())));
});
for (auto &thread : threads) {
thread.join();
}
}
#endif // OPENSSL_THREADS
// Test that multi-string types correctly encode negative ENUMERATED.
// Multi-string types cannot contain INTEGER, so we only test ENUMERATED.
TEST(ASN1Test, NegativeEnumeratedMultistring) {
static const uint8_t kMinusOne[] = {0x0a, 0x01, 0xff}; // ENUMERATED { -1 }
// |ASN1_PRINTABLE| is a multi-string type that allows ENUMERATED.
const uint8_t *p = kMinusOne;
bssl::UniquePtr<ASN1_STRING> str(
d2i_ASN1_PRINTABLE(nullptr, &p, sizeof(kMinusOne)));
ASSERT_TRUE(str);
TestSerialize(str.get(), i2d_ASN1_PRINTABLE, kMinusOne);
}
// Encoding a CHOICE type with an invalid selector should fail.
TEST(ASN1Test, InvalidChoice) {
bssl::UniquePtr<GENERAL_NAME> name(GENERAL_NAME_new());
ASSERT_TRUE(name);
// CHOICE types are initialized with an invalid selector.
EXPECT_EQ(-1, name->type);
// |name| should fail to encode.
EXPECT_EQ(-1, i2d_GENERAL_NAME(name.get(), nullptr));
// The error should be propagated through types containing |name|.
bssl::UniquePtr<GENERAL_NAMES> names(GENERAL_NAMES_new());
ASSERT_TRUE(names);
EXPECT_TRUE(bssl::PushToStack(names.get(), std::move(name)));
EXPECT_EQ(-1, i2d_GENERAL_NAMES(names.get(), nullptr));
}
// Encoding NID-only |ASN1_OBJECT|s should fail.
TEST(ASN1Test, InvalidObject) {
EXPECT_EQ(-1, i2d_ASN1_OBJECT(OBJ_nid2obj(NID_kx_ecdhe), nullptr));
bssl::UniquePtr<X509_ALGOR> alg(X509_ALGOR_new());
ASSERT_TRUE(alg);
ASSERT_TRUE(X509_ALGOR_set0(alg.get(), OBJ_nid2obj(NID_kx_ecdhe),
V_ASN1_UNDEF, nullptr));
EXPECT_EQ(-1, i2d_X509_ALGOR(alg.get(), nullptr));
}
// Encoding invalid |ASN1_TYPE|s should fail. |ASN1_TYPE|s are
// default-initialized to an invalid type.
TEST(ASN1Test, InvalidASN1Type) {
bssl::UniquePtr<ASN1_TYPE> obj(ASN1_TYPE_new());
ASSERT_TRUE(obj);
EXPECT_EQ(-1, obj->type);
EXPECT_EQ(-1, i2d_ASN1_TYPE(obj.get(), nullptr));
}
// Encoding invalid MSTRING types should fail. An MSTRING is a CHOICE of
// string-like types. They are initialized to an invalid type.
TEST(ASN1Test, InvalidMSTRING) {
bssl::UniquePtr<ASN1_STRING> obj(ASN1_TIME_new());
ASSERT_TRUE(obj);
EXPECT_EQ(-1, obj->type);
EXPECT_EQ(-1, i2d_ASN1_TIME(obj.get(), nullptr));
obj.reset(DIRECTORYSTRING_new());
ASSERT_TRUE(obj);
EXPECT_EQ(-1, obj->type);
EXPECT_EQ(-1, i2d_DIRECTORYSTRING(obj.get(), nullptr));
}
TEST(ASN1Test, StringTableSorted) {
const ASN1_STRING_TABLE *table;
size_t table_len;
asn1_get_string_table_for_testing(&table, &table_len);
for (size_t i = 1; i < table_len; i++) {
EXPECT_LT(table[i-1].nid, table[i].nid);
}
}
TEST(ASN1Test, Null) {
// An |ASN1_NULL| is an opaque, non-null pointer. It is an arbitrary signaling
// value and does not need to be freed. (If the pointer is null, this is an
// omitted OPTIONAL NULL.)
EXPECT_NE(nullptr, ASN1_NULL_new());
// It is safe to free either the non-null pointer or the null one.
ASN1_NULL_free(ASN1_NULL_new());
ASN1_NULL_free(nullptr);
// A NULL may be decoded.
static const uint8_t kNull[] = {0x05, 0x00};
const uint8_t *ptr = kNull;
EXPECT_NE(nullptr, d2i_ASN1_NULL(nullptr, &ptr, sizeof(kNull)));
EXPECT_EQ(ptr, kNull + sizeof(kNull));
// It may also be re-encoded.
uint8_t *enc = nullptr;
int enc_len = i2d_ASN1_NULL(ASN1_NULL_new(), &enc);
ASSERT_GE(enc_len, 0);
EXPECT_EQ(Bytes(kNull), Bytes(enc, enc_len));
OPENSSL_free(enc);
enc = nullptr;
// Although the standalone representation of NULL is a non-null pointer, the
// |ASN1_TYPE| representation is a null pointer.
ptr = kNull;
bssl::UniquePtr<ASN1_TYPE> null_type(
d2i_ASN1_TYPE(nullptr, &ptr, sizeof(kNull)));
ASSERT_TRUE(null_type);
EXPECT_EQ(ptr, kNull + sizeof(kNull));
EXPECT_EQ(V_ASN1_NULL, ASN1_TYPE_get(null_type.get()));
EXPECT_EQ(nullptr, null_type->value.ptr);
}
TEST(ASN1Test, Pack) {
bssl::UniquePtr<BASIC_CONSTRAINTS> val(BASIC_CONSTRAINTS_new());
ASSERT_TRUE(val);
val->ca = 0;
// Test all three calling conventions.
static const uint8_t kExpected[] = {0x30, 0x00};
bssl::UniquePtr<ASN1_STRING> str(
ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), nullptr));
ASSERT_TRUE(str);
EXPECT_EQ(
Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())),
Bytes(kExpected));
ASN1_STRING *raw = nullptr;
str.reset(ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), &raw));
ASSERT_TRUE(str);
EXPECT_EQ(raw, str.get());
EXPECT_EQ(
Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())),
Bytes(kExpected));
str.reset(ASN1_STRING_new());
ASSERT_TRUE(str);
raw = str.get();
EXPECT_TRUE(
ASN1_item_pack(val.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS), &raw));
EXPECT_EQ(raw, str.get());
EXPECT_EQ(
Bytes(ASN1_STRING_get0_data(str.get()), ASN1_STRING_length(str.get())),
Bytes(kExpected));
}
TEST(ASN1Test, Unpack) {
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_new());
ASSERT_TRUE(str);
static const uint8_t kValid[] = {0x30, 0x00};
ASSERT_TRUE(
ASN1_STRING_set(str.get(), kValid, sizeof(kValid)));
bssl::UniquePtr<BASIC_CONSTRAINTS> val(static_cast<BASIC_CONSTRAINTS *>(
ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS))));
ASSERT_TRUE(val);
EXPECT_EQ(val->ca, 0);
EXPECT_EQ(val->pathlen, nullptr);
static const uint8_t kInvalid[] = {0x31, 0x00};
ASSERT_TRUE(ASN1_STRING_set(str.get(), kInvalid, sizeof(kInvalid)));
val.reset(static_cast<BASIC_CONSTRAINTS *>(
ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS))));
EXPECT_FALSE(val);
static const uint8_t kTraiilingData[] = {0x30, 0x00, 0x00};
ASSERT_TRUE(
ASN1_STRING_set(str.get(), kTraiilingData, sizeof(kTraiilingData)));
val.reset(static_cast<BASIC_CONSTRAINTS *>(
ASN1_item_unpack(str.get(), ASN1_ITEM_rptr(BASIC_CONSTRAINTS))));
EXPECT_FALSE(val);
}
TEST(ASN1Test, StringCmp) {
struct Input {
int type;
std::vector<uint8_t> data;
int flags;
bool equals_previous;
};
// kInputs is a list of |ASN1_STRING| parameters, in sorted order. The input
// should be sorted by bit length, then data, then type.
const Input kInputs[] = {
{V_ASN1_BIT_STRING, {}, ASN1_STRING_FLAG_BITS_LEFT | 0, false},
{V_ASN1_BIT_STRING, {}, 0, true},
// When |ASN1_STRING_FLAG_BITS_LEFT| is unset, BIT STRINGs implicitly
// drop trailing zeros.
{V_ASN1_BIT_STRING, {0x00, 0x00, 0x00, 0x00}, 0, true},
{V_ASN1_OCTET_STRING, {}, 0, false},
{V_ASN1_UTF8STRING, {}, 0, false},
// BIT STRINGs with padding bits (i.e. not part of the actual value) are
// shorter and thus sort earlier:
// 1-bit inputs.
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 7, false},
{V_ASN1_BIT_STRING, {0x80}, ASN1_STRING_FLAG_BITS_LEFT | 7, false},
// 2-bit inputs.
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 6, false},
{V_ASN1_BIT_STRING, {0xc0}, ASN1_STRING_FLAG_BITS_LEFT | 6, false},
// 3-bit inputs.
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 5, false},
{V_ASN1_BIT_STRING, {0xe0}, ASN1_STRING_FLAG_BITS_LEFT | 5, false},
// 4-bit inputs.
{V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 4, false},
{V_ASN1_BIT_STRING, {0xf0}, 0, true}, // 4 trailing zeros dropped.
{V_ASN1_BIT_STRING, {0xf0, 0x00}, 0, true}, // 12 trailing zeros dropped.
// 5-bit inputs.
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 3, false},
{V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 3, false},
{V_ASN1_BIT_STRING, {0xf8}, ASN1_STRING_FLAG_BITS_LEFT | 3, false},
// 6-bit inputs.
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 2, false},
{V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 2, false},
{V_ASN1_BIT_STRING, {0xfc}, ASN1_STRING_FLAG_BITS_LEFT | 2, false},
// 7-bit inputs.
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 1, false},
{V_ASN1_BIT_STRING, {0xf0}, ASN1_STRING_FLAG_BITS_LEFT | 1, false},
{V_ASN1_BIT_STRING, {0xfe}, ASN1_STRING_FLAG_BITS_LEFT | 1, false},
// 8-bit inputs.
{V_ASN1_BIT_STRING, {0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false},
{V_ASN1_OCTET_STRING, {0x00}, 0, false},
{V_ASN1_UTF8STRING, {0x00}, 0, false},
{V_ASN1_BIT_STRING, {0x80}, ASN1_STRING_FLAG_BITS_LEFT | 0, false},
{V_ASN1_OCTET_STRING, {0x80}, 0, false},
{V_ASN1_UTF8STRING, {0x80}, 0, false},
{V_ASN1_BIT_STRING, {0xff}, ASN1_STRING_FLAG_BITS_LEFT | 0, false},
{V_ASN1_BIT_STRING, {0xff}, 0, true}, // No trailing zeros to drop.
{V_ASN1_OCTET_STRING, {0xff}, 0, false},
{V_ASN1_UTF8STRING, {0xff}, 0, false},
// Bytes are compared lexicographically.
{V_ASN1_BIT_STRING, {0x00, 0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false},
{V_ASN1_OCTET_STRING, {0x00, 0x00}, 0, false},
{V_ASN1_UTF8STRING, {0x00, 0x00}, 0, false},
{V_ASN1_BIT_STRING, {0x00, 0xff}, ASN1_STRING_FLAG_BITS_LEFT | 0, false},
{V_ASN1_OCTET_STRING, {0x00, 0xff}, 0, false},
{V_ASN1_UTF8STRING, {0x00, 0xff}, 0, false},
{V_ASN1_BIT_STRING, {0xff, 0x00}, ASN1_STRING_FLAG_BITS_LEFT | 0, false},
{V_ASN1_OCTET_STRING, {0xff, 0x00}, 0, false},
{V_ASN1_UTF8STRING, {0xff, 0x00}, 0, false},
};
std::vector<bssl::UniquePtr<ASN1_STRING>> strs;
strs.reserve(OPENSSL_ARRAY_SIZE(kInputs));
for (const auto &input : kInputs) {
strs.emplace_back(ASN1_STRING_type_new(input.type));
ASSERT_TRUE(strs.back());
ASSERT_TRUE(ASN1_STRING_set(strs.back().get(), input.data.data(),
input.data.size()));
strs.back()->flags = input.flags;
}
for (size_t i = 0; i < strs.size(); i++) {
SCOPED_TRACE(i);
bool expect_equal = true;
for (size_t j = i; j < strs.size(); j++) {
SCOPED_TRACE(j);
if (j > i && !kInputs[j].equals_previous) {
expect_equal = false;
}
const int cmp_i_j = ASN1_STRING_cmp(strs[i].get(), strs[j].get());
const int cmp_j_i = ASN1_STRING_cmp(strs[j].get(), strs[i].get());
if (expect_equal) {
EXPECT_EQ(cmp_i_j, 0);
EXPECT_EQ(cmp_j_i, 0);
} else if (i < j) {
EXPECT_LT(cmp_i_j, 0);
EXPECT_GT(cmp_j_i, 0);
} else {
EXPECT_GT(cmp_i_j, 0);
EXPECT_LT(cmp_j_i, 0);
}
}
}
}
TEST(ASN1Test, PrintASN1Object) {
const struct {
std::vector<uint8_t> in;
const char *expected;
} kDataTests[] = {
// Known OIDs print as the name.
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01}, "rsaEncryption"},
// Unknown OIDs print in decimal.
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7, 0x09, 0x00},
"1.2.840.113554.4.1.72585.0"},
// Inputs which cannot be parsed as OIDs print as "<INVALID>".
{{0xff}, "<INVALID>"},
// The function has an internal 80-byte buffer. Test inputs at that
// boundary. First, 78 characters.
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
"1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0."
"0.0.0.1"},
// 79 characters.
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0a},
"1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0."
"0.0.0.10"},
// 80 characters.
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64},
"1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0."
"0.0.0.100"},
// 81 characters.
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87, 0x68},
"1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0."
"0.0.0.1000"},
// 82 characters.
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xce, 0x10},
"1.2.840.113554.4.1.72585.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0."
"0.0.0.10000"},
};
for (const auto &t : kDataTests) {
SCOPED_TRACE(Bytes(t.in));
bssl::UniquePtr<ASN1_OBJECT> obj(ASN1_OBJECT_create(
NID_undef, t.in.data(), t.in.size(), /*sn=*/nullptr, /*ln=*/nullptr));
ASSERT_TRUE(obj);
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(bio);
int len = i2a_ASN1_OBJECT(bio.get(), obj.get());
EXPECT_EQ(len, static_cast<int>(strlen(t.expected)));
const uint8_t *bio_data;
size_t bio_len;
BIO_mem_contents(bio.get(), &bio_data, &bio_len);
EXPECT_EQ(t.expected,
std::string(reinterpret_cast<const char *>(bio_data), bio_len));
}
// Test writing NULL.
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(bio);
int len = i2a_ASN1_OBJECT(bio.get(), nullptr);
EXPECT_EQ(len, 4);
const uint8_t *bio_data;
size_t bio_len;
BIO_mem_contents(bio.get(), &bio_data, &bio_len);
EXPECT_EQ("NULL",
std::string(reinterpret_cast<const char *>(bio_data), bio_len));
}
TEST(ASN1Test, GetObject) {
// The header is valid, but there are not enough bytes for the length.
static const uint8_t kTruncated[] = {0x30, 0x01};
const uint8_t *ptr = kTruncated;
long length;
int tag;
int tag_class;
EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class,
sizeof(kTruncated)));
// Indefinite-length encoding is not allowed in DER.
static const uint8_t kIndefinite[] = {0x30, 0x80, 0x00, 0x00};
ptr = kIndefinite;
EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class,
sizeof(kIndefinite)));
// DER requires lengths be minimally-encoded. This should be {0x30, 0x00}.
static const uint8_t kNonMinimal[] = {0x30, 0x81, 0x00};
ptr = kNonMinimal;
EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class,
sizeof(kNonMinimal)));
// This should be {0x04, 0x81, 0x80, ...}.
std::vector<uint8_t> non_minimal = {0x04, 0x82, 0x00, 0x80};
non_minimal.resize(non_minimal.size() + 0x80);
ptr = non_minimal.data();
EXPECT_EQ(0x80, ASN1_get_object(&ptr, &length, &tag, &tag_class,
non_minimal.size()));
}
template <typename T>
void ExpectNoParse(T *(*d2i)(T **, const uint8_t **, long),
const std::vector<uint8_t> &in) {
SCOPED_TRACE(Bytes(in));
const uint8_t *ptr = in.data();
bssl::UniquePtr<T> obj(d2i(nullptr, &ptr, in.size()));
EXPECT_FALSE(obj);
}
// The zero tag, constructed or primitive, is reserved and should rejected by
// the parser.
TEST(ASN1Test, ZeroTag) {
ExpectNoParse(d2i_ASN1_TYPE, {0x00, 0x00});
ExpectNoParse(d2i_ASN1_TYPE, {0x00, 0x10, 0x00});
ExpectNoParse(d2i_ASN1_TYPE, {0x20, 0x00});
ExpectNoParse(d2i_ASN1_TYPE, {0x20, 0x00});
ExpectNoParse(d2i_ASN1_SEQUENCE_ANY, {0x30, 0x02, 0x00, 0x00});
ExpectNoParse(d2i_ASN1_SET_ANY, {0x31, 0x02, 0x00, 0x00});
// SEQUENCE {
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 }
// [UNIVERSAL 0 PRIMITIVE] {}
// }
ExpectNoParse(d2i_X509_ALGOR,
{0x30, 0x10, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x00, 0x00});
// SEQUENCE {
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 }
// [UNIVERSAL 0 CONSTRUCTED] {}
// }
ExpectNoParse(d2i_X509_ALGOR,
{0x30, 0x10, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x20, 0x00});
// SEQUENCE {
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.1 }
// [UNIVERSAL 0 PRIMITIVE] { "a" }
// }
ExpectNoParse(d2i_X509_ALGOR,
{0x30, 0x11, 0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
0x04, 0x01, 0x84, 0xb7, 0x09, 0x01, 0x00, 0x01, 0x61});
}
TEST(ASN1Test, StringEncoding) {
const struct {
ASN1_STRING *(*d2i)(ASN1_STRING **out, const uint8_t **inp, long len);
std::vector<uint8_t> in;
bool valid;
} kTests[] = {
// All OCTET STRINGs are valid.
{d2i_ASN1_OCTET_STRING, {0x04, 0x00}, true},
{d2i_ASN1_OCTET_STRING, {0x04, 0x01, 0x00}, true},
// UTF8String must be valid UTF-8.
{d2i_ASN1_UTF8STRING, {0x0c, 0x00}, true},
{d2i_ASN1_UTF8STRING, {0x0c, 0x01, 'a'}, true},
{d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xe2, 0x98, 0x83}, true},
// Non-minimal, two-byte UTF-8.
{d2i_ASN1_UTF8STRING, {0x0c, 0x02, 0xc0, 0x81}, false},
// Truncated, four-byte UTF-8.
{d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xf0, 0x80, 0x80}, false},
// Low-surrogate value.
{d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xed, 0xa0, 0x80}, false},
// High-surrogate value.
{d2i_ASN1_UTF8STRING, {0x0c, 0x03, 0xed, 0xb0, 0x81}, false},
// BMPString must be valid UCS-2.
{d2i_ASN1_BMPSTRING, {0x1e, 0x00}, true},
{d2i_ASN1_BMPSTRING, {0x1e, 0x02, 0x00, 'a'}, true},
// Truncated code unit.
{d2i_ASN1_BMPSTRING, {0x1e, 0x01, 'a'}, false},
// Lone surrogate.
{d2i_ASN1_BMPSTRING, {0x1e, 0x02, 0xd8, 0}, false},
// BMPString is UCS-2, not UTF-16, so surrogate pairs are also invalid.
{d2i_ASN1_BMPSTRING, {0x1e, 0x04, 0xd8, 0, 0xdc, 1}, false},
// UniversalString must be valid UTF-32.
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x00}, true},
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x00, 0x00, 'a'}, true},
// Maximum code point.
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xfd}, true},
// Reserved.
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xfe}, false},
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x10, 0xff, 0xff}, false},
// Too high.
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x11, 0x00, 0x00}, false},
// Surrogates are not characters.
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x04, 0x00, 0x00, 0xd8, 0}, false},
// Truncated codepoint.
{d2i_ASN1_UNIVERSALSTRING, {0x1c, 0x03, 0x00, 0x00, 0x00}, false},
// We interpret T61String as Latin-1, so all inputs are valid.
{d2i_ASN1_T61STRING, {0x14, 0x00}, true},
{d2i_ASN1_T61STRING, {0x14, 0x01, 0x00}, true},
};
for (const auto& t : kTests) {
SCOPED_TRACE(Bytes(t.in));
const uint8_t *inp;
if (t.d2i != nullptr) {
inp = t.in.data();
bssl::UniquePtr<ASN1_STRING> str(t.d2i(nullptr, &inp, t.in.size()));
EXPECT_EQ(t.valid, str != nullptr);
}
// Also test with the ANY parser.
inp = t.in.data();
bssl::UniquePtr<ASN1_TYPE> any(d2i_ASN1_TYPE(nullptr, &inp, t.in.size()));
EXPECT_EQ(t.valid, any != nullptr);
}
}
// Exhaustively test POSIX time conversions for every day across the millenium.
TEST(ASN1Test, POSIXTime) {
const int kDaysInMonth[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
// Test the epoch explicitly, to confirm our baseline is correct.
struct tm civil_time;
ASSERT_TRUE(OPENSSL_posix_to_tm(0, &civil_time));
ASSERT_EQ(civil_time.tm_year + 1900, 1970);
ASSERT_EQ(civil_time.tm_mon + 1, 1);
ASSERT_EQ(civil_time.tm_mday, 1);
ASSERT_EQ(civil_time.tm_hour, 0);
ASSERT_EQ(civil_time.tm_min, 0);
ASSERT_EQ(civil_time.tm_sec, 0);
int64_t posix_time = -11676096000; // Sat, 01 Jan 1600 00:00:00 +0000
for (int year = 1600; year < 3000; year++) {
SCOPED_TRACE(year);
bool is_leap_year = (year % 4 == 0 && year % 100 != 0) || year % 400 == 0;
for (int month = 1; month <= 12; month++) {
SCOPED_TRACE(month);
int days = kDaysInMonth[month - 1];
if (month == 2 && is_leap_year) {
days++;
}
for (int day = 1; day <= days; day++) {
SCOPED_TRACE(day);
SCOPED_TRACE(posix_time);
ASSERT_TRUE(OPENSSL_posix_to_tm(posix_time, &civil_time));
ASSERT_EQ(civil_time.tm_year + 1900, year);
ASSERT_EQ(civil_time.tm_mon + 1, month);
ASSERT_EQ(civil_time.tm_mday, day);
ASSERT_EQ(civil_time.tm_hour, 0);
ASSERT_EQ(civil_time.tm_min, 0);
ASSERT_EQ(civil_time.tm_sec, 0);
int64_t posix_time_computed;
ASSERT_TRUE(OPENSSL_tm_to_posix(&civil_time, &posix_time_computed));
ASSERT_EQ(posix_time_computed, posix_time);
// Advance to the next day.
posix_time += 24 * 60 * 60;
}
}
}
}
TEST(ASN1Test, LargeString) {
bssl::UniquePtr<ASN1_STRING> str(ASN1_STRING_type_new(V_ASN1_OCTET_STRING));
ASSERT_TRUE(str);
// Very large strings should be rejected by |ASN1_STRING_set|. Strictly
// speaking, this is an invalid call because the buffer does not have that
// much size available. |ASN1_STRING_set| should cleanly fail before it
// crashes, and actually allocating 512 MiB in a test is likely to break.
char b = 0;
EXPECT_FALSE(ASN1_STRING_set(str.get(), &b, INT_MAX / 4));
#if defined(OPENSSL_64_BIT)
// |ASN1_STRING_set| should tolerate lengths that exceed |int| without
// overflow.
EXPECT_FALSE(ASN1_STRING_set(str.get(), &b, 1 + (ossl_ssize_t{1} << 48)));
#endif
}
static auto TimeToTuple(const tm &t) {
return std::make_tuple(t.tm_year, t.tm_mon, t.tm_mday, t.tm_hour, t.tm_min,
t.tm_sec);
}
TEST(ASN1Test, TimeOverflow) {
// Input time is out of range and may overflow internal calculations to shift
// |tm_year| and |tm_mon| to a more normal value.
tm overflow_year = {};
overflow_year.tm_year = INT_MAX - 1899;
overflow_year.tm_mday = 1;
tm overflow_month = {};
overflow_month.tm_mon = INT_MAX;
overflow_month.tm_mday = 1;
int64_t posix_u64;
EXPECT_FALSE(OPENSSL_tm_to_posix(&overflow_year, &posix_u64));
EXPECT_FALSE(OPENSSL_tm_to_posix(&overflow_month, &posix_u64));
time_t posix;
EXPECT_FALSE(OPENSSL_timegm(&overflow_year, &posix));
EXPECT_FALSE(OPENSSL_timegm(&overflow_month, &posix));
EXPECT_FALSE(
OPENSSL_gmtime_adj(&overflow_year, /*offset_day=*/0, /*offset_sec=*/0));
EXPECT_FALSE(
OPENSSL_gmtime_adj(&overflow_month, /*offset_day=*/0, /*offset_sec=*/0));
int days, secs;
EXPECT_FALSE(
OPENSSL_gmtime_diff(&days, &secs, &overflow_year, &overflow_year));
EXPECT_FALSE(
OPENSSL_gmtime_diff(&days, &secs, &overflow_month, &overflow_month));
// Input time is in range, but even adding one second puts it out of range.
tm max_time = {};
max_time.tm_year = 9999 - 1900;
max_time.tm_mon = 12 - 1;
max_time.tm_mday = 31;
max_time.tm_hour = 23;
max_time.tm_min = 59;
max_time.tm_sec = 59;
tm copy = max_time;
EXPECT_TRUE(OPENSSL_gmtime_adj(&copy, /*offset_day=*/0, /*offset_sec=*/0));
EXPECT_EQ(TimeToTuple(copy), TimeToTuple(max_time));
EXPECT_FALSE(OPENSSL_gmtime_adj(&copy, /*offset_day=*/0, /*offset_sec=*/1));
// Likewise for the earliest representable time.
tm min_time = {};
min_time.tm_year = 0 - 1900;
min_time.tm_mon = 1 - 1;
min_time.tm_mday = 1;
min_time.tm_hour = 0;
min_time.tm_min = 0;
min_time.tm_sec = 0;
copy = min_time;
EXPECT_TRUE(OPENSSL_gmtime_adj(&copy, /*offset_day=*/0, /*offset_sec=*/0));
EXPECT_EQ(TimeToTuple(copy), TimeToTuple(min_time));
EXPECT_FALSE(OPENSSL_gmtime_adj(&copy, /*offset_day=*/0, /*offset_sec=*/-1));
// Test we can offset between the minimum and maximum times.
const int64_t kValidTimeRange = 315569519999;
copy = min_time;
EXPECT_TRUE(OPENSSL_gmtime_adj(&copy, /*offset_day=*/0, kValidTimeRange));
EXPECT_EQ(TimeToTuple(copy), TimeToTuple(max_time));
EXPECT_TRUE(OPENSSL_gmtime_adj(&copy, /*offset_day=*/0, -kValidTimeRange));
EXPECT_EQ(TimeToTuple(copy), TimeToTuple(min_time));
// The second offset may even exceed kValidTimeRange if it is canceled out by
// offset_day.
EXPECT_TRUE(OPENSSL_gmtime_adj(&copy, /*offset_day=*/-1,
kValidTimeRange + 24 * 3600));
EXPECT_EQ(TimeToTuple(copy), TimeToTuple(max_time));
EXPECT_TRUE(OPENSSL_gmtime_adj(&copy, /*offset_day=*/1,
-kValidTimeRange - 24 * 3600));
EXPECT_EQ(TimeToTuple(copy), TimeToTuple(min_time));
// Make sure the internal calculations for |OPENSSL_gmtime_adj| stay in
// bounds.
copy = max_time;
EXPECT_FALSE(OPENSSL_gmtime_adj(&copy, INT_MAX, LONG_MAX));
copy = min_time;
EXPECT_FALSE(OPENSSL_gmtime_adj(&copy, INT_MIN, LONG_MIN));
}
// The ASN.1 macros do not work on Windows shared library builds, where usage of
// |OPENSSL_EXPORT| is a bit stricter.
#if !defined(OPENSSL_WINDOWS) || !defined(BORINGSSL_SHARED_LIBRARY)
typedef struct asn1_linked_list_st {
struct asn1_linked_list_st *next;
} ASN1_LINKED_LIST;
DECLARE_ASN1_ITEM(ASN1_LINKED_LIST)
DECLARE_ASN1_FUNCTIONS(ASN1_LINKED_LIST)
ASN1_SEQUENCE(ASN1_LINKED_LIST) = {
ASN1_OPT(ASN1_LINKED_LIST, next, ASN1_LINKED_LIST),
} ASN1_SEQUENCE_END(ASN1_LINKED_LIST)
IMPLEMENT_ASN1_FUNCTIONS(ASN1_LINKED_LIST)
static bool MakeLinkedList(bssl::UniquePtr<uint8_t> *out, size_t *out_len,
size_t count) {
bssl::ScopedCBB cbb;
std::vector<CBB> cbbs(count);
if (!CBB_init(cbb.get(), 2 * count) ||
!CBB_add_asn1(cbb.get(), &cbbs[0], CBS_ASN1_SEQUENCE)) {
return false;
}
for (size_t i = 1; i < count; i++) {
if (!CBB_add_asn1(&cbbs[i - 1], &cbbs[i], CBS_ASN1_SEQUENCE)) {
return false;
}
}
uint8_t *ptr;
if (!CBB_finish(cbb.get(), &ptr, out_len)) {
return false;
}
out->reset(ptr);
return true;
}
TEST(ASN1Test, Recursive) {
bssl::UniquePtr<uint8_t> data;
size_t len;
// Sanity-check that MakeLinkedList can be parsed.
ASSERT_TRUE(MakeLinkedList(&data, &len, 5));
const uint8_t *ptr = data.get();
ASN1_LINKED_LIST *list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len);
EXPECT_TRUE(list);
ASN1_LINKED_LIST_free(list);
// Excessively deep structures are rejected.
ASSERT_TRUE(MakeLinkedList(&data, &len, 100));
ptr = data.get();
list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len);
EXPECT_FALSE(list);
// Note checking the error queue here does not work. The error "stack trace"
// is too deep, so the |ASN1_R_NESTED_TOO_DEEP| entry drops off the queue.
ASN1_LINKED_LIST_free(list);
}
struct IMPLICIT_CHOICE {
ASN1_STRING *string;
};
DECLARE_ASN1_FUNCTIONS(IMPLICIT_CHOICE)
ASN1_SEQUENCE(IMPLICIT_CHOICE) = {
ASN1_IMP(IMPLICIT_CHOICE, string, DIRECTORYSTRING, 0),
} ASN1_SEQUENCE_END(IMPLICIT_CHOICE)
IMPLEMENT_ASN1_FUNCTIONS(IMPLICIT_CHOICE)
// Test that the ASN.1 templates reject types with implicitly-tagged CHOICE
// types.
TEST(ASN1Test, ImplicitChoice) {
// Serializing a type with an implicitly tagged CHOICE should fail.
std::unique_ptr<IMPLICIT_CHOICE, decltype(&IMPLICIT_CHOICE_free)> obj(
IMPLICIT_CHOICE_new(), IMPLICIT_CHOICE_free);
EXPECT_EQ(-1, i2d_IMPLICIT_CHOICE(obj.get(), nullptr));
// An implicitly-tagged CHOICE is an error. Depending on the implementation,
// it may be misinterpreted as without the tag, or as clobbering the CHOICE
// tag. Test both inputs and ensure they fail.
// SEQUENCE { UTF8String {} }
static const uint8_t kInput1[] = {0x30, 0x02, 0x0c, 0x00};
const uint8_t *ptr = kInput1;
EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput1)));
// SEQUENCE { [0 PRIMITIVE] {} }
static const uint8_t kInput2[] = {0x30, 0x02, 0x80, 0x00};
ptr = kInput2;
EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput2)));
}
struct REQUIRED_FIELD {
ASN1_INTEGER *value;
ASN1_INTEGER *value_imp;
ASN1_INTEGER *value_exp;
STACK_OF(ASN1_INTEGER) *seq;
STACK_OF(ASN1_INTEGER) *seq_imp;
STACK_OF(ASN1_INTEGER) *seq_exp;
ASN1_NULL *null;
ASN1_NULL *null_imp;
ASN1_NULL *null_exp;
};
DECLARE_ASN1_FUNCTIONS(REQUIRED_FIELD)
ASN1_SEQUENCE(REQUIRED_FIELD) = {
ASN1_SIMPLE(REQUIRED_FIELD, value, ASN1_INTEGER),
ASN1_IMP(REQUIRED_FIELD, value_imp, ASN1_INTEGER, 0),
ASN1_EXP(REQUIRED_FIELD, value_exp, ASN1_INTEGER, 1),
ASN1_SEQUENCE_OF(REQUIRED_FIELD, seq, ASN1_INTEGER),
ASN1_IMP_SEQUENCE_OF(REQUIRED_FIELD, seq_imp, ASN1_INTEGER, 2),
ASN1_EXP_SEQUENCE_OF(REQUIRED_FIELD, seq_exp, ASN1_INTEGER, 3),
ASN1_SIMPLE(REQUIRED_FIELD, null, ASN1_NULL),
ASN1_IMP(REQUIRED_FIELD, null_imp, ASN1_NULL, 4),
ASN1_EXP(REQUIRED_FIELD, null_exp, ASN1_NULL, 5),
} ASN1_SEQUENCE_END(REQUIRED_FIELD)
IMPLEMENT_ASN1_FUNCTIONS(REQUIRED_FIELD)
// Test that structures with missing required fields cannot be serialized. Test
// the full combination of tagging and SEQUENCE OF.
TEST(ASN1Test, MissingRequiredField) {
EXPECT_EQ(-1, i2d_REQUIRED_FIELD(nullptr, nullptr));
std::unique_ptr<REQUIRED_FIELD, decltype(&REQUIRED_FIELD_free)> obj(
nullptr, REQUIRED_FIELD_free);
for (auto field : {&REQUIRED_FIELD::value, &REQUIRED_FIELD::value_imp,
&REQUIRED_FIELD::value_exp}) {
obj.reset(REQUIRED_FIELD_new());
ASSERT_TRUE(obj);
ASN1_INTEGER_free((*obj).*field);
(*obj).*field = nullptr;
EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr));
}
for (auto field : {&REQUIRED_FIELD::seq, &REQUIRED_FIELD::seq_imp,
&REQUIRED_FIELD::seq_exp}) {
obj.reset(REQUIRED_FIELD_new());
ASSERT_TRUE(obj);
sk_ASN1_INTEGER_pop_free((*obj).*field, ASN1_INTEGER_free);
(*obj).*field = nullptr;
EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr));
}
for (auto field : {&REQUIRED_FIELD::null, &REQUIRED_FIELD::null_imp,
&REQUIRED_FIELD::null_exp}) {
obj.reset(REQUIRED_FIELD_new());
ASSERT_TRUE(obj);
(*obj).*field = nullptr;
EXPECT_EQ(-1, i2d_REQUIRED_FIELD(obj.get(), nullptr));
}
}
struct BOOLEANS {
ASN1_BOOLEAN required;
ASN1_BOOLEAN optional;
ASN1_BOOLEAN default_true;
ASN1_BOOLEAN default_false;
};
DECLARE_ASN1_FUNCTIONS(BOOLEANS)
ASN1_SEQUENCE(BOOLEANS) = {
ASN1_SIMPLE(BOOLEANS, required, ASN1_BOOLEAN),
ASN1_IMP_OPT(BOOLEANS, optional, ASN1_BOOLEAN, 1),
// Although not actually optional, |ASN1_TBOOLEAN| and |ASN1_FBOOLEAN| need
// to be marked optional in the template.
ASN1_IMP_OPT(BOOLEANS, default_true, ASN1_TBOOLEAN, 2),
ASN1_IMP_OPT(BOOLEANS, default_false, ASN1_FBOOLEAN, 3),
} ASN1_SEQUENCE_END(BOOLEANS)
IMPLEMENT_ASN1_FUNCTIONS(BOOLEANS)
TEST(ASN1Test, OptionalAndDefaultBooleans) {
std::unique_ptr<BOOLEANS, decltype(&BOOLEANS_free)> obj(nullptr,
BOOLEANS_free);
// A default-constructed object should use, respectively, omitted, omitted,
// TRUE, FALSE.
//
// TODO(davidben): Is the first one a bug? It seems more consistent for a
// required BOOLEAN default to FALSE. |FOO_new| typically default-initializes
// fields valid states. (Though there are exceptions. CHOICE, ANY, and OBJECT
// IDENTIFIER are default-initialized to something invalid.)
obj.reset(BOOLEANS_new());
ASSERT_TRUE(obj);
EXPECT_EQ(obj->required, ASN1_BOOLEAN_NONE);
EXPECT_EQ(obj->optional, ASN1_BOOLEAN_NONE);
EXPECT_EQ(obj->default_true, ASN1_BOOLEAN_TRUE);
EXPECT_EQ(obj->default_false, ASN1_BOOLEAN_FALSE);
// Trying to serialize this should fail, because |obj->required| is omitted.
EXPECT_EQ(-1, i2d_BOOLEANS(obj.get(), nullptr));
// Otherwise, this object is serializable. Most fields are omitted, due to
// them being optional or defaulted.
static const uint8_t kFieldsOmitted[] = {0x30, 0x03, 0x01, 0x01, 0x00};
obj->required = 0;
TestSerialize(obj.get(), i2d_BOOLEANS, kFieldsOmitted);
const uint8_t *der = kFieldsOmitted;
obj.reset(d2i_BOOLEANS(nullptr, &der, sizeof(kFieldsOmitted)));
ASSERT_TRUE(obj);
EXPECT_EQ(obj->required, ASN1_BOOLEAN_FALSE);
EXPECT_EQ(obj->optional, ASN1_BOOLEAN_NONE);
EXPECT_EQ(obj->default_true, ASN1_BOOLEAN_TRUE);
EXPECT_EQ(obj->default_false, ASN1_BOOLEAN_FALSE);
// Include the optinonal fields instead.
static const uint8_t kFieldsIncluded[] = {0x30, 0x0c, 0x01, 0x01, 0xff,
0x81, 0x01, 0x00, 0x82, 0x01,
0x00, 0x83, 0x01, 0xff};
obj->required = ASN1_BOOLEAN_TRUE;
obj->optional = ASN1_BOOLEAN_FALSE;
obj->default_true = ASN1_BOOLEAN_FALSE;
obj->default_false = ASN1_BOOLEAN_TRUE;
TestSerialize(obj.get(), i2d_BOOLEANS, kFieldsIncluded);
der = kFieldsIncluded;
obj.reset(d2i_BOOLEANS(nullptr, &der, sizeof(kFieldsIncluded)));
ASSERT_TRUE(obj);
EXPECT_EQ(obj->required, ASN1_BOOLEAN_TRUE);
EXPECT_EQ(obj->optional, ASN1_BOOLEAN_FALSE);
EXPECT_EQ(obj->default_true, ASN1_BOOLEAN_FALSE);
EXPECT_EQ(obj->default_false, ASN1_BOOLEAN_TRUE);
// TODO(https://crbug.com/boringssl/354): Reject explicit DEFAULTs.
}
// EXPLICIT_BOOLEAN is a [1] EXPLICIT BOOLEAN.
ASN1_ITEM_TEMPLATE(EXPLICIT_BOOLEAN) = ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_EXPLICIT,
1,
EXPLICIT_BOOLEAN,
ASN1_BOOLEAN)
ASN1_ITEM_TEMPLATE_END(EXPLICIT_BOOLEAN)
// EXPLICIT_OCTET_STRING is a [2] EXPLICIT OCTET STRING.
ASN1_ITEM_TEMPLATE(EXPLICIT_OCTET_STRING) = ASN1_EX_TEMPLATE_TYPE(
ASN1_TFLG_EXPLICIT, 2, EXPLICIT_OCTET_STRING, ASN1_OCTET_STRING)
ASN1_ITEM_TEMPLATE_END(EXPLICIT_OCTET_STRING)
// DOUBLY_TAGGED is
// SEQUENCE {
// b [3] EXPLICIT [1] EXPLICIT BOOLEAN OPTIONAL,
// oct [4] EXPLICIT [2] EXPLICIT OCTET STRING OPTIONAL }
// with explicit tagging.
struct DOUBLY_TAGGED {
ASN1_BOOLEAN b;
ASN1_OCTET_STRING *oct;
};
DECLARE_ASN1_FUNCTIONS(DOUBLY_TAGGED)
ASN1_SEQUENCE(DOUBLY_TAGGED) = {
ASN1_EXP_OPT(DOUBLY_TAGGED, b, EXPLICIT_BOOLEAN, 3),
ASN1_EXP_OPT(DOUBLY_TAGGED, oct, EXPLICIT_OCTET_STRING, 4),
} ASN1_SEQUENCE_END(DOUBLY_TAGGED)
IMPLEMENT_ASN1_FUNCTIONS(DOUBLY_TAGGED)
// Test that optional fields with two layers of explicit tagging are correctly
// handled.
TEST(ASN1Test, DoublyTagged) {
std::unique_ptr<DOUBLY_TAGGED, decltype(&DOUBLY_TAGGED_free)> obj(
nullptr, DOUBLY_TAGGED_free);
// Both fields missing.
static const uint8_t kOmitted[] = {0x30, 0x00};
const uint8_t *inp = kOmitted;
obj.reset(d2i_DOUBLY_TAGGED(nullptr, &inp, sizeof(kOmitted)));
ASSERT_TRUE(obj);
EXPECT_EQ(obj->b, -1);
EXPECT_FALSE(obj->oct);
TestSerialize(obj.get(), i2d_DOUBLY_TAGGED, kOmitted);
// Both fields present, true and the empty string.
static const uint8_t kTrueEmpty[] = {0x30, 0x0d, 0xa3, 0x05, 0xa1,
0x03, 0x01, 0x01, 0xff, 0xa4,
0x04, 0xa2, 0x02, 0x04, 0x00};
inp = kTrueEmpty;
obj.reset(d2i_DOUBLY_TAGGED(nullptr, &inp, sizeof(kTrueEmpty)));
ASSERT_TRUE(obj);
EXPECT_EQ(obj->b, 0xff);
ASSERT_TRUE(obj->oct);
EXPECT_EQ(ASN1_STRING_length(obj->oct), 0);
TestSerialize(obj.get(), i2d_DOUBLY_TAGGED, kTrueEmpty);
}
#define CHOICE_TYPE_OCT 0
#define CHOICE_TYPE_BOOL 1
struct CHOICE_TYPE {
int type;
union {
ASN1_OCTET_STRING *oct;
ASN1_BOOLEAN b;
} value;
};
DECLARE_ASN1_FUNCTIONS(CHOICE_TYPE)
ASN1_CHOICE(CHOICE_TYPE) = {
ASN1_SIMPLE(CHOICE_TYPE, value.oct, ASN1_OCTET_STRING),
ASN1_SIMPLE(CHOICE_TYPE, value.b, ASN1_BOOLEAN),
} ASN1_CHOICE_END(CHOICE_TYPE)
IMPLEMENT_ASN1_FUNCTIONS(CHOICE_TYPE)
struct OPTIONAL_CHOICE {
CHOICE_TYPE *choice;
};
DECLARE_ASN1_FUNCTIONS(OPTIONAL_CHOICE)
ASN1_SEQUENCE(OPTIONAL_CHOICE) = {
ASN1_OPT(OPTIONAL_CHOICE, choice, CHOICE_TYPE),
} ASN1_SEQUENCE_END(OPTIONAL_CHOICE)
IMPLEMENT_ASN1_FUNCTIONS(OPTIONAL_CHOICE)
TEST(ASN1Test, OptionalChoice) {
std::unique_ptr<OPTIONAL_CHOICE, decltype(&OPTIONAL_CHOICE_free)> obj(
nullptr, OPTIONAL_CHOICE_free);
// Value omitted.
static const uint8_t kOmitted[] = {0x30, 0x00};
const uint8_t *inp = kOmitted;
obj.reset(d2i_OPTIONAL_CHOICE(nullptr, &inp, sizeof(kOmitted)));
ASSERT_TRUE(obj);
EXPECT_FALSE(obj->choice);
TestSerialize(obj.get(), i2d_OPTIONAL_CHOICE, kOmitted);
// Value is present as an OCTET STRING.
static const uint8_t kOct[] = {0x30, 0x02, 0x04, 0x00};
inp = kOct;
obj.reset(d2i_OPTIONAL_CHOICE(nullptr, &inp, sizeof(kOct)));
ASSERT_TRUE(obj);
ASSERT_TRUE(obj->choice);
ASSERT_EQ(obj->choice->type, CHOICE_TYPE_OCT);
ASSERT_TRUE(obj->choice->value.oct);
EXPECT_EQ(ASN1_STRING_length(obj->choice->value.oct), 0);
TestSerialize(obj.get(), i2d_OPTIONAL_CHOICE, kOct);
// Value is present as TRUE.
static const uint8_t kTrue[] = {0x30, 0x03, 0x01, 0x01, 0xff};
inp = kTrue;
obj.reset(d2i_OPTIONAL_CHOICE(nullptr, &inp, sizeof(kTrue)));
ASSERT_TRUE(obj);
ASSERT_TRUE(obj->choice);
ASSERT_EQ(obj->choice->type, CHOICE_TYPE_BOOL);
EXPECT_EQ(obj->choice->value.b, ASN1_BOOLEAN_TRUE);
TestSerialize(obj.get(), i2d_OPTIONAL_CHOICE, kTrue);
}
struct EMBED_X509_ALGOR {
X509_ALGOR *simple;
X509_ALGOR *opt;
STACK_OF(X509_ALGOR) *seq;
};
struct EMBED_X509_EXTENSION {
X509_EXTENSION *simple;
X509_EXTENSION *opt;
STACK_OF(X509_EXTENSION) *seq;
};
struct EMBED_X509_NAME {
X509_NAME *simple;
X509_NAME *opt;
STACK_OF(X509_NAME) *seq;
};
struct EMBED_X509 {
X509 *simple;
X509 *opt;
STACK_OF(X509) *seq;
};
DECLARE_ASN1_FUNCTIONS(EMBED_X509_ALGOR)
ASN1_SEQUENCE(EMBED_X509_ALGOR) = {
ASN1_SIMPLE(EMBED_X509_ALGOR, simple, X509_ALGOR),
ASN1_EXP_OPT(EMBED_X509_ALGOR, opt, X509_ALGOR, 0),
ASN1_IMP_SEQUENCE_OF_OPT(EMBED_X509_ALGOR, seq, X509_ALGOR, 1),
} ASN1_SEQUENCE_END(EMBED_X509_ALGOR)
IMPLEMENT_ASN1_FUNCTIONS(EMBED_X509_ALGOR)
DECLARE_ASN1_FUNCTIONS(EMBED_X509_NAME)
ASN1_SEQUENCE(EMBED_X509_NAME) = {
ASN1_SIMPLE(EMBED_X509_NAME, simple, X509_NAME),
ASN1_EXP_OPT(EMBED_X509_NAME, opt, X509_NAME, 0),
ASN1_IMP_SEQUENCE_OF_OPT(EMBED_X509_NAME, seq, X509_NAME, 1),
} ASN1_SEQUENCE_END(EMBED_X509_NAME)
IMPLEMENT_ASN1_FUNCTIONS(EMBED_X509_NAME)
DECLARE_ASN1_FUNCTIONS(EMBED_X509_EXTENSION)
ASN1_SEQUENCE(EMBED_X509_EXTENSION) = {
ASN1_SIMPLE(EMBED_X509_EXTENSION, simple, X509_EXTENSION),
ASN1_EXP_OPT(EMBED_X509_EXTENSION, opt, X509_EXTENSION, 0),
ASN1_IMP_SEQUENCE_OF_OPT(EMBED_X509_EXTENSION, seq, X509_EXTENSION, 1),
} ASN1_SEQUENCE_END(EMBED_X509_EXTENSION)
IMPLEMENT_ASN1_FUNCTIONS(EMBED_X509_EXTENSION)
DECLARE_ASN1_FUNCTIONS(EMBED_X509)
ASN1_SEQUENCE(EMBED_X509) = {
ASN1_SIMPLE(EMBED_X509, simple, X509),
ASN1_EXP_OPT(EMBED_X509, opt, X509, 0),
ASN1_IMP_SEQUENCE_OF_OPT(EMBED_X509, seq, X509, 1),
} ASN1_SEQUENCE_END(EMBED_X509)
IMPLEMENT_ASN1_FUNCTIONS(EMBED_X509)
template <typename EmbedT, typename T, typename MaybeConstT, typename StackT>
void TestEmbedType(bssl::Span<const uint8_t> inp,
int (*i2d)(MaybeConstT *, uint8_t **),
EmbedT *(*embed_new)(), void (*embed_free)(EmbedT *),
EmbedT *(*d2i_embed)(EmbedT **, const uint8_t **, long),
int (*i2d_embed)(EmbedT *, uint8_t **),
size_t (*sk_num)(const StackT *),
T *(*sk_value)(const StackT *, size_t)) {
std::unique_ptr<EmbedT, decltype(embed_free)> obj(nullptr, embed_free);
// Test only the first field present.
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 64));
CBB seq;
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &seq, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_bytes(&seq, inp.data(), inp.size()));
ASSERT_TRUE(CBB_flush(cbb.get()));
const uint8_t *ptr = CBB_data(cbb.get());
obj.reset(d2i_embed(nullptr, &ptr, CBB_len(cbb.get())));
ASSERT_TRUE(obj);
ASSERT_TRUE(obj->simple);
// Test the field was parsed correctly by reserializing it.
TestSerialize(obj->simple, i2d, inp);
EXPECT_FALSE(obj->opt);
EXPECT_FALSE(obj->seq);
TestSerialize(obj.get(), i2d_embed,
{CBB_data(cbb.get()), CBB_len(cbb.get())});
// Test all fields present.
cbb.Reset();
ASSERT_TRUE(CBB_init(cbb.get(), 64));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &seq, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_bytes(&seq, inp.data(), inp.size()));
CBB child;
ASSERT_TRUE(CBB_add_asn1(
&seq, &child, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
ASSERT_TRUE(CBB_add_bytes(&child, inp.data(), inp.size()));
ASSERT_TRUE(CBB_add_asn1(
&seq, &child, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1));
ASSERT_TRUE(CBB_add_bytes(&child, inp.data(), inp.size()));
ASSERT_TRUE(CBB_add_bytes(&child, inp.data(), inp.size()));
ASSERT_TRUE(CBB_flush(cbb.get()));
ptr = CBB_data(cbb.get());
obj.reset(d2i_embed(nullptr, &ptr, CBB_len(cbb.get())));
ASSERT_TRUE(obj);
ASSERT_TRUE(obj->simple);
TestSerialize(obj->simple, i2d, inp);
ASSERT_TRUE(obj->opt);
TestSerialize(obj->opt, i2d, inp);
ASSERT_EQ(sk_num(obj->seq), 2u);
TestSerialize(sk_value(obj->seq, 0), i2d, inp);
TestSerialize(sk_value(obj->seq, 1), i2d, inp);
TestSerialize(obj.get(), i2d_embed,
{CBB_data(cbb.get()), CBB_len(cbb.get())});
}
// Test that X.509 types defined in this library can be embedded into other
// types, as we rewrite them away from the templating system.
TEST(ASN1Test, EmbedTypes) {
static const uint8_t kTestAlg[] = {0x30, 0x09, 0x06, 0x07, 0x2a, 0x86,
0x48, 0xce, 0x3d, 0x04, 0x01};
TestEmbedType(kTestAlg, i2d_X509_ALGOR, EMBED_X509_ALGOR_new,
EMBED_X509_ALGOR_free, d2i_EMBED_X509_ALGOR,
i2d_EMBED_X509_ALGOR, sk_X509_ALGOR_num, sk_X509_ALGOR_value);
static const uint8_t kTestName[] = {
0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13,
0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08,
0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65,
0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49,
0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67,
0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64};
TestEmbedType(kTestName, i2d_X509_NAME, EMBED_X509_NAME_new,
EMBED_X509_NAME_free, d2i_EMBED_X509_NAME, i2d_EMBED_X509_NAME,
sk_X509_NAME_num, sk_X509_NAME_value);
static const uint8_t kTestExtension[] = {0x30, 0x0c, 0x06, 0x03, 0x55,
0x1d, 0x13, 0x04, 0x05, 0x30,
0x03, 0x01, 0x01, 0xf};
TestEmbedType(kTestExtension, i2d_X509_EXTENSION, EMBED_X509_EXTENSION_new,
EMBED_X509_EXTENSION_free, d2i_EMBED_X509_EXTENSION,
i2d_EMBED_X509_EXTENSION, sk_X509_EXTENSION_num,
sk_X509_EXTENSION_value);
static const uint8_t kTestCert[] = {
0x30, 0x82, 0x01, 0xcf, 0x30, 0x82, 0x01, 0x76, 0xa0, 0x03, 0x02, 0x01,
0x02, 0x02, 0x09, 0x00, 0xd9, 0x4c, 0x04, 0xda, 0x49, 0x7d, 0xbf, 0xeb,
0x30, 0x09, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x01, 0x30,
0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02,
0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08, 0x0c,
0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, 0x31,
0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, 0x6e,
0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67, 0x69,
0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64, 0x30, 0x1e,
0x17, 0x0d, 0x31, 0x34, 0x30, 0x34, 0x32, 0x33, 0x32, 0x33, 0x32, 0x31,
0x35, 0x37, 0x5a, 0x17, 0x0d, 0x31, 0x34, 0x30, 0x35, 0x32, 0x33, 0x32,
0x33, 0x32, 0x31, 0x35, 0x37, 0x5a, 0x30, 0x45, 0x31, 0x0b, 0x30, 0x09,
0x06, 0x03, 0x55, 0x04, 0x06, 0x13, 0x02, 0x41, 0x55, 0x31, 0x13, 0x30,
0x11, 0x06, 0x03, 0x55, 0x04, 0x08, 0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65,
0x2d, 0x53, 0x74, 0x61, 0x74, 0x65, 0x31, 0x21, 0x30, 0x1f, 0x06, 0x03,
0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49, 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65,
0x74, 0x20, 0x57, 0x69, 0x64, 0x67, 0x69, 0x74, 0x73, 0x20, 0x50, 0x74,
0x79, 0x20, 0x4c, 0x74, 0x64, 0x30, 0x59, 0x30, 0x13, 0x06, 0x07, 0x2a,
0x86, 0x48, 0xce, 0x3d, 0x02, 0x01, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce,
0x3d, 0x03, 0x01, 0x07, 0x03, 0x42, 0x00, 0x04, 0xe6, 0x2b, 0x69, 0xe2,
0xbf, 0x65, 0x9f, 0x97, 0xbe, 0x2f, 0x1e, 0x0d, 0x94, 0x8a, 0x4c, 0xd5,
0x97, 0x6b, 0xb7, 0xa9, 0x1e, 0x0d, 0x46, 0xfb, 0xdd, 0xa9, 0xa9, 0x1e,
0x9d, 0xdc, 0xba, 0x5a, 0x01, 0xe7, 0xd6, 0x97, 0xa8, 0x0a, 0x18, 0xf9,
0xc3, 0xc4, 0xa3, 0x1e, 0x56, 0xe2, 0x7c, 0x83, 0x48, 0xdb, 0x16, 0x1a,
0x1c, 0xf5, 0x1d, 0x7e, 0xf1, 0x94, 0x2d, 0x4b, 0xcf, 0x72, 0x22, 0xc1,
0xa3, 0x50, 0x30, 0x4e, 0x30, 0x1d, 0x06, 0x03, 0x55, 0x1d, 0x0e, 0x04,
0x16, 0x04, 0x14, 0xab, 0x84, 0xd2, 0xac, 0xab, 0x95, 0xf0, 0x82, 0x4e,
0x16, 0x78, 0x07, 0x55, 0x57, 0x5f, 0xe4, 0x26, 0x8d, 0x82, 0xd1, 0x30,
0x1f, 0x06, 0x03, 0x55, 0x1d, 0x23, 0x04, 0x18, 0x30, 0x16, 0x80, 0x14,
0xab, 0x84, 0xd2, 0xac, 0xab, 0x95, 0xf0, 0x82, 0x4e, 0x16, 0x78, 0x07,
0x55, 0x57, 0x5f, 0xe4, 0x26, 0x8d, 0x82, 0xd1, 0x30, 0x0c, 0x06, 0x03,
0x55, 0x1d, 0x13, 0x04, 0x05, 0x30, 0x03, 0x01, 0x01, 0xff, 0x30, 0x09,
0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x04, 0x01, 0x03, 0x48, 0x00,
0x30, 0x45, 0x02, 0x21, 0x00, 0xf2, 0xa0, 0x35, 0x5e, 0x51, 0x3a, 0x36,
0xc3, 0x82, 0x79, 0x9b, 0xee, 0x27, 0x50, 0x85, 0x8e, 0x70, 0x06, 0x74,
0x95, 0x57, 0xd2, 0x29, 0x74, 0x00, 0xf4, 0xbe, 0x15, 0x87, 0x5d, 0xc4,
0x07, 0x02, 0x20, 0x7c, 0x1e, 0x79, 0x14, 0x6a, 0x21, 0x83, 0xf0, 0x7a,
0x74, 0x68, 0x79, 0x5f, 0x14, 0x99, 0x9a, 0x68, 0xb4, 0xf1, 0xcb, 0x9e,
0x15, 0x5e, 0xe6, 0x1f, 0x32, 0x52, 0x61, 0x5e, 0x75, 0xc9, 0x14};
TestEmbedType(kTestCert, i2d_X509, EMBED_X509_new, EMBED_X509_free,
d2i_EMBED_X509, i2d_EMBED_X509, sk_X509_num, sk_X509_value);
}
#endif // !WINDOWS || !SHARED_LIBRARY