| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * ECC cipher suite support in OpenSSL originally developed by |
| * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. |
| */ |
| /* ==================================================================== |
| * Copyright 2005 Nokia. All rights reserved. |
| * |
| * The portions of the attached software ("Contribution") is developed by |
| * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
| * license. |
| * |
| * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
| * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
| * support (see RFC 4279) to OpenSSL. |
| * |
| * No patent licenses or other rights except those expressly stated in |
| * the OpenSSL open source license shall be deemed granted or received |
| * expressly, by implication, estoppel, or otherwise. |
| * |
| * No assurances are provided by Nokia that the Contribution does not |
| * infringe the patent or other intellectual property rights of any third |
| * party or that the license provides you with all the necessary rights |
| * to make use of the Contribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
| * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
| * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
| * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
| * OTHERWISE. */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <algorithm> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <openssl/bytestring.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include <openssl/lhash.h> |
| #include <openssl/mem.h> |
| #include <openssl/rand.h> |
| |
| #include "internal.h" |
| #include "../crypto/internal.h" |
| |
| #if defined(OPENSSL_WINDOWS) |
| #include <sys/timeb.h> |
| #else |
| #include <sys/socket.h> |
| #include <sys/time.h> |
| #endif |
| |
| |
| BSSL_NAMESPACE_BEGIN |
| |
| static_assert(SSL3_RT_MAX_ENCRYPTED_OVERHEAD >= |
| SSL3_RT_SEND_MAX_ENCRYPTED_OVERHEAD, |
| "max overheads are inconsistent"); |
| |
| // |SSL_R_UNKNOWN_PROTOCOL| is no longer emitted, but continue to define it |
| // to avoid downstream churn. |
| OPENSSL_DECLARE_ERROR_REASON(SSL, UNKNOWN_PROTOCOL) |
| |
| // The following errors are no longer emitted, but are used in nginx without |
| // #ifdefs. |
| OPENSSL_DECLARE_ERROR_REASON(SSL, BLOCK_CIPHER_PAD_IS_WRONG) |
| OPENSSL_DECLARE_ERROR_REASON(SSL, NO_CIPHERS_SPECIFIED) |
| |
| // Some error codes are special. Ensure the make_errors.go script never |
| // regresses this. |
| static_assert(SSL_R_TLSV1_ALERT_NO_RENEGOTIATION == |
| SSL_AD_NO_RENEGOTIATION + SSL_AD_REASON_OFFSET, |
| "alert reason code mismatch"); |
| |
| // kMaxHandshakeSize is the maximum size, in bytes, of a handshake message. |
| static const size_t kMaxHandshakeSize = (1u << 24) - 1; |
| |
| static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl = |
| CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; |
| static CRYPTO_EX_DATA_CLASS g_ex_data_class_ssl_ctx = |
| CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA; |
| |
| bool CBBFinishArray(CBB *cbb, Array<uint8_t> *out) { |
| uint8_t *ptr; |
| size_t len; |
| if (!CBB_finish(cbb, &ptr, &len)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return false; |
| } |
| out->Reset(ptr, len); |
| return true; |
| } |
| |
| void ssl_reset_error_state(SSL *ssl) { |
| // Functions which use |SSL_get_error| must reset I/O and error state on |
| // entry. |
| ssl->s3->rwstate = SSL_ERROR_NONE; |
| ERR_clear_error(); |
| ERR_clear_system_error(); |
| } |
| |
| void ssl_set_read_error(SSL* ssl) { |
| ssl->s3->read_shutdown = ssl_shutdown_error; |
| ssl->s3->read_error.reset(ERR_save_state()); |
| } |
| |
| static bool check_read_error(const SSL *ssl) { |
| if (ssl->s3->read_shutdown == ssl_shutdown_error) { |
| ERR_restore_state(ssl->s3->read_error.get()); |
| return false; |
| } |
| return true; |
| } |
| |
| bool ssl_can_write(const SSL *ssl) { |
| return !SSL_in_init(ssl) || ssl->s3->hs->can_early_write; |
| } |
| |
| bool ssl_can_read(const SSL *ssl) { |
| return !SSL_in_init(ssl) || ssl->s3->hs->can_early_read; |
| } |
| |
| ssl_open_record_t ssl_open_handshake(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, Span<uint8_t> in) { |
| *out_consumed = 0; |
| if (!check_read_error(ssl)) { |
| *out_alert = 0; |
| return ssl_open_record_error; |
| } |
| auto ret = ssl->method->open_handshake(ssl, out_consumed, out_alert, in); |
| if (ret == ssl_open_record_error) { |
| ssl_set_read_error(ssl); |
| } |
| return ret; |
| } |
| |
| ssl_open_record_t ssl_open_change_cipher_spec(SSL *ssl, size_t *out_consumed, |
| uint8_t *out_alert, |
| Span<uint8_t> in) { |
| *out_consumed = 0; |
| if (!check_read_error(ssl)) { |
| *out_alert = 0; |
| return ssl_open_record_error; |
| } |
| auto ret = |
| ssl->method->open_change_cipher_spec(ssl, out_consumed, out_alert, in); |
| if (ret == ssl_open_record_error) { |
| ssl_set_read_error(ssl); |
| } |
| return ret; |
| } |
| |
| ssl_open_record_t ssl_open_app_data(SSL *ssl, Span<uint8_t> *out, |
| size_t *out_consumed, uint8_t *out_alert, |
| Span<uint8_t> in) { |
| *out_consumed = 0; |
| if (!check_read_error(ssl)) { |
| *out_alert = 0; |
| return ssl_open_record_error; |
| } |
| auto ret = ssl->method->open_app_data(ssl, out, out_consumed, out_alert, in); |
| if (ret == ssl_open_record_error) { |
| ssl_set_read_error(ssl); |
| } |
| return ret; |
| } |
| |
| static uint8_t hex_char_consttime(uint8_t b) { |
| declassify_assert(b < 16); |
| return constant_time_select_8(constant_time_lt_8(b, 10), b + '0', |
| b - 10 + 'a'); |
| } |
| |
| static bool cbb_add_hex_consttime(CBB *cbb, Span<const uint8_t> in) { |
| uint8_t *out; |
| if (!CBB_add_space(cbb, &out, in.size() * 2)) { |
| return false; |
| } |
| |
| for (uint8_t b : in) { |
| *(out++) = hex_char_consttime(b >> 4); |
| *(out++) = hex_char_consttime(b & 0xf); |
| } |
| |
| return true; |
| } |
| |
| bool ssl_log_secret(const SSL *ssl, const char *label, |
| Span<const uint8_t> secret) { |
| if (ssl->ctx->keylog_callback == NULL) { |
| return true; |
| } |
| |
| ScopedCBB cbb; |
| Array<uint8_t> line; |
| if (!CBB_init(cbb.get(), strlen(label) + 1 + SSL3_RANDOM_SIZE * 2 + 1 + |
| secret.size() * 2 + 1) || |
| !CBB_add_bytes(cbb.get(), reinterpret_cast<const uint8_t *>(label), |
| strlen(label)) || |
| !CBB_add_u8(cbb.get(), ' ') || |
| !cbb_add_hex_consttime(cbb.get(), ssl->s3->client_random) || |
| !CBB_add_u8(cbb.get(), ' ') || |
| // Convert to hex in constant time to avoid leaking |secret|. If the |
| // callback discards the data, we should not introduce side channels. |
| !cbb_add_hex_consttime(cbb.get(), secret) || |
| !CBB_add_u8(cbb.get(), 0 /* NUL */) || |
| !CBBFinishArray(cbb.get(), &line)) { |
| return false; |
| } |
| |
| ssl->ctx->keylog_callback(ssl, reinterpret_cast<const char *>(line.data())); |
| return true; |
| } |
| |
| void ssl_do_info_callback(const SSL *ssl, int type, int value) { |
| void (*cb)(const SSL *ssl, int type, int value) = NULL; |
| if (ssl->info_callback != NULL) { |
| cb = ssl->info_callback; |
| } else if (ssl->ctx->info_callback != NULL) { |
| cb = ssl->ctx->info_callback; |
| } |
| |
| if (cb != NULL) { |
| cb(ssl, type, value); |
| } |
| } |
| |
| void ssl_do_msg_callback(const SSL *ssl, int is_write, int content_type, |
| Span<const uint8_t> in) { |
| if (ssl->msg_callback == NULL) { |
| return; |
| } |
| |
| // |version| is zero when calling for |SSL3_RT_HEADER| and |SSL2_VERSION| for |
| // a V2ClientHello. |
| int version; |
| switch (content_type) { |
| case 0: |
| // V2ClientHello |
| version = SSL2_VERSION; |
| break; |
| case SSL3_RT_HEADER: |
| version = 0; |
| break; |
| default: |
| version = SSL_version(ssl); |
| } |
| |
| ssl->msg_callback(is_write, version, content_type, in.data(), in.size(), |
| const_cast<SSL *>(ssl), ssl->msg_callback_arg); |
| } |
| |
| void ssl_get_current_time(const SSL *ssl, struct OPENSSL_timeval *out_clock) { |
| // TODO(martinkr): Change callers to |ssl_ctx_get_current_time| and drop the |
| // |ssl| arg from |current_time_cb| if possible. |
| ssl_ctx_get_current_time(ssl->ctx.get(), out_clock); |
| } |
| |
| void ssl_ctx_get_current_time(const SSL_CTX *ctx, |
| struct OPENSSL_timeval *out_clock) { |
| if (ctx->current_time_cb != NULL) { |
| // TODO(davidben): Update current_time_cb to use OPENSSL_timeval. See |
| // https://crbug.com/boringssl/155. |
| struct timeval clock; |
| ctx->current_time_cb(nullptr /* ssl */, &clock); |
| if (clock.tv_sec < 0) { |
| assert(0); |
| out_clock->tv_sec = 0; |
| out_clock->tv_usec = 0; |
| } else { |
| out_clock->tv_sec = (uint64_t)clock.tv_sec; |
| out_clock->tv_usec = (uint32_t)clock.tv_usec; |
| } |
| return; |
| } |
| |
| #if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE) |
| out_clock->tv_sec = 1234; |
| out_clock->tv_usec = 1234; |
| #elif defined(OPENSSL_WINDOWS) |
| struct _timeb time; |
| _ftime(&time); |
| if (time.time < 0) { |
| assert(0); |
| out_clock->tv_sec = 0; |
| out_clock->tv_usec = 0; |
| } else { |
| out_clock->tv_sec = time.time; |
| out_clock->tv_usec = time.millitm * 1000; |
| } |
| #else |
| struct timeval clock; |
| gettimeofday(&clock, NULL); |
| if (clock.tv_sec < 0) { |
| assert(0); |
| out_clock->tv_sec = 0; |
| out_clock->tv_usec = 0; |
| } else { |
| out_clock->tv_sec = (uint64_t)clock.tv_sec; |
| out_clock->tv_usec = (uint32_t)clock.tv_usec; |
| } |
| #endif |
| } |
| |
| void SSL_CTX_set_handoff_mode(SSL_CTX *ctx, bool on) { |
| ctx->handoff = on; |
| } |
| |
| static bool ssl_can_renegotiate(const SSL *ssl) { |
| if (ssl->server || SSL_is_dtls(ssl)) { |
| return false; |
| } |
| |
| if (ssl->s3->version != 0 && |
| ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return false; |
| } |
| |
| // The config has already been shed. |
| if (!ssl->config) { |
| return false; |
| } |
| |
| switch (ssl->renegotiate_mode) { |
| case ssl_renegotiate_ignore: |
| case ssl_renegotiate_never: |
| return false; |
| |
| case ssl_renegotiate_freely: |
| case ssl_renegotiate_explicit: |
| return true; |
| case ssl_renegotiate_once: |
| return ssl->s3->total_renegotiations == 0; |
| } |
| |
| assert(0); |
| return false; |
| } |
| |
| static void ssl_maybe_shed_handshake_config(SSL *ssl) { |
| if (ssl->s3->hs != nullptr || |
| ssl->config == nullptr || |
| !ssl->config->shed_handshake_config || |
| ssl_can_renegotiate(ssl)) { |
| return; |
| } |
| |
| ssl->config.reset(); |
| } |
| |
| void SSL_set_handoff_mode(SSL *ssl, bool on) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->handoff = on; |
| } |
| |
| bool SSL_get_traffic_secrets(const SSL *ssl, |
| Span<const uint8_t> *out_read_traffic_secret, |
| Span<const uint8_t> *out_write_traffic_secret) { |
| // This API is not well-defined for DTLS 1.3 (see https://crbug.com/42290608) |
| // or QUIC, where multiple epochs may be alive at once. |
| if (SSL_is_dtls(ssl) || ssl->quic_method != nullptr) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return false; |
| } |
| |
| if (!ssl->s3->initial_handshake_complete) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE); |
| return false; |
| } |
| |
| if (SSL_version(ssl) < TLS1_3_VERSION) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); |
| return false; |
| } |
| |
| *out_read_traffic_secret = ssl->s3->read_traffic_secret; |
| *out_write_traffic_secret = ssl->s3->write_traffic_secret; |
| return true; |
| } |
| |
| void SSL_CTX_set_aes_hw_override_for_testing(SSL_CTX *ctx, |
| bool override_value) { |
| ctx->aes_hw_override = true; |
| ctx->aes_hw_override_value = override_value; |
| } |
| |
| void SSL_set_aes_hw_override_for_testing(SSL *ssl, bool override_value) { |
| ssl->config->aes_hw_override = true; |
| ssl->config->aes_hw_override_value = override_value; |
| } |
| |
| BSSL_NAMESPACE_END |
| |
| using namespace bssl; |
| |
| int SSL_library_init(void) { return 1; } |
| |
| int OPENSSL_init_ssl(uint64_t opts, const OPENSSL_INIT_SETTINGS *settings) { |
| return 1; |
| } |
| |
| static uint32_t ssl_session_hash(const SSL_SESSION *sess) { |
| return ssl_hash_session_id(sess->session_id); |
| } |
| |
| static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) { |
| return MakeConstSpan(a->session_id) == b->session_id ? 0 : 1; |
| } |
| |
| ssl_ctx_st::ssl_ctx_st(const SSL_METHOD *ssl_method) |
| : RefCounted(CheckSubClass()), |
| method(ssl_method->method), |
| x509_method(ssl_method->x509_method), |
| retain_only_sha256_of_client_certs(false), |
| quiet_shutdown(false), |
| ocsp_stapling_enabled(false), |
| signed_cert_timestamps_enabled(false), |
| channel_id_enabled(false), |
| grease_enabled(false), |
| permute_extensions(false), |
| allow_unknown_alpn_protos(false), |
| false_start_allowed_without_alpn(false), |
| handoff(false), |
| enable_early_data(false), |
| aes_hw_override(false), |
| aes_hw_override_value(false) { |
| CRYPTO_MUTEX_init(&lock); |
| CRYPTO_new_ex_data(&ex_data); |
| } |
| |
| ssl_ctx_st::~ssl_ctx_st() { |
| // Free the internal session cache. Note that this calls the caller-supplied |
| // remove callback, so we must do it before clearing ex_data. (See ticket |
| // [openssl.org #212].) |
| SSL_CTX_flush_sessions(this, 0); |
| |
| CRYPTO_free_ex_data(&g_ex_data_class_ssl_ctx, this, &ex_data); |
| |
| CRYPTO_MUTEX_cleanup(&lock); |
| lh_SSL_SESSION_free(sessions); |
| x509_method->ssl_ctx_free(this); |
| } |
| |
| SSL_CTX *SSL_CTX_new(const SSL_METHOD *method) { |
| if (method == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_METHOD_PASSED); |
| return nullptr; |
| } |
| |
| UniquePtr<SSL_CTX> ret = MakeUnique<SSL_CTX>(method); |
| if (!ret) { |
| return nullptr; |
| } |
| |
| ret->cert = MakeUnique<CERT>(method->x509_method); |
| ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); |
| ret->client_CA.reset(sk_CRYPTO_BUFFER_new_null()); |
| ret->CA_names.reset(sk_CRYPTO_BUFFER_new_null()); |
| if (ret->cert == nullptr || // |
| !ret->cert->is_valid() || // |
| ret->sessions == nullptr || // |
| ret->client_CA == nullptr || // |
| ret->CA_names == nullptr || // |
| !ret->x509_method->ssl_ctx_new(ret.get())) { |
| return nullptr; |
| } |
| |
| if (!SSL_CTX_set_strict_cipher_list(ret.get(), SSL_DEFAULT_CIPHER_LIST) || |
| // Lock the SSL_CTX to the specified version, for compatibility with |
| // legacy uses of SSL_METHOD. |
| !SSL_CTX_set_max_proto_version(ret.get(), method->version) || |
| !SSL_CTX_set_min_proto_version(ret.get(), method->version)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return nullptr; |
| } |
| |
| return ret.release(); |
| } |
| |
| int SSL_CTX_up_ref(SSL_CTX *ctx) { |
| ctx->UpRefInternal(); |
| return 1; |
| } |
| |
| void SSL_CTX_free(SSL_CTX *ctx) { |
| if (ctx != nullptr) { |
| ctx->DecRefInternal(); |
| } |
| } |
| |
| ssl_st::ssl_st(SSL_CTX *ctx_arg) |
| : method(ctx_arg->method), |
| max_send_fragment(ctx_arg->max_send_fragment), |
| msg_callback(ctx_arg->msg_callback), |
| msg_callback_arg(ctx_arg->msg_callback_arg), |
| ctx(UpRef(ctx_arg)), |
| session_ctx(UpRef(ctx_arg)), |
| options(ctx->options), |
| mode(ctx->mode), |
| max_cert_list(ctx->max_cert_list), |
| server(false), |
| quiet_shutdown(ctx->quiet_shutdown), |
| enable_early_data(ctx->enable_early_data) { |
| CRYPTO_new_ex_data(&ex_data); |
| } |
| |
| ssl_st::~ssl_st() { |
| CRYPTO_free_ex_data(&g_ex_data_class_ssl, this, &ex_data); |
| // |config| refers to |this|, so we must release it earlier. |
| config.reset(); |
| if (method != NULL) { |
| method->ssl_free(this); |
| } |
| } |
| |
| SSL *SSL_new(SSL_CTX *ctx) { |
| if (ctx == nullptr) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NULL_SSL_CTX); |
| return nullptr; |
| } |
| |
| UniquePtr<SSL> ssl = MakeUnique<SSL>(ctx); |
| if (ssl == nullptr) { |
| return nullptr; |
| } |
| |
| ssl->config = MakeUnique<SSL_CONFIG>(ssl.get()); |
| if (ssl->config == nullptr) { |
| return nullptr; |
| } |
| ssl->config->conf_min_version = ctx->conf_min_version; |
| ssl->config->conf_max_version = ctx->conf_max_version; |
| |
| ssl->config->cert = ssl_cert_dup(ctx->cert.get()); |
| if (ssl->config->cert == nullptr) { |
| return nullptr; |
| } |
| |
| ssl->config->verify_mode = ctx->verify_mode; |
| ssl->config->verify_callback = ctx->default_verify_callback; |
| ssl->config->custom_verify_callback = ctx->custom_verify_callback; |
| ssl->config->retain_only_sha256_of_client_certs = |
| ctx->retain_only_sha256_of_client_certs; |
| ssl->config->permute_extensions = ctx->permute_extensions; |
| ssl->config->aes_hw_override = ctx->aes_hw_override; |
| ssl->config->aes_hw_override_value = ctx->aes_hw_override_value; |
| ssl->config->tls13_cipher_policy = ctx->tls13_cipher_policy; |
| |
| if (!ssl->config->supported_group_list.CopyFrom(ctx->supported_group_list) || |
| !ssl->config->alpn_client_proto_list.CopyFrom( |
| ctx->alpn_client_proto_list) || |
| !ssl->config->verify_sigalgs.CopyFrom(ctx->verify_sigalgs)) { |
| return nullptr; |
| } |
| |
| if (ctx->psk_identity_hint) { |
| ssl->config->psk_identity_hint.reset( |
| OPENSSL_strdup(ctx->psk_identity_hint.get())); |
| if (ssl->config->psk_identity_hint == nullptr) { |
| return nullptr; |
| } |
| } |
| ssl->config->psk_client_callback = ctx->psk_client_callback; |
| ssl->config->psk_server_callback = ctx->psk_server_callback; |
| |
| ssl->config->channel_id_enabled = ctx->channel_id_enabled; |
| ssl->config->channel_id_private = UpRef(ctx->channel_id_private); |
| |
| ssl->config->signed_cert_timestamps_enabled = |
| ctx->signed_cert_timestamps_enabled; |
| ssl->config->ocsp_stapling_enabled = ctx->ocsp_stapling_enabled; |
| ssl->config->handoff = ctx->handoff; |
| ssl->quic_method = ctx->quic_method; |
| |
| if (!ssl->method->ssl_new(ssl.get()) || |
| !ssl->ctx->x509_method->ssl_new(ssl->s3->hs.get())) { |
| return nullptr; |
| } |
| |
| return ssl.release(); |
| } |
| |
| SSL_CONFIG::SSL_CONFIG(SSL *ssl_arg) |
| : ssl(ssl_arg), |
| ech_grease_enabled(false), |
| signed_cert_timestamps_enabled(false), |
| ocsp_stapling_enabled(false), |
| channel_id_enabled(false), |
| enforce_rsa_key_usage(true), |
| retain_only_sha256_of_client_certs(false), |
| handoff(false), |
| shed_handshake_config(false), |
| jdk11_workaround(false), |
| quic_use_legacy_codepoint(false), |
| permute_extensions(false), |
| alps_use_new_codepoint(false), |
| check_client_certificate_type(true), |
| check_ecdsa_curve(true) { |
| assert(ssl); |
| } |
| |
| SSL_CONFIG::~SSL_CONFIG() { |
| if (ssl->ctx != nullptr) { |
| ssl->ctx->x509_method->ssl_config_free(this); |
| } |
| } |
| |
| void SSL_free(SSL *ssl) { |
| Delete(ssl); |
| } |
| |
| void SSL_set_connect_state(SSL *ssl) { |
| ssl->server = false; |
| ssl->do_handshake = ssl_client_handshake; |
| } |
| |
| void SSL_set_accept_state(SSL *ssl) { |
| ssl->server = true; |
| ssl->do_handshake = ssl_server_handshake; |
| } |
| |
| void SSL_set0_rbio(SSL *ssl, BIO *rbio) { |
| ssl->rbio.reset(rbio); |
| } |
| |
| void SSL_set0_wbio(SSL *ssl, BIO *wbio) { |
| ssl->wbio.reset(wbio); |
| } |
| |
| void SSL_set_bio(SSL *ssl, BIO *rbio, BIO *wbio) { |
| // For historical reasons, this function has many different cases in ownership |
| // handling. |
| |
| // If nothing has changed, do nothing |
| if (rbio == SSL_get_rbio(ssl) && wbio == SSL_get_wbio(ssl)) { |
| return; |
| } |
| |
| // If the two arguments are equal, one fewer reference is granted than |
| // taken. |
| if (rbio != NULL && rbio == wbio) { |
| BIO_up_ref(rbio); |
| } |
| |
| // If only the wbio is changed, adopt only one reference. |
| if (rbio == SSL_get_rbio(ssl)) { |
| SSL_set0_wbio(ssl, wbio); |
| return; |
| } |
| |
| // There is an asymmetry here for historical reasons. If only the rbio is |
| // changed AND the rbio and wbio were originally different, then we only adopt |
| // one reference. |
| if (wbio == SSL_get_wbio(ssl) && SSL_get_rbio(ssl) != SSL_get_wbio(ssl)) { |
| SSL_set0_rbio(ssl, rbio); |
| return; |
| } |
| |
| // Otherwise, adopt both references. |
| SSL_set0_rbio(ssl, rbio); |
| SSL_set0_wbio(ssl, wbio); |
| } |
| |
| BIO *SSL_get_rbio(const SSL *ssl) { return ssl->rbio.get(); } |
| |
| BIO *SSL_get_wbio(const SSL *ssl) { return ssl->wbio.get(); } |
| |
| size_t SSL_quic_max_handshake_flight_len(const SSL *ssl, |
| enum ssl_encryption_level_t level) { |
| // Limits flights to 16K by default when there are no large |
| // (certificate-carrying) messages. |
| static const size_t kDefaultLimit = 16384; |
| |
| switch (level) { |
| case ssl_encryption_initial: |
| return kDefaultLimit; |
| case ssl_encryption_early_data: |
| // QUIC does not send EndOfEarlyData. |
| return 0; |
| case ssl_encryption_handshake: |
| if (ssl->server) { |
| // Servers may receive Certificate message if configured to request |
| // client certificates. |
| if (!!(ssl->config->verify_mode & SSL_VERIFY_PEER) && |
| ssl->max_cert_list > kDefaultLimit) { |
| return ssl->max_cert_list; |
| } |
| } else { |
| // Clients may receive both Certificate message and a CertificateRequest |
| // message. |
| if (2*ssl->max_cert_list > kDefaultLimit) { |
| return 2*ssl->max_cert_list; |
| } |
| } |
| return kDefaultLimit; |
| case ssl_encryption_application: |
| // Note there is not actually a bound on the number of NewSessionTickets |
| // one may send in a row. This level may need more involved flow |
| // control. See https://github.com/quicwg/base-drafts/issues/1834. |
| return kDefaultLimit; |
| } |
| |
| return 0; |
| } |
| |
| enum ssl_encryption_level_t SSL_quic_read_level(const SSL *ssl) { |
| return ssl->s3->read_level; |
| } |
| |
| enum ssl_encryption_level_t SSL_quic_write_level(const SSL *ssl) { |
| return ssl->s3->write_level; |
| } |
| |
| int SSL_provide_quic_data(SSL *ssl, enum ssl_encryption_level_t level, |
| const uint8_t *data, size_t len) { |
| if (ssl->quic_method == nullptr) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| if (level != ssl->s3->read_level) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_ENCRYPTION_LEVEL_RECEIVED); |
| return 0; |
| } |
| |
| size_t new_len = (ssl->s3->hs_buf ? ssl->s3->hs_buf->length : 0) + len; |
| if (new_len < len || |
| new_len > SSL_quic_max_handshake_flight_len(ssl, level)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); |
| return 0; |
| } |
| |
| return tls_append_handshake_data(ssl, MakeConstSpan(data, len)); |
| } |
| |
| int SSL_do_handshake(SSL *ssl) { |
| ssl_reset_error_state(ssl); |
| |
| if (ssl->do_handshake == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_TYPE_NOT_SET); |
| return -1; |
| } |
| |
| if (!SSL_in_init(ssl)) { |
| return 1; |
| } |
| |
| // Run the handshake. |
| SSL_HANDSHAKE *hs = ssl->s3->hs.get(); |
| |
| bool early_return = false; |
| int ret = ssl_run_handshake(hs, &early_return); |
| ssl_do_info_callback( |
| ssl, ssl->server ? SSL_CB_ACCEPT_EXIT : SSL_CB_CONNECT_EXIT, ret); |
| if (ret <= 0) { |
| return ret; |
| } |
| |
| // Destroy the handshake object if the handshake has completely finished. |
| if (!early_return) { |
| ssl->s3->hs.reset(); |
| ssl_maybe_shed_handshake_config(ssl); |
| } |
| |
| return 1; |
| } |
| |
| int SSL_connect(SSL *ssl) { |
| if (ssl->do_handshake == NULL) { |
| // Not properly initialized yet |
| SSL_set_connect_state(ssl); |
| } |
| |
| return SSL_do_handshake(ssl); |
| } |
| |
| int SSL_accept(SSL *ssl) { |
| if (ssl->do_handshake == NULL) { |
| // Not properly initialized yet |
| SSL_set_accept_state(ssl); |
| } |
| |
| return SSL_do_handshake(ssl); |
| } |
| |
| static int ssl_do_post_handshake(SSL *ssl, const SSLMessage &msg) { |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return tls13_post_handshake(ssl, msg); |
| } |
| |
| // Check for renegotiation on the server before parsing to use the correct |
| // error. Renegotiation is triggered by a different message for servers. |
| if (ssl->server) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION); |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_NO_RENEGOTIATION); |
| return 0; |
| } |
| |
| if (msg.type != SSL3_MT_HELLO_REQUEST || CBS_len(&msg.body) != 0) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HELLO_REQUEST); |
| return 0; |
| } |
| |
| if (ssl->renegotiate_mode == ssl_renegotiate_ignore) { |
| return 1; // Ignore the HelloRequest. |
| } |
| |
| ssl->s3->renegotiate_pending = true; |
| if (ssl->renegotiate_mode == ssl_renegotiate_explicit) { |
| return 1; // Handle it later. |
| } |
| |
| if (!SSL_renegotiate(ssl)) { |
| ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_NO_RENEGOTIATION); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int SSL_process_quic_post_handshake(SSL *ssl) { |
| ssl_reset_error_state(ssl); |
| |
| if (SSL_in_init(ssl)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| // Replay post-handshake message errors. |
| if (!check_read_error(ssl)) { |
| return 0; |
| } |
| |
| // Process any buffered post-handshake messages. |
| SSLMessage msg; |
| while (ssl->method->get_message(ssl, &msg)) { |
| // Handle the post-handshake message and try again. |
| if (!ssl_do_post_handshake(ssl, msg)) { |
| ssl_set_read_error(ssl); |
| return 0; |
| } |
| ssl->method->next_message(ssl); |
| } |
| |
| return 1; |
| } |
| |
| static int ssl_read_impl(SSL *ssl) { |
| ssl_reset_error_state(ssl); |
| |
| if (ssl->do_handshake == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); |
| return -1; |
| } |
| |
| // Replay post-handshake message errors. |
| if (!check_read_error(ssl)) { |
| return -1; |
| } |
| |
| while (ssl->s3->pending_app_data.empty()) { |
| if (ssl->s3->renegotiate_pending) { |
| ssl->s3->rwstate = SSL_ERROR_WANT_RENEGOTIATE; |
| return -1; |
| } |
| |
| // Complete the current handshake, if any. False Start will cause |
| // |SSL_do_handshake| to return mid-handshake, so this may require multiple |
| // iterations. |
| while (!ssl_can_read(ssl)) { |
| int ret = SSL_do_handshake(ssl); |
| if (ret < 0) { |
| return ret; |
| } |
| if (ret == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE); |
| return -1; |
| } |
| } |
| |
| // Process any buffered post-handshake messages. |
| SSLMessage msg; |
| if (ssl->method->get_message(ssl, &msg)) { |
| // If we received an interrupt in early read (EndOfEarlyData), loop again |
| // for the handshake to process it. |
| if (SSL_in_init(ssl)) { |
| ssl->s3->hs->can_early_read = false; |
| continue; |
| } |
| |
| // Handle the post-handshake message and try again. |
| if (!ssl_do_post_handshake(ssl, msg)) { |
| ssl_set_read_error(ssl); |
| return -1; |
| } |
| ssl->method->next_message(ssl); |
| continue; // Loop again. We may have begun a new handshake. |
| } |
| |
| uint8_t alert = SSL_AD_DECODE_ERROR; |
| size_t consumed = 0; |
| auto ret = ssl_open_app_data(ssl, &ssl->s3->pending_app_data, &consumed, |
| &alert, ssl->s3->read_buffer.span()); |
| bool retry; |
| int bio_ret = ssl_handle_open_record(ssl, &retry, ret, consumed, alert); |
| if (bio_ret <= 0) { |
| return bio_ret; |
| } |
| if (!retry) { |
| assert(!ssl->s3->pending_app_data.empty()); |
| ssl->s3->key_update_count = 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| int SSL_read(SSL *ssl, void *buf, int num) { |
| int ret = SSL_peek(ssl, buf, num); |
| if (ret <= 0) { |
| return ret; |
| } |
| // TODO(davidben): In DTLS, should the rest of the record be discarded? DTLS |
| // is not a stream. See https://crbug.com/boringssl/65. |
| ssl->s3->pending_app_data = |
| ssl->s3->pending_app_data.subspan(static_cast<size_t>(ret)); |
| if (ssl->s3->pending_app_data.empty()) { |
| ssl->s3->read_buffer.DiscardConsumed(); |
| } |
| return ret; |
| } |
| |
| int SSL_peek(SSL *ssl, void *buf, int num) { |
| if (ssl->quic_method != nullptr) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return -1; |
| } |
| |
| int ret = ssl_read_impl(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| if (num <= 0) { |
| return num; |
| } |
| size_t todo = |
| std::min(ssl->s3->pending_app_data.size(), static_cast<size_t>(num)); |
| OPENSSL_memcpy(buf, ssl->s3->pending_app_data.data(), todo); |
| return static_cast<int>(todo); |
| } |
| |
| int SSL_write(SSL *ssl, const void *buf, int num) { |
| ssl_reset_error_state(ssl); |
| |
| if (ssl->quic_method != nullptr) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return -1; |
| } |
| |
| if (ssl->do_handshake == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); |
| return -1; |
| } |
| |
| int ret = 0; |
| size_t bytes_written = 0; |
| bool needs_handshake = false; |
| do { |
| // If necessary, complete the handshake implicitly. |
| if (!ssl_can_write(ssl)) { |
| ret = SSL_do_handshake(ssl); |
| if (ret < 0) { |
| return ret; |
| } |
| if (ret == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_HANDSHAKE_FAILURE); |
| return -1; |
| } |
| } |
| |
| if (num < 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_LENGTH); |
| return -1; |
| } |
| ret = ssl->method->write_app_data( |
| ssl, &needs_handshake, &bytes_written, |
| MakeConstSpan(static_cast<const uint8_t *>(buf), |
| static_cast<size_t>(num))); |
| } while (needs_handshake); |
| return ret <= 0 ? ret : static_cast<int>(bytes_written); |
| } |
| |
| int SSL_key_update(SSL *ssl, int request_type) { |
| ssl_reset_error_state(ssl); |
| |
| if (ssl->do_handshake == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); |
| return 0; |
| } |
| |
| if (ssl->ctx->quic_method != nullptr) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| if (!ssl->s3->initial_handshake_complete) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_HANDSHAKE_NOT_COMPLETE); |
| return 0; |
| } |
| |
| if (ssl_protocol_version(ssl) < TLS1_3_VERSION) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SSL_VERSION); |
| return 0; |
| } |
| |
| if (!ssl->s3->key_update_pending && |
| !tls13_add_key_update(ssl, request_type)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int SSL_shutdown(SSL *ssl) { |
| ssl_reset_error_state(ssl); |
| |
| if (ssl->do_handshake == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNINITIALIZED); |
| return -1; |
| } |
| |
| // If we are in the middle of a handshake, silently succeed. Consumers often |
| // call this function before |SSL_free|, whether the handshake succeeded or |
| // not. We assume the caller has already handled failed handshakes. |
| if (SSL_in_init(ssl)) { |
| return 1; |
| } |
| |
| if (ssl->quiet_shutdown) { |
| // Do nothing if configured not to send a close_notify. |
| ssl->s3->write_shutdown = ssl_shutdown_close_notify; |
| ssl->s3->read_shutdown = ssl_shutdown_close_notify; |
| return 1; |
| } |
| |
| // This function completes in two stages. It sends a close_notify and then it |
| // waits for a close_notify to come in. Perform exactly one action and return |
| // whether or not it succeeds. |
| |
| if (ssl->s3->write_shutdown != ssl_shutdown_close_notify) { |
| // Send a close_notify. |
| if (ssl_send_alert_impl(ssl, SSL3_AL_WARNING, SSL_AD_CLOSE_NOTIFY) <= 0) { |
| return -1; |
| } |
| } else if (ssl->s3->alert_dispatch) { |
| // Finish sending the close_notify. |
| if (ssl->method->dispatch_alert(ssl) <= 0) { |
| return -1; |
| } |
| } else if (ssl->s3->read_shutdown != ssl_shutdown_close_notify) { |
| if (SSL_is_dtls(ssl)) { |
| // Bidirectional shutdown doesn't make sense for an unordered |
| // transport. DTLS alerts also aren't delivered reliably, so we may even |
| // time out because the peer never received our close_notify. Report to |
| // the caller that the channel has fully shut down. |
| if (ssl->s3->read_shutdown == ssl_shutdown_error) { |
| ERR_restore_state(ssl->s3->read_error.get()); |
| return -1; |
| } |
| ssl->s3->read_shutdown = ssl_shutdown_close_notify; |
| } else { |
| // Process records until an error, close_notify, or application data. |
| if (ssl_read_impl(ssl) > 0) { |
| // We received some unexpected application data. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_APPLICATION_DATA_ON_SHUTDOWN); |
| return -1; |
| } |
| if (ssl->s3->read_shutdown != ssl_shutdown_close_notify) { |
| return -1; |
| } |
| } |
| } |
| |
| // Return 0 for unidirectional shutdown and 1 for bidirectional shutdown. |
| return ssl->s3->read_shutdown == ssl_shutdown_close_notify; |
| } |
| |
| int SSL_send_fatal_alert(SSL *ssl, uint8_t alert) { |
| if (ssl->s3->alert_dispatch) { |
| if (ssl->s3->send_alert[0] != SSL3_AL_FATAL || |
| ssl->s3->send_alert[1] != alert) { |
| // We are already attempting to write a different alert. |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); |
| return -1; |
| } |
| return ssl->method->dispatch_alert(ssl); |
| } |
| |
| return ssl_send_alert_impl(ssl, SSL3_AL_FATAL, alert); |
| } |
| |
| int SSL_set_quic_transport_params(SSL *ssl, const uint8_t *params, |
| size_t params_len) { |
| return ssl->config && ssl->config->quic_transport_params.CopyFrom( |
| MakeConstSpan(params, params_len)); |
| } |
| |
| void SSL_get_peer_quic_transport_params(const SSL *ssl, |
| const uint8_t **out_params, |
| size_t *out_params_len) { |
| *out_params = ssl->s3->peer_quic_transport_params.data(); |
| *out_params_len = ssl->s3->peer_quic_transport_params.size(); |
| } |
| |
| int SSL_set_quic_early_data_context(SSL *ssl, const uint8_t *context, |
| size_t context_len) { |
| return ssl->config && ssl->config->quic_early_data_context.CopyFrom( |
| MakeConstSpan(context, context_len)); |
| } |
| |
| void SSL_CTX_set_early_data_enabled(SSL_CTX *ctx, int enabled) { |
| ctx->enable_early_data = !!enabled; |
| } |
| |
| void SSL_set_early_data_enabled(SSL *ssl, int enabled) { |
| ssl->enable_early_data = !!enabled; |
| } |
| |
| int SSL_in_early_data(const SSL *ssl) { |
| if (ssl->s3->hs == NULL) { |
| return 0; |
| } |
| return ssl->s3->hs->in_early_data; |
| } |
| |
| int SSL_early_data_accepted(const SSL *ssl) { |
| return ssl->s3->early_data_accepted; |
| } |
| |
| void SSL_reset_early_data_reject(SSL *ssl) { |
| SSL_HANDSHAKE *hs = ssl->s3->hs.get(); |
| if (hs == NULL || |
| hs->wait != ssl_hs_early_data_rejected) { |
| abort(); |
| } |
| |
| hs->wait = ssl_hs_ok; |
| hs->in_early_data = false; |
| hs->early_session.reset(); |
| |
| // Discard any unfinished writes from the perspective of |SSL_write|'s |
| // retry. The handshake will transparently flush out the pending record |
| // (discarded by the server) to keep the framing correct. |
| ssl->s3->pending_write = {}; |
| } |
| |
| enum ssl_early_data_reason_t SSL_get_early_data_reason(const SSL *ssl) { |
| return ssl->s3->early_data_reason; |
| } |
| |
| const char *SSL_early_data_reason_string(enum ssl_early_data_reason_t reason) { |
| switch (reason) { |
| case ssl_early_data_unknown: |
| return "unknown"; |
| case ssl_early_data_disabled: |
| return "disabled"; |
| case ssl_early_data_accepted: |
| return "accepted"; |
| case ssl_early_data_protocol_version: |
| return "protocol_version"; |
| case ssl_early_data_peer_declined: |
| return "peer_declined"; |
| case ssl_early_data_no_session_offered: |
| return "no_session_offered"; |
| case ssl_early_data_session_not_resumed: |
| return "session_not_resumed"; |
| case ssl_early_data_unsupported_for_session: |
| return "unsupported_for_session"; |
| case ssl_early_data_hello_retry_request: |
| return "hello_retry_request"; |
| case ssl_early_data_alpn_mismatch: |
| return "alpn_mismatch"; |
| case ssl_early_data_channel_id: |
| return "channel_id"; |
| case ssl_early_data_ticket_age_skew: |
| return "ticket_age_skew"; |
| case ssl_early_data_quic_parameter_mismatch: |
| return "quic_parameter_mismatch"; |
| case ssl_early_data_alps_mismatch: |
| return "alps_mismatch"; |
| } |
| |
| return nullptr; |
| } |
| |
| static int bio_retry_reason_to_error(int reason) { |
| switch (reason) { |
| case BIO_RR_CONNECT: |
| return SSL_ERROR_WANT_CONNECT; |
| case BIO_RR_ACCEPT: |
| return SSL_ERROR_WANT_ACCEPT; |
| default: |
| return SSL_ERROR_SYSCALL; |
| } |
| } |
| |
| int SSL_get_error(const SSL *ssl, int ret_code) { |
| if (ret_code > 0) { |
| return SSL_ERROR_NONE; |
| } |
| |
| // Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, |
| // where we do encode the error |
| uint32_t err = ERR_peek_error(); |
| if (err != 0) { |
| if (ERR_GET_LIB(err) == ERR_LIB_SYS) { |
| return SSL_ERROR_SYSCALL; |
| } |
| return SSL_ERROR_SSL; |
| } |
| |
| if (ret_code == 0) { |
| if (ssl->s3->rwstate == SSL_ERROR_ZERO_RETURN) { |
| return SSL_ERROR_ZERO_RETURN; |
| } |
| // An EOF was observed which violates the protocol, and the underlying |
| // transport does not participate in the error queue. Bubble up to the |
| // caller. |
| return SSL_ERROR_SYSCALL; |
| } |
| |
| switch (ssl->s3->rwstate) { |
| case SSL_ERROR_PENDING_SESSION: |
| case SSL_ERROR_PENDING_CERTIFICATE: |
| case SSL_ERROR_HANDOFF: |
| case SSL_ERROR_HANDBACK: |
| case SSL_ERROR_WANT_X509_LOOKUP: |
| case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: |
| case SSL_ERROR_PENDING_TICKET: |
| case SSL_ERROR_EARLY_DATA_REJECTED: |
| case SSL_ERROR_WANT_CERTIFICATE_VERIFY: |
| case SSL_ERROR_WANT_RENEGOTIATE: |
| case SSL_ERROR_HANDSHAKE_HINTS_READY: |
| return ssl->s3->rwstate; |
| |
| case SSL_ERROR_WANT_READ: { |
| if (ssl->quic_method) { |
| return SSL_ERROR_WANT_READ; |
| } |
| BIO *bio = SSL_get_rbio(ssl); |
| if (BIO_should_read(bio)) { |
| return SSL_ERROR_WANT_READ; |
| } |
| |
| if (BIO_should_write(bio)) { |
| // TODO(davidben): OpenSSL historically checked for writes on the read |
| // BIO. Can this be removed? |
| return SSL_ERROR_WANT_WRITE; |
| } |
| |
| if (BIO_should_io_special(bio)) { |
| return bio_retry_reason_to_error(BIO_get_retry_reason(bio)); |
| } |
| |
| break; |
| } |
| |
| case SSL_ERROR_WANT_WRITE: { |
| BIO *bio = SSL_get_wbio(ssl); |
| if (BIO_should_write(bio)) { |
| return SSL_ERROR_WANT_WRITE; |
| } |
| |
| if (BIO_should_read(bio)) { |
| // TODO(davidben): OpenSSL historically checked for reads on the write |
| // BIO. Can this be removed? |
| return SSL_ERROR_WANT_READ; |
| } |
| |
| if (BIO_should_io_special(bio)) { |
| return bio_retry_reason_to_error(BIO_get_retry_reason(bio)); |
| } |
| |
| break; |
| } |
| } |
| |
| return SSL_ERROR_SYSCALL; |
| } |
| |
| const char *SSL_error_description(int err) { |
| switch (err) { |
| case SSL_ERROR_NONE: |
| return "NONE"; |
| case SSL_ERROR_SSL: |
| return "SSL"; |
| case SSL_ERROR_WANT_READ: |
| return "WANT_READ"; |
| case SSL_ERROR_WANT_WRITE: |
| return "WANT_WRITE"; |
| case SSL_ERROR_WANT_X509_LOOKUP: |
| return "WANT_X509_LOOKUP"; |
| case SSL_ERROR_SYSCALL: |
| return "SYSCALL"; |
| case SSL_ERROR_ZERO_RETURN: |
| return "ZERO_RETURN"; |
| case SSL_ERROR_WANT_CONNECT: |
| return "WANT_CONNECT"; |
| case SSL_ERROR_WANT_ACCEPT: |
| return "WANT_ACCEPT"; |
| case SSL_ERROR_PENDING_SESSION: |
| return "PENDING_SESSION"; |
| case SSL_ERROR_PENDING_CERTIFICATE: |
| return "PENDING_CERTIFICATE"; |
| case SSL_ERROR_WANT_PRIVATE_KEY_OPERATION: |
| return "WANT_PRIVATE_KEY_OPERATION"; |
| case SSL_ERROR_PENDING_TICKET: |
| return "PENDING_TICKET"; |
| case SSL_ERROR_EARLY_DATA_REJECTED: |
| return "EARLY_DATA_REJECTED"; |
| case SSL_ERROR_WANT_CERTIFICATE_VERIFY: |
| return "WANT_CERTIFICATE_VERIFY"; |
| case SSL_ERROR_HANDOFF: |
| return "HANDOFF"; |
| case SSL_ERROR_HANDBACK: |
| return "HANDBACK"; |
| case SSL_ERROR_WANT_RENEGOTIATE: |
| return "WANT_RENEGOTIATE"; |
| case SSL_ERROR_HANDSHAKE_HINTS_READY: |
| return "HANDSHAKE_HINTS_READY"; |
| default: |
| return nullptr; |
| } |
| } |
| |
| uint32_t SSL_CTX_set_options(SSL_CTX *ctx, uint32_t options) { |
| ctx->options |= options; |
| return ctx->options; |
| } |
| |
| uint32_t SSL_CTX_clear_options(SSL_CTX *ctx, uint32_t options) { |
| ctx->options &= ~options; |
| return ctx->options; |
| } |
| |
| uint32_t SSL_CTX_get_options(const SSL_CTX *ctx) { return ctx->options; } |
| |
| uint32_t SSL_set_options(SSL *ssl, uint32_t options) { |
| ssl->options |= options; |
| return ssl->options; |
| } |
| |
| uint32_t SSL_clear_options(SSL *ssl, uint32_t options) { |
| ssl->options &= ~options; |
| return ssl->options; |
| } |
| |
| uint32_t SSL_get_options(const SSL *ssl) { return ssl->options; } |
| |
| uint32_t SSL_CTX_set_mode(SSL_CTX *ctx, uint32_t mode) { |
| ctx->mode |= mode; |
| return ctx->mode; |
| } |
| |
| uint32_t SSL_CTX_clear_mode(SSL_CTX *ctx, uint32_t mode) { |
| ctx->mode &= ~mode; |
| return ctx->mode; |
| } |
| |
| uint32_t SSL_CTX_get_mode(const SSL_CTX *ctx) { return ctx->mode; } |
| |
| uint32_t SSL_set_mode(SSL *ssl, uint32_t mode) { |
| ssl->mode |= mode; |
| return ssl->mode; |
| } |
| |
| uint32_t SSL_clear_mode(SSL *ssl, uint32_t mode) { |
| ssl->mode &= ~mode; |
| return ssl->mode; |
| } |
| |
| uint32_t SSL_get_mode(const SSL *ssl) { return ssl->mode; } |
| |
| void SSL_CTX_set0_buffer_pool(SSL_CTX *ctx, CRYPTO_BUFFER_POOL *pool) { |
| ctx->pool = pool; |
| } |
| |
| int SSL_get_tls_unique(const SSL *ssl, uint8_t *out, size_t *out_len, |
| size_t max_out) { |
| *out_len = 0; |
| OPENSSL_memset(out, 0, max_out); |
| |
| // tls-unique is not defined for TLS 1.3. |
| if (!ssl->s3->initial_handshake_complete || |
| ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return 0; |
| } |
| |
| // The tls-unique value is the first Finished message in the handshake, which |
| // is the client's in a full handshake and the server's for a resumption. See |
| // https://tools.ietf.org/html/rfc5929#section-3.1. |
| Span<const uint8_t> finished = ssl->s3->previous_client_finished; |
| if (ssl->session != NULL) { |
| // tls-unique is broken for resumed sessions unless EMS is used. |
| if (!ssl->session->extended_master_secret) { |
| return 0; |
| } |
| finished = ssl->s3->previous_server_finished; |
| } |
| |
| *out_len = finished.size(); |
| if (finished.size() > max_out) { |
| *out_len = max_out; |
| } |
| |
| OPENSSL_memcpy(out, finished.data(), *out_len); |
| return 1; |
| } |
| |
| static int set_session_id_context(CERT *cert, const uint8_t *sid_ctx, |
| size_t sid_ctx_len) { |
| if (!cert->sid_ctx.TryCopyFrom(MakeConstSpan(sid_ctx, sid_ctx_len))) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const uint8_t *sid_ctx, |
| size_t sid_ctx_len) { |
| return set_session_id_context(ctx->cert.get(), sid_ctx, sid_ctx_len); |
| } |
| |
| int SSL_set_session_id_context(SSL *ssl, const uint8_t *sid_ctx, |
| size_t sid_ctx_len) { |
| if (!ssl->config) { |
| return 0; |
| } |
| return set_session_id_context(ssl->config->cert.get(), sid_ctx, sid_ctx_len); |
| } |
| |
| const uint8_t *SSL_get0_session_id_context(const SSL *ssl, size_t *out_len) { |
| if (!ssl->config) { |
| assert(ssl->config); |
| *out_len = 0; |
| return NULL; |
| } |
| *out_len = ssl->config->cert->sid_ctx.size(); |
| return ssl->config->cert->sid_ctx.data(); |
| } |
| |
| int SSL_get_fd(const SSL *ssl) { return SSL_get_rfd(ssl); } |
| |
| int SSL_get_rfd(const SSL *ssl) { |
| int ret = -1; |
| BIO *b = BIO_find_type(SSL_get_rbio(ssl), BIO_TYPE_DESCRIPTOR); |
| if (b != NULL) { |
| BIO_get_fd(b, &ret); |
| } |
| return ret; |
| } |
| |
| int SSL_get_wfd(const SSL *ssl) { |
| int ret = -1; |
| BIO *b = BIO_find_type(SSL_get_wbio(ssl), BIO_TYPE_DESCRIPTOR); |
| if (b != NULL) { |
| BIO_get_fd(b, &ret); |
| } |
| return ret; |
| } |
| |
| #if !defined(OPENSSL_NO_SOCK) |
| int SSL_set_fd(SSL *ssl, int fd) { |
| BIO *bio = BIO_new(BIO_s_socket()); |
| if (bio == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); |
| return 0; |
| } |
| BIO_set_fd(bio, fd, BIO_NOCLOSE); |
| SSL_set_bio(ssl, bio, bio); |
| return 1; |
| } |
| |
| int SSL_set_wfd(SSL *ssl, int fd) { |
| BIO *rbio = SSL_get_rbio(ssl); |
| if (rbio == NULL || BIO_method_type(rbio) != BIO_TYPE_SOCKET || |
| BIO_get_fd(rbio, NULL) != fd) { |
| BIO *bio = BIO_new(BIO_s_socket()); |
| if (bio == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); |
| return 0; |
| } |
| BIO_set_fd(bio, fd, BIO_NOCLOSE); |
| SSL_set0_wbio(ssl, bio); |
| } else { |
| // Copy the rbio over to the wbio. |
| BIO_up_ref(rbio); |
| SSL_set0_wbio(ssl, rbio); |
| } |
| |
| return 1; |
| } |
| |
| int SSL_set_rfd(SSL *ssl, int fd) { |
| BIO *wbio = SSL_get_wbio(ssl); |
| if (wbio == NULL || BIO_method_type(wbio) != BIO_TYPE_SOCKET || |
| BIO_get_fd(wbio, NULL) != fd) { |
| BIO *bio = BIO_new(BIO_s_socket()); |
| if (bio == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); |
| return 0; |
| } |
| BIO_set_fd(bio, fd, BIO_NOCLOSE); |
| SSL_set0_rbio(ssl, bio); |
| } else { |
| // Copy the wbio over to the rbio. |
| BIO_up_ref(wbio); |
| SSL_set0_rbio(ssl, wbio); |
| } |
| return 1; |
| } |
| #endif // !OPENSSL_NO_SOCK |
| |
| static size_t copy_finished(void *out, size_t out_len, Span<const uint8_t> in) { |
| if (out_len > in.size()) { |
| out_len = in.size(); |
| } |
| OPENSSL_memcpy(out, in.data(), out_len); |
| return in.size(); |
| } |
| |
| size_t SSL_get_finished(const SSL *ssl, void *buf, size_t count) { |
| if (!ssl->s3->initial_handshake_complete || |
| ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return 0; |
| } |
| |
| if (ssl->server) { |
| return copy_finished(buf, count, ssl->s3->previous_server_finished); |
| } |
| |
| return copy_finished(buf, count, ssl->s3->previous_client_finished); |
| } |
| |
| size_t SSL_get_peer_finished(const SSL *ssl, void *buf, size_t count) { |
| if (!ssl->s3->initial_handshake_complete || |
| ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return 0; |
| } |
| |
| if (ssl->server) { |
| return copy_finished(buf, count, ssl->s3->previous_client_finished); |
| } |
| |
| return copy_finished(buf, count, ssl->s3->previous_server_finished); |
| } |
| |
| int SSL_get_verify_mode(const SSL *ssl) { |
| if (!ssl->config) { |
| assert(ssl->config); |
| return -1; |
| } |
| return ssl->config->verify_mode; |
| } |
| |
| int SSL_get_extms_support(const SSL *ssl) { |
| // TLS 1.3 does not require extended master secret and always reports as |
| // supporting it. |
| if (ssl->s3->version == 0) { |
| return 0; |
| } |
| if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { |
| return 1; |
| } |
| |
| // If the initial handshake completed, query the established session. |
| if (ssl->s3->established_session != NULL) { |
| return ssl->s3->established_session->extended_master_secret; |
| } |
| |
| // Otherwise, query the in-progress handshake. |
| if (ssl->s3->hs != NULL) { |
| return ssl->s3->hs->extended_master_secret; |
| } |
| assert(0); |
| return 0; |
| } |
| |
| int SSL_CTX_get_read_ahead(const SSL_CTX *ctx) { return 0; } |
| |
| int SSL_get_read_ahead(const SSL *ssl) { return 0; } |
| |
| int SSL_CTX_set_read_ahead(SSL_CTX *ctx, int yes) { return 1; } |
| |
| int SSL_set_read_ahead(SSL *ssl, int yes) { return 1; } |
| |
| int SSL_pending(const SSL *ssl) { |
| return static_cast<int>(ssl->s3->pending_app_data.size()); |
| } |
| |
| int SSL_has_pending(const SSL *ssl) { |
| return SSL_pending(ssl) != 0 || !ssl->s3->read_buffer.empty(); |
| } |
| |
| static bool has_cert_and_key(const SSL_CREDENTIAL *cred) { |
| // TODO(davidben): If |cred->key_method| is set, that should be fine too. |
| if (cred->privkey == nullptr) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); |
| return false; |
| } |
| |
| if (cred->chain == nullptr || |
| sk_CRYPTO_BUFFER_value(cred->chain.get(), 0) == nullptr) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| int SSL_CTX_check_private_key(const SSL_CTX *ctx) { |
| // There is no need to actually check consistency because inconsistent values |
| // can never be configured. |
| return has_cert_and_key(ctx->cert->legacy_credential.get()); |
| } |
| |
| int SSL_check_private_key(const SSL *ssl) { |
| if (!ssl->config) { |
| return 0; |
| } |
| |
| // There is no need to actually check consistency because inconsistent values |
| // can never be configured. |
| return has_cert_and_key(ssl->config->cert->legacy_credential.get()); |
| } |
| |
| long SSL_get_default_timeout(const SSL *ssl) { |
| return SSL_DEFAULT_SESSION_TIMEOUT; |
| } |
| |
| int SSL_renegotiate(SSL *ssl) { |
| // Caller-initiated renegotiation is not supported. |
| if (!ssl->s3->renegotiate_pending) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| if (!ssl_can_renegotiate(ssl)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION); |
| return 0; |
| } |
| |
| // We should not have told the caller to release the private key. |
| assert(!SSL_can_release_private_key(ssl)); |
| |
| // Renegotiation is only supported at quiescent points in the application |
| // protocol, namely in HTTPS, just before reading the HTTP response. |
| // Require the record-layer be idle and avoid complexities of sending a |
| // handshake record while an application_data record is being written. |
| if (!ssl->s3->write_buffer.empty() || |
| ssl->s3->write_shutdown != ssl_shutdown_none) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_RENEGOTIATION); |
| return 0; |
| } |
| |
| // Begin a new handshake. |
| if (ssl->s3->hs != nullptr) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| ssl->s3->hs = ssl_handshake_new(ssl); |
| if (ssl->s3->hs == nullptr) { |
| return 0; |
| } |
| |
| ssl->s3->renegotiate_pending = false; |
| ssl->s3->total_renegotiations++; |
| return 1; |
| } |
| |
| int SSL_renegotiate_pending(SSL *ssl) { |
| return SSL_in_init(ssl) && ssl->s3->initial_handshake_complete; |
| } |
| |
| int SSL_total_renegotiations(const SSL *ssl) { |
| return ssl->s3->total_renegotiations; |
| } |
| |
| size_t SSL_CTX_get_max_cert_list(const SSL_CTX *ctx) { |
| return ctx->max_cert_list; |
| } |
| |
| void SSL_CTX_set_max_cert_list(SSL_CTX *ctx, size_t max_cert_list) { |
| if (max_cert_list > kMaxHandshakeSize) { |
| max_cert_list = kMaxHandshakeSize; |
| } |
| ctx->max_cert_list = (uint32_t)max_cert_list; |
| } |
| |
| size_t SSL_get_max_cert_list(const SSL *ssl) { |
| return ssl->max_cert_list; |
| } |
| |
| void SSL_set_max_cert_list(SSL *ssl, size_t max_cert_list) { |
| if (max_cert_list > kMaxHandshakeSize) { |
| max_cert_list = kMaxHandshakeSize; |
| } |
| ssl->max_cert_list = (uint32_t)max_cert_list; |
| } |
| |
| int SSL_CTX_set_max_send_fragment(SSL_CTX *ctx, size_t max_send_fragment) { |
| if (max_send_fragment < 512) { |
| max_send_fragment = 512; |
| } |
| if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) { |
| max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; |
| } |
| ctx->max_send_fragment = (uint16_t)max_send_fragment; |
| |
| return 1; |
| } |
| |
| int SSL_set_max_send_fragment(SSL *ssl, size_t max_send_fragment) { |
| if (max_send_fragment < 512) { |
| max_send_fragment = 512; |
| } |
| if (max_send_fragment > SSL3_RT_MAX_PLAIN_LENGTH) { |
| max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; |
| } |
| ssl->max_send_fragment = (uint16_t)max_send_fragment; |
| |
| return 1; |
| } |
| |
| int SSL_set_mtu(SSL *ssl, unsigned mtu) { |
| if (!SSL_is_dtls(ssl) || mtu < dtls1_min_mtu()) { |
| return 0; |
| } |
| ssl->d1->mtu = mtu; |
| return 1; |
| } |
| |
| int SSL_get_secure_renegotiation_support(const SSL *ssl) { |
| if (ssl->s3->version == 0) { |
| return 0; |
| } |
| return ssl_protocol_version(ssl) >= TLS1_3_VERSION || |
| ssl->s3->send_connection_binding; |
| } |
| |
| size_t SSL_CTX_sess_number(const SSL_CTX *ctx) { |
| MutexReadLock lock(const_cast<CRYPTO_MUTEX *>(&ctx->lock)); |
| return lh_SSL_SESSION_num_items(ctx->sessions); |
| } |
| |
| unsigned long SSL_CTX_sess_set_cache_size(SSL_CTX *ctx, unsigned long size) { |
| unsigned long ret = ctx->session_cache_size; |
| ctx->session_cache_size = size; |
| return ret; |
| } |
| |
| unsigned long SSL_CTX_sess_get_cache_size(const SSL_CTX *ctx) { |
| return ctx->session_cache_size; |
| } |
| |
| int SSL_CTX_set_session_cache_mode(SSL_CTX *ctx, int mode) { |
| int ret = ctx->session_cache_mode; |
| ctx->session_cache_mode = mode; |
| return ret; |
| } |
| |
| int SSL_CTX_get_session_cache_mode(const SSL_CTX *ctx) { |
| return ctx->session_cache_mode; |
| } |
| |
| |
| int SSL_CTX_get_tlsext_ticket_keys(SSL_CTX *ctx, void *out, size_t len) { |
| if (out == NULL) { |
| return 48; |
| } |
| if (len != 48) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH); |
| return 0; |
| } |
| |
| // The default ticket keys are initialized lazily. Trigger a key |
| // rotation to initialize them. |
| if (!ssl_ctx_rotate_ticket_encryption_key(ctx)) { |
| return 0; |
| } |
| |
| uint8_t *out_bytes = reinterpret_cast<uint8_t *>(out); |
| MutexReadLock lock(&ctx->lock); |
| OPENSSL_memcpy(out_bytes, ctx->ticket_key_current->name, 16); |
| OPENSSL_memcpy(out_bytes + 16, ctx->ticket_key_current->hmac_key, 16); |
| OPENSSL_memcpy(out_bytes + 32, ctx->ticket_key_current->aes_key, 16); |
| return 1; |
| } |
| |
| int SSL_CTX_set_tlsext_ticket_keys(SSL_CTX *ctx, const void *in, size_t len) { |
| if (in == NULL) { |
| return 48; |
| } |
| if (len != 48) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_TICKET_KEYS_LENGTH); |
| return 0; |
| } |
| auto key = MakeUnique<TicketKey>(); |
| if (!key) { |
| return 0; |
| } |
| const uint8_t *in_bytes = reinterpret_cast<const uint8_t *>(in); |
| OPENSSL_memcpy(key->name, in_bytes, 16); |
| OPENSSL_memcpy(key->hmac_key, in_bytes + 16, 16); |
| OPENSSL_memcpy(key->aes_key, in_bytes + 32, 16); |
| // Disable automatic key rotation for manually-configured keys. This is now |
| // the caller's responsibility. |
| key->next_rotation_tv_sec = 0; |
| ctx->ticket_key_current = std::move(key); |
| ctx->ticket_key_prev.reset(); |
| return 1; |
| } |
| |
| int SSL_CTX_set_tlsext_ticket_key_cb( |
| SSL_CTX *ctx, int (*callback)(SSL *ssl, uint8_t *key_name, uint8_t *iv, |
| EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx, |
| int encrypt)) { |
| ctx->ticket_key_cb = callback; |
| return 1; |
| } |
| |
| static bool check_group_ids(Span<const uint16_t> group_ids) { |
| for (uint16_t group_id : group_ids) { |
| if (ssl_group_id_to_nid(group_id) == NID_undef) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_ELLIPTIC_CURVE); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| int SSL_CTX_set1_group_ids(SSL_CTX *ctx, const uint16_t *group_ids, |
| size_t num_group_ids) { |
| auto span = MakeConstSpan(group_ids, num_group_ids); |
| return check_group_ids(span) && ctx->supported_group_list.CopyFrom(span); |
| } |
| |
| int SSL_set1_group_ids(SSL *ssl, const uint16_t *group_ids, |
| size_t num_group_ids) { |
| if (!ssl->config) { |
| return 0; |
| } |
| auto span = MakeConstSpan(group_ids, num_group_ids); |
| return check_group_ids(span) && |
| ssl->config->supported_group_list.CopyFrom(span); |
| } |
| |
| static bool ssl_nids_to_group_ids(Array<uint16_t> *out_group_ids, |
| Span<const int> nids) { |
| Array<uint16_t> group_ids; |
| if (!group_ids.InitForOverwrite(nids.size())) { |
| return false; |
| } |
| |
| for (size_t i = 0; i < nids.size(); i++) { |
| if (!ssl_nid_to_group_id(&group_ids[i], nids[i])) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_ELLIPTIC_CURVE); |
| return false; |
| } |
| } |
| |
| *out_group_ids = std::move(group_ids); |
| return true; |
| } |
| |
| int SSL_CTX_set1_groups(SSL_CTX *ctx, const int *groups, size_t num_groups) { |
| return ssl_nids_to_group_ids(&ctx->supported_group_list, |
| MakeConstSpan(groups, num_groups)); |
| } |
| |
| int SSL_set1_groups(SSL *ssl, const int *groups, size_t num_groups) { |
| if (!ssl->config) { |
| return 0; |
| } |
| return ssl_nids_to_group_ids(&ssl->config->supported_group_list, |
| MakeConstSpan(groups, num_groups)); |
| } |
| |
| static bool ssl_str_to_group_ids(Array<uint16_t> *out_group_ids, |
| const char *str) { |
| // Count the number of groups in the list. |
| size_t count = 0; |
| const char *ptr = str, *col; |
| do { |
| col = strchr(ptr, ':'); |
| count++; |
| if (col) { |
| ptr = col + 1; |
| } |
| } while (col); |
| |
| Array<uint16_t> group_ids; |
| if (!group_ids.InitForOverwrite(count)) { |
| return false; |
| } |
| |
| size_t i = 0; |
| ptr = str; |
| do { |
| col = strchr(ptr, ':'); |
| if (!ssl_name_to_group_id(&group_ids[i++], ptr, |
| col ? (size_t)(col - ptr) : strlen(ptr))) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_ELLIPTIC_CURVE); |
| return false; |
| } |
| if (col) { |
| ptr = col + 1; |
| } |
| } while (col); |
| |
| assert(i == count); |
| *out_group_ids = std::move(group_ids); |
| return true; |
| } |
| |
| int SSL_CTX_set1_groups_list(SSL_CTX *ctx, const char *groups) { |
| return ssl_str_to_group_ids(&ctx->supported_group_list, groups); |
| } |
| |
| int SSL_set1_groups_list(SSL *ssl, const char *groups) { |
| if (!ssl->config) { |
| return 0; |
| } |
| return ssl_str_to_group_ids(&ssl->config->supported_group_list, groups); |
| } |
| |
| uint16_t SSL_get_group_id(const SSL *ssl) { |
| SSL_SESSION *session = SSL_get_session(ssl); |
| if (session == NULL) { |
| return 0; |
| } |
| |
| return session->group_id; |
| } |
| |
| int SSL_get_negotiated_group(const SSL *ssl) { |
| uint16_t group_id = SSL_get_group_id(ssl); |
| if (group_id == 0) { |
| return NID_undef; |
| } |
| return ssl_group_id_to_nid(group_id); |
| } |
| |
| int SSL_CTX_set_tmp_dh(SSL_CTX *ctx, const DH *dh) { |
| return 1; |
| } |
| |
| int SSL_set_tmp_dh(SSL *ssl, const DH *dh) { |
| return 1; |
| } |
| |
| STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) { |
| return ctx->cipher_list->ciphers.get(); |
| } |
| |
| int SSL_CTX_cipher_in_group(const SSL_CTX *ctx, size_t i) { |
| if (i >= sk_SSL_CIPHER_num(ctx->cipher_list->ciphers.get())) { |
| return 0; |
| } |
| return ctx->cipher_list->in_group_flags[i]; |
| } |
| |
| STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *ssl) { |
| if (ssl == NULL) { |
| return NULL; |
| } |
| if (ssl->config == NULL) { |
| assert(ssl->config); |
| return NULL; |
| } |
| |
| return ssl->config->cipher_list ? ssl->config->cipher_list->ciphers.get() |
| : ssl->ctx->cipher_list->ciphers.get(); |
| } |
| |
| const char *SSL_get_cipher_list(const SSL *ssl, int n) { |
| if (ssl == NULL) { |
| return NULL; |
| } |
| |
| STACK_OF(SSL_CIPHER) *sk = SSL_get_ciphers(ssl); |
| if (sk == NULL || n < 0 || (size_t)n >= sk_SSL_CIPHER_num(sk)) { |
| return NULL; |
| } |
| |
| const SSL_CIPHER *c = sk_SSL_CIPHER_value(sk, n); |
| if (c == NULL) { |
| return NULL; |
| } |
| |
| return c->name; |
| } |
| |
| int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) { |
| const bool has_aes_hw = ctx->aes_hw_override ? ctx->aes_hw_override_value |
| : EVP_has_aes_hardware(); |
| return ssl_create_cipher_list(&ctx->cipher_list, has_aes_hw, str, |
| false /* not strict */); |
| } |
| |
| int SSL_CTX_set_strict_cipher_list(SSL_CTX *ctx, const char *str) { |
| const bool has_aes_hw = ctx->aes_hw_override ? ctx->aes_hw_override_value |
| : EVP_has_aes_hardware(); |
| return ssl_create_cipher_list(&ctx->cipher_list, has_aes_hw, str, |
| true /* strict */); |
| } |
| |
| int SSL_set_cipher_list(SSL *ssl, const char *str) { |
| if (!ssl->config) { |
| return 0; |
| } |
| const bool has_aes_hw = ssl->config->aes_hw_override |
| ? ssl->config->aes_hw_override_value |
| : EVP_has_aes_hardware(); |
| return ssl_create_cipher_list(&ssl->config->cipher_list, has_aes_hw, str, |
| false /* not strict */); |
| } |
| |
| int SSL_set_strict_cipher_list(SSL *ssl, const char *str) { |
| if (!ssl->config) { |
| return 0; |
| } |
| const bool has_aes_hw = ssl->config->aes_hw_override |
| ? ssl->config->aes_hw_override_value |
| : EVP_has_aes_hardware(); |
| return ssl_create_cipher_list(&ssl->config->cipher_list, has_aes_hw, str, |
| true /* strict */); |
| } |
| |
| const char *SSL_get_servername(const SSL *ssl, const int type) { |
| if (type != TLSEXT_NAMETYPE_host_name) { |
| return NULL; |
| } |
| |
| // Historically, |SSL_get_servername| was also the configuration getter |
| // corresponding to |SSL_set_tlsext_host_name|. |
| if (ssl->hostname != nullptr) { |
| return ssl->hostname.get(); |
| } |
| |
| return ssl->s3->hostname.get(); |
| } |
| |
| int SSL_get_servername_type(const SSL *ssl) { |
| if (SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name) == NULL) { |
| return -1; |
| } |
| return TLSEXT_NAMETYPE_host_name; |
| } |
| |
| void SSL_CTX_set_custom_verify( |
| SSL_CTX *ctx, int mode, |
| enum ssl_verify_result_t (*callback)(SSL *ssl, uint8_t *out_alert)) { |
| ctx->verify_mode = mode; |
| ctx->custom_verify_callback = callback; |
| } |
| |
| void SSL_set_custom_verify( |
| SSL *ssl, int mode, |
| enum ssl_verify_result_t (*callback)(SSL *ssl, uint8_t *out_alert)) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->verify_mode = mode; |
| ssl->config->custom_verify_callback = callback; |
| } |
| |
| void SSL_CTX_enable_signed_cert_timestamps(SSL_CTX *ctx) { |
| ctx->signed_cert_timestamps_enabled = true; |
| } |
| |
| void SSL_enable_signed_cert_timestamps(SSL *ssl) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->signed_cert_timestamps_enabled = true; |
| } |
| |
| void SSL_CTX_enable_ocsp_stapling(SSL_CTX *ctx) { |
| ctx->ocsp_stapling_enabled = true; |
| } |
| |
| void SSL_enable_ocsp_stapling(SSL *ssl) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->ocsp_stapling_enabled = true; |
| } |
| |
| void SSL_get0_signed_cert_timestamp_list(const SSL *ssl, const uint8_t **out, |
| size_t *out_len) { |
| SSL_SESSION *session = SSL_get_session(ssl); |
| if (ssl->server || !session || !session->signed_cert_timestamp_list) { |
| *out_len = 0; |
| *out = NULL; |
| return; |
| } |
| |
| *out = CRYPTO_BUFFER_data(session->signed_cert_timestamp_list.get()); |
| *out_len = CRYPTO_BUFFER_len(session->signed_cert_timestamp_list.get()); |
| } |
| |
| void SSL_get0_ocsp_response(const SSL *ssl, const uint8_t **out, |
| size_t *out_len) { |
| SSL_SESSION *session = SSL_get_session(ssl); |
| if (ssl->server || !session || !session->ocsp_response) { |
| *out_len = 0; |
| *out = NULL; |
| return; |
| } |
| |
| *out = CRYPTO_BUFFER_data(session->ocsp_response.get()); |
| *out_len = CRYPTO_BUFFER_len(session->ocsp_response.get()); |
| } |
| |
| int SSL_set_tlsext_host_name(SSL *ssl, const char *name) { |
| ssl->hostname.reset(); |
| if (name == nullptr) { |
| return 1; |
| } |
| |
| size_t len = strlen(name); |
| if (len == 0 || len > TLSEXT_MAXLEN_host_name) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_SSL3_EXT_INVALID_SERVERNAME); |
| return 0; |
| } |
| ssl->hostname.reset(OPENSSL_strdup(name)); |
| if (ssl->hostname == nullptr) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| int SSL_CTX_set_tlsext_servername_callback( |
| SSL_CTX *ctx, int (*callback)(SSL *ssl, int *out_alert, void *arg)) { |
| ctx->servername_callback = callback; |
| return 1; |
| } |
| |
| int SSL_CTX_set_tlsext_servername_arg(SSL_CTX *ctx, void *arg) { |
| ctx->servername_arg = arg; |
| return 1; |
| } |
| |
| int SSL_select_next_proto(uint8_t **out, uint8_t *out_len, const uint8_t *peer, |
| unsigned peer_len, const uint8_t *supported, |
| unsigned supported_len) { |
| *out = nullptr; |
| *out_len = 0; |
| |
| // Both |peer| and |supported| must be valid protocol lists, but |peer| may be |
| // empty in NPN. |
| auto peer_span = MakeConstSpan(peer, peer_len); |
| auto supported_span = MakeConstSpan(supported, supported_len); |
| if ((!peer_span.empty() && !ssl_is_valid_alpn_list(peer_span)) || |
| !ssl_is_valid_alpn_list(supported_span)) { |
| return OPENSSL_NPN_NO_OVERLAP; |
| } |
| |
| // For each protocol in peer preference order, see if we support it. |
| CBS cbs = peer_span, proto; |
| while (CBS_len(&cbs) != 0) { |
| if (!CBS_get_u8_length_prefixed(&cbs, &proto) || CBS_len(&proto) == 0) { |
| return OPENSSL_NPN_NO_OVERLAP; |
| } |
| |
| if (ssl_alpn_list_contains_protocol(MakeConstSpan(supported, supported_len), |
| proto)) { |
| // This function is not const-correct for compatibility with existing |
| // callers. |
| *out = const_cast<uint8_t *>(CBS_data(&proto)); |
| // A u8 length prefix will fit in |uint8_t|. |
| *out_len = static_cast<uint8_t>(CBS_len(&proto)); |
| return OPENSSL_NPN_NEGOTIATED; |
| } |
| } |
| |
| // There's no overlap between our protocols and the peer's list. In ALPN, the |
| // caller is expected to fail the connection with no_application_protocol. In |
| // NPN, the caller is expected to opportunistically select the first protocol. |
| // See draft-agl-tls-nextprotoneg-04, section 6. |
| cbs = supported_span; |
| if (!CBS_get_u8_length_prefixed(&cbs, &proto) || CBS_len(&proto) == 0) { |
| return OPENSSL_NPN_NO_OVERLAP; |
| } |
| |
| // See above. |
| *out = const_cast<uint8_t *>(CBS_data(&proto)); |
| *out_len = static_cast<uint8_t>(CBS_len(&proto)); |
| return OPENSSL_NPN_NO_OVERLAP; |
| } |
| |
| void SSL_get0_next_proto_negotiated(const SSL *ssl, const uint8_t **out_data, |
| unsigned *out_len) { |
| // NPN protocols have one-byte lengths, so they must fit in |unsigned|. |
| assert(ssl->s3->next_proto_negotiated.size() <= UINT_MAX); |
| *out_data = ssl->s3->next_proto_negotiated.data(); |
| *out_len = static_cast<unsigned>(ssl->s3->next_proto_negotiated.size()); |
| } |
| |
| void SSL_CTX_set_next_protos_advertised_cb( |
| SSL_CTX *ctx, |
| int (*cb)(SSL *ssl, const uint8_t **out, unsigned *out_len, void *arg), |
| void *arg) { |
| ctx->next_protos_advertised_cb = cb; |
| ctx->next_protos_advertised_cb_arg = arg; |
| } |
| |
| void SSL_CTX_set_next_proto_select_cb( |
| SSL_CTX *ctx, int (*cb)(SSL *ssl, uint8_t **out, uint8_t *out_len, |
| const uint8_t *in, unsigned in_len, void *arg), |
| void *arg) { |
| ctx->next_proto_select_cb = cb; |
| ctx->next_proto_select_cb_arg = arg; |
| } |
| |
| int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const uint8_t *protos, |
| size_t protos_len) { |
| // Note this function's return value is backwards. |
| auto span = MakeConstSpan(protos, protos_len); |
| if (!span.empty() && !ssl_is_valid_alpn_list(span)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL_LIST); |
| return 1; |
| } |
| return ctx->alpn_client_proto_list.CopyFrom(span) ? 0 : 1; |
| } |
| |
| int SSL_set_alpn_protos(SSL *ssl, const uint8_t *protos, size_t protos_len) { |
| // Note this function's return value is backwards. |
| if (!ssl->config) { |
| return 1; |
| } |
| auto span = MakeConstSpan(protos, protos_len); |
| if (!span.empty() && !ssl_is_valid_alpn_list(span)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_ALPN_PROTOCOL_LIST); |
| return 1; |
| } |
| return ssl->config->alpn_client_proto_list.CopyFrom(span) ? 0 : 1; |
| } |
| |
| void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, |
| int (*cb)(SSL *ssl, const uint8_t **out, |
| uint8_t *out_len, const uint8_t *in, |
| unsigned in_len, void *arg), |
| void *arg) { |
| ctx->alpn_select_cb = cb; |
| ctx->alpn_select_cb_arg = arg; |
| } |
| |
| void SSL_get0_alpn_selected(const SSL *ssl, const uint8_t **out_data, |
| unsigned *out_len) { |
| Span<const uint8_t> protocol; |
| if (SSL_in_early_data(ssl) && !ssl->server) { |
| protocol = ssl->s3->hs->early_session->early_alpn; |
| } else { |
| protocol = ssl->s3->alpn_selected; |
| } |
| // ALPN protocols have one-byte lengths, so they must fit in |unsigned|. |
| assert(protocol.size() < UINT_MAX); |
| *out_data = protocol.data(); |
| *out_len = static_cast<unsigned>(protocol.size()); |
| } |
| |
| void SSL_CTX_set_allow_unknown_alpn_protos(SSL_CTX *ctx, int enabled) { |
| ctx->allow_unknown_alpn_protos = !!enabled; |
| } |
| |
| int SSL_add_application_settings(SSL *ssl, const uint8_t *proto, |
| size_t proto_len, const uint8_t *settings, |
| size_t settings_len) { |
| if (!ssl->config) { |
| return 0; |
| } |
| ALPSConfig config; |
| if (!config.protocol.CopyFrom(MakeConstSpan(proto, proto_len)) || |
| !config.settings.CopyFrom(MakeConstSpan(settings, settings_len)) || |
| !ssl->config->alps_configs.Push(std::move(config))) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| void SSL_get0_peer_application_settings(const SSL *ssl, |
| const uint8_t **out_data, |
| size_t *out_len) { |
| const SSL_SESSION *session = SSL_get_session(ssl); |
| Span<const uint8_t> settings = |
| session ? session->peer_application_settings : Span<const uint8_t>(); |
| *out_data = settings.data(); |
| *out_len = settings.size(); |
| } |
| |
| int SSL_has_application_settings(const SSL *ssl) { |
| const SSL_SESSION *session = SSL_get_session(ssl); |
| return session && session->has_application_settings; |
| } |
| |
| void SSL_set_alps_use_new_codepoint(SSL *ssl, int use_new) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->alps_use_new_codepoint = !!use_new; |
| } |
| |
| int SSL_CTX_add_cert_compression_alg(SSL_CTX *ctx, uint16_t alg_id, |
| ssl_cert_compression_func_t compress, |
| ssl_cert_decompression_func_t decompress) { |
| assert(compress != nullptr || decompress != nullptr); |
| |
| for (const auto &alg : ctx->cert_compression_algs) { |
| if (alg.alg_id == alg_id) { |
| return 0; |
| } |
| } |
| |
| CertCompressionAlg alg; |
| alg.alg_id = alg_id; |
| alg.compress = compress; |
| alg.decompress = decompress; |
| return ctx->cert_compression_algs.Push(alg); |
| } |
| |
| void SSL_CTX_set_tls_channel_id_enabled(SSL_CTX *ctx, int enabled) { |
| ctx->channel_id_enabled = !!enabled; |
| } |
| |
| int SSL_CTX_enable_tls_channel_id(SSL_CTX *ctx) { |
| SSL_CTX_set_tls_channel_id_enabled(ctx, 1); |
| return 1; |
| } |
| |
| void SSL_set_tls_channel_id_enabled(SSL *ssl, int enabled) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->channel_id_enabled = !!enabled; |
| } |
| |
| int SSL_enable_tls_channel_id(SSL *ssl) { |
| SSL_set_tls_channel_id_enabled(ssl, 1); |
| return 1; |
| } |
| |
| static int is_p256_key(EVP_PKEY *private_key) { |
| const EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(private_key); |
| return ec_key != NULL && |
| EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) == |
| NID_X9_62_prime256v1; |
| } |
| |
| int SSL_CTX_set1_tls_channel_id(SSL_CTX *ctx, EVP_PKEY *private_key) { |
| if (!is_p256_key(private_key)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256); |
| return 0; |
| } |
| |
| ctx->channel_id_private = UpRef(private_key); |
| return 1; |
| } |
| |
| int SSL_set1_tls_channel_id(SSL *ssl, EVP_PKEY *private_key) { |
| if (!ssl->config) { |
| return 0; |
| } |
| if (!is_p256_key(private_key)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_NOT_P256); |
| return 0; |
| } |
| |
| ssl->config->channel_id_private = UpRef(private_key); |
| return 1; |
| } |
| |
| size_t SSL_get_tls_channel_id(SSL *ssl, uint8_t *out, size_t max_out) { |
| if (!ssl->s3->channel_id_valid) { |
| return 0; |
| } |
| OPENSSL_memcpy(out, ssl->s3->channel_id, (max_out < 64) ? max_out : 64); |
| return 64; |
| } |
| |
| size_t SSL_get0_certificate_types(const SSL *ssl, const uint8_t **out_types) { |
| Span<const uint8_t> types; |
| if (!ssl->server && ssl->s3->hs != nullptr) { |
| types = ssl->s3->hs->certificate_types; |
| } |
| *out_types = types.data(); |
| return types.size(); |
| } |
| |
| size_t SSL_get0_peer_verify_algorithms(const SSL *ssl, |
| const uint16_t **out_sigalgs) { |
| Span<const uint16_t> sigalgs; |
| if (ssl->s3->hs != nullptr) { |
| sigalgs = ssl->s3->hs->peer_sigalgs; |
| } |
| *out_sigalgs = sigalgs.data(); |
| return sigalgs.size(); |
| } |
| |
| size_t SSL_get0_peer_delegation_algorithms(const SSL *ssl, |
| const uint16_t **out_sigalgs){ |
| Span<const uint16_t> sigalgs; |
| if (ssl->s3->hs != nullptr) { |
| sigalgs = ssl->s3->hs->peer_delegated_credential_sigalgs; |
| } |
| *out_sigalgs = sigalgs.data(); |
| return sigalgs.size(); |
| } |
| |
| EVP_PKEY *SSL_get_privatekey(const SSL *ssl) { |
| if (!ssl->config) { |
| assert(ssl->config); |
| return nullptr; |
| } |
| return ssl->config->cert->legacy_credential->privkey.get(); |
| } |
| |
| EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) { |
| return ctx->cert->legacy_credential->privkey.get(); |
| } |
| |
| const SSL_CIPHER *SSL_get_current_cipher(const SSL *ssl) { |
| const SSL_SESSION *session = SSL_get_session(ssl); |
| return session == nullptr ? nullptr : session->cipher; |
| } |
| |
| int SSL_session_reused(const SSL *ssl) { |
| return ssl->s3->session_reused || SSL_in_early_data(ssl); |
| } |
| |
| const COMP_METHOD *SSL_get_current_compression(SSL *ssl) { return NULL; } |
| |
| const COMP_METHOD *SSL_get_current_expansion(SSL *ssl) { return NULL; } |
| |
| int SSL_get_server_tmp_key(SSL *ssl, EVP_PKEY **out_key) { return 0; } |
| |
| void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) { |
| ctx->quiet_shutdown = (mode != 0); |
| } |
| |
| int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) { |
| return ctx->quiet_shutdown; |
| } |
| |
| void SSL_set_quiet_shutdown(SSL *ssl, int mode) { |
| ssl->quiet_shutdown = (mode != 0); |
| } |
| |
| int SSL_get_quiet_shutdown(const SSL *ssl) { return ssl->quiet_shutdown; } |
| |
| void SSL_set_shutdown(SSL *ssl, int mode) { |
| // It is an error to clear any bits that have already been set. (We can't try |
| // to get a second close_notify or send two.) |
| assert((SSL_get_shutdown(ssl) & mode) == SSL_get_shutdown(ssl)); |
| |
| if (mode & SSL_RECEIVED_SHUTDOWN && |
| ssl->s3->read_shutdown == ssl_shutdown_none) { |
| ssl->s3->read_shutdown = ssl_shutdown_close_notify; |
| } |
| |
| if (mode & SSL_SENT_SHUTDOWN && |
| ssl->s3->write_shutdown == ssl_shutdown_none) { |
| ssl->s3->write_shutdown = ssl_shutdown_close_notify; |
| } |
| } |
| |
| int SSL_get_shutdown(const SSL *ssl) { |
| int ret = 0; |
| if (ssl->s3->read_shutdown != ssl_shutdown_none) { |
| // Historically, OpenSSL set |SSL_RECEIVED_SHUTDOWN| on both close_notify |
| // and fatal alert. |
| ret |= SSL_RECEIVED_SHUTDOWN; |
| } |
| if (ssl->s3->write_shutdown == ssl_shutdown_close_notify) { |
| // Historically, OpenSSL set |SSL_SENT_SHUTDOWN| on only close_notify. |
| ret |= SSL_SENT_SHUTDOWN; |
| } |
| return ret; |
| } |
| |
| SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) { return ssl->ctx.get(); } |
| |
| SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) { |
| if (!ssl->config) { |
| return NULL; |
| } |
| if (ssl->ctx.get() == ctx) { |
| return ssl->ctx.get(); |
| } |
| |
| // One cannot change the X.509 callbacks during a connection. |
| if (ssl->ctx->x509_method != ctx->x509_method) { |
| assert(0); |
| return NULL; |
| } |
| |
| UniquePtr<CERT> new_cert = ssl_cert_dup(ctx->cert.get()); |
| if (!new_cert) { |
| return nullptr; |
| } |
| |
| ssl->config->cert = std::move(new_cert); |
| ssl->ctx = UpRef(ctx); |
| ssl->enable_early_data = ssl->ctx->enable_early_data; |
| |
| return ssl->ctx.get(); |
| } |
| |
| void SSL_set_info_callback(SSL *ssl, |
| void (*cb)(const SSL *ssl, int type, int value)) { |
| ssl->info_callback = cb; |
| } |
| |
| void (*SSL_get_info_callback(const SSL *ssl))(const SSL *ssl, int type, |
| int value) { |
| return ssl->info_callback; |
| } |
| |
| int SSL_state(const SSL *ssl) { |
| return SSL_in_init(ssl) ? SSL_ST_INIT : SSL_ST_OK; |
| } |
| |
| void SSL_set_state(SSL *ssl, int state) { } |
| |
| char *SSL_get_shared_ciphers(const SSL *ssl, char *buf, int len) { |
| if (len <= 0) { |
| return NULL; |
| } |
| buf[0] = '\0'; |
| return buf; |
| } |
| |
| int SSL_get_shared_sigalgs(SSL *ssl, int idx, int *psign, int *phash, |
| int *psignandhash, uint8_t *rsig, uint8_t *rhash) { |
| return 0; |
| } |
| |
| int SSL_CTX_set_quic_method(SSL_CTX *ctx, const SSL_QUIC_METHOD *quic_method) { |
| if (ctx->method->is_dtls) { |
| return 0; |
| } |
| ctx->quic_method = quic_method; |
| return 1; |
| } |
| |
| int SSL_set_quic_method(SSL *ssl, const SSL_QUIC_METHOD *quic_method) { |
| if (ssl->method->is_dtls) { |
| return 0; |
| } |
| ssl->quic_method = quic_method; |
| return 1; |
| } |
| |
| int SSL_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, |
| CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) { |
| return CRYPTO_get_ex_new_index_ex(&g_ex_data_class_ssl, argl, argp, |
| free_func); |
| } |
| |
| int SSL_set_ex_data(SSL *ssl, int idx, void *data) { |
| return CRYPTO_set_ex_data(&ssl->ex_data, idx, data); |
| } |
| |
| void *SSL_get_ex_data(const SSL *ssl, int idx) { |
| return CRYPTO_get_ex_data(&ssl->ex_data, idx); |
| } |
| |
| int SSL_CTX_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused, |
| CRYPTO_EX_dup *dup_unused, |
| CRYPTO_EX_free *free_func) { |
| return CRYPTO_get_ex_new_index_ex(&g_ex_data_class_ssl_ctx, argl, argp, |
| free_func); |
| } |
| |
| int SSL_CTX_set_ex_data(SSL_CTX *ctx, int idx, void *data) { |
| return CRYPTO_set_ex_data(&ctx->ex_data, idx, data); |
| } |
| |
| void *SSL_CTX_get_ex_data(const SSL_CTX *ctx, int idx) { |
| return CRYPTO_get_ex_data(&ctx->ex_data, idx); |
| } |
| |
| int SSL_want(const SSL *ssl) { |
| // Historically, OpenSSL did not track |SSL_ERROR_ZERO_RETURN| as an |rwstate| |
| // value. We do, but map it back to |SSL_ERROR_NONE| to preserve the original |
| // behavior. |
| return ssl->s3->rwstate == SSL_ERROR_ZERO_RETURN ? SSL_ERROR_NONE |
| : ssl->s3->rwstate; |
| } |
| |
| void SSL_CTX_set_tmp_rsa_callback(SSL_CTX *ctx, |
| RSA *(*cb)(SSL *ssl, int is_export, |
| int keylength)) {} |
| |
| void SSL_set_tmp_rsa_callback(SSL *ssl, RSA *(*cb)(SSL *ssl, int is_export, |
| int keylength)) {} |
| |
| void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx, |
| DH *(*cb)(SSL *ssl, int is_export, |
| int keylength)) {} |
| |
| void SSL_set_tmp_dh_callback(SSL *ssl, DH *(*cb)(SSL *ssl, int is_export, |
| int keylength)) {} |
| |
| static int use_psk_identity_hint(UniquePtr<char> *out, |
| const char *identity_hint) { |
| if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); |
| return 0; |
| } |
| |
| // Clear currently configured hint, if any. |
| out->reset(); |
| |
| // Treat the empty hint as not supplying one. Plain PSK makes it possible to |
| // send either no hint (omit ServerKeyExchange) or an empty hint, while |
| // ECDHE_PSK can only spell empty hint. Having different capabilities is odd, |
| // so we interpret empty and missing as identical. |
| if (identity_hint != NULL && identity_hint[0] != '\0') { |
| out->reset(OPENSSL_strdup(identity_hint)); |
| if (*out == nullptr) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) { |
| return use_psk_identity_hint(&ctx->psk_identity_hint, identity_hint); |
| } |
| |
| int SSL_use_psk_identity_hint(SSL *ssl, const char *identity_hint) { |
| if (!ssl->config) { |
| return 0; |
| } |
| return use_psk_identity_hint(&ssl->config->psk_identity_hint, identity_hint); |
| } |
| |
| const char *SSL_get_psk_identity_hint(const SSL *ssl) { |
| if (ssl == NULL) { |
| return NULL; |
| } |
| if (ssl->config == NULL) { |
| assert(ssl->config); |
| return NULL; |
| } |
| return ssl->config->psk_identity_hint.get(); |
| } |
| |
| const char *SSL_get_psk_identity(const SSL *ssl) { |
| if (ssl == NULL) { |
| return NULL; |
| } |
| SSL_SESSION *session = SSL_get_session(ssl); |
| if (session == NULL) { |
| return NULL; |
| } |
| return session->psk_identity.get(); |
| } |
| |
| void SSL_set_psk_client_callback( |
| SSL *ssl, unsigned (*cb)(SSL *ssl, const char *hint, char *identity, |
| unsigned max_identity_len, uint8_t *psk, |
| unsigned max_psk_len)) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->psk_client_callback = cb; |
| } |
| |
| void SSL_CTX_set_psk_client_callback( |
| SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *hint, char *identity, |
| unsigned max_identity_len, uint8_t *psk, |
| unsigned max_psk_len)) { |
| ctx->psk_client_callback = cb; |
| } |
| |
| void SSL_set_psk_server_callback( |
| SSL *ssl, unsigned (*cb)(SSL *ssl, const char *identity, uint8_t *psk, |
| unsigned max_psk_len)) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->psk_server_callback = cb; |
| } |
| |
| void SSL_CTX_set_psk_server_callback( |
| SSL_CTX *ctx, unsigned (*cb)(SSL *ssl, const char *identity, |
| uint8_t *psk, unsigned max_psk_len)) { |
| ctx->psk_server_callback = cb; |
| } |
| |
| void SSL_CTX_set_msg_callback(SSL_CTX *ctx, |
| void (*cb)(int write_p, int version, |
| int content_type, const void *buf, |
| size_t len, SSL *ssl, void *arg)) { |
| ctx->msg_callback = cb; |
| } |
| |
| void SSL_CTX_set_msg_callback_arg(SSL_CTX *ctx, void *arg) { |
| ctx->msg_callback_arg = arg; |
| } |
| |
| void SSL_set_msg_callback(SSL *ssl, |
| void (*cb)(int write_p, int version, int content_type, |
| const void *buf, size_t len, SSL *ssl, |
| void *arg)) { |
| ssl->msg_callback = cb; |
| } |
| |
| void SSL_set_msg_callback_arg(SSL *ssl, void *arg) { |
| ssl->msg_callback_arg = arg; |
| } |
| |
| void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, |
| void (*cb)(const SSL *ssl, const char *line)) { |
| ctx->keylog_callback = cb; |
| } |
| |
| void (*SSL_CTX_get_keylog_callback(const SSL_CTX *ctx))(const SSL *ssl, |
| const char *line) { |
| return ctx->keylog_callback; |
| } |
| |
| void SSL_CTX_set_current_time_cb(SSL_CTX *ctx, |
| void (*cb)(const SSL *ssl, |
| struct timeval *out_clock)) { |
| ctx->current_time_cb = cb; |
| } |
| |
| int SSL_can_release_private_key(const SSL *ssl) { |
| if (ssl_can_renegotiate(ssl)) { |
| // If the connection can renegotiate (client only), the private key may be |
| // used in a future handshake. |
| return 0; |
| } |
| |
| // Otherwise, this is determined by the current handshake. |
| return !ssl->s3->hs || ssl->s3->hs->can_release_private_key; |
| } |
| |
| int SSL_is_init_finished(const SSL *ssl) { |
| return !SSL_in_init(ssl); |
| } |
| |
| int SSL_in_init(const SSL *ssl) { |
| // This returns false once all the handshake state has been finalized, to |
| // allow callbacks and getters based on SSL_in_init to return the correct |
| // values. |
| SSL_HANDSHAKE *hs = ssl->s3->hs.get(); |
| return hs != nullptr && !hs->handshake_finalized; |
| } |
| |
| int SSL_in_false_start(const SSL *ssl) { |
| if (ssl->s3->hs == NULL) { |
| return 0; |
| } |
| return ssl->s3->hs->in_false_start; |
| } |
| |
| int SSL_cutthrough_complete(const SSL *ssl) { |
| return SSL_in_false_start(ssl); |
| } |
| |
| int SSL_is_server(const SSL *ssl) { return ssl->server; } |
| |
| int SSL_is_dtls(const SSL *ssl) { return ssl->method->is_dtls; } |
| |
| void SSL_CTX_set_select_certificate_cb( |
| SSL_CTX *ctx, |
| enum ssl_select_cert_result_t (*cb)(const SSL_CLIENT_HELLO *)) { |
| ctx->select_certificate_cb = cb; |
| } |
| |
| void SSL_CTX_set_dos_protection_cb(SSL_CTX *ctx, |
| int (*cb)(const SSL_CLIENT_HELLO *)) { |
| ctx->dos_protection_cb = cb; |
| } |
| |
| void SSL_CTX_set_reverify_on_resume(SSL_CTX *ctx, int enabled) { |
| ctx->reverify_on_resume = !!enabled; |
| } |
| |
| void SSL_set_enforce_rsa_key_usage(SSL *ssl, int enabled) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->enforce_rsa_key_usage = !!enabled; |
| } |
| |
| int SSL_was_key_usage_invalid(const SSL *ssl) { |
| return ssl->s3->was_key_usage_invalid; |
| } |
| |
| void SSL_set_renegotiate_mode(SSL *ssl, enum ssl_renegotiate_mode_t mode) { |
| ssl->renegotiate_mode = mode; |
| |
| // Check if |ssl_can_renegotiate| has changed and the configuration may now be |
| // shed. HTTP clients may initially allow renegotiation for HTTP/1.1, and then |
| // disable after the handshake once the ALPN protocol is known to be HTTP/2. |
| ssl_maybe_shed_handshake_config(ssl); |
| } |
| |
| int SSL_get_ivs(const SSL *ssl, const uint8_t **out_read_iv, |
| const uint8_t **out_write_iv, size_t *out_iv_len) { |
| // No cipher suites maintain stateful internal IVs in DTLS. It would not be |
| // compatible with reordering. |
| if (SSL_is_dtls(ssl)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| size_t write_iv_len; |
| if (!ssl->s3->aead_read_ctx->GetIV(out_read_iv, out_iv_len) || |
| !ssl->s3->aead_write_ctx->GetIV(out_write_iv, &write_iv_len) || |
| *out_iv_len != write_iv_len) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| uint64_t SSL_get_read_sequence(const SSL *ssl) { |
| if (SSL_is_dtls(ssl)) { |
| // TODO(crbug.com/42290608): The API for read sequences in DTLS 1.3 needs to |
| // reworked. In DTLS 1.3, the read epoch is updated once new keys are |
| // derived (before we receive a message encrypted with those keys), which |
| // results in the read epoch being ahead of the highest record received. |
| // Additionally, when we process a KeyUpdate, we will install new read keys |
| // for the new epoch, but we may receive messages from the old epoch for |
| // some time if the ACK gets lost or there is reordering. |
| |
| // max_seq_num already includes the epoch. However, the current epoch may |
| // be one ahead of the highest record received, immediately after a key |
| // change. |
| const DTLSReadEpoch *read_epoch = &ssl->d1->read_epoch; |
| assert(read_epoch->epoch >= read_epoch->bitmap.max_seq_num() >> 48); |
| return read_epoch->bitmap.max_seq_num(); |
| } |
| return ssl->s3->read_sequence; |
| } |
| |
| uint64_t SSL_get_write_sequence(const SSL *ssl) { |
| if (SSL_is_dtls(ssl)) { |
| const DTLSWriteEpoch *write_epoch = &ssl->d1->write_epoch; |
| uint64_t ret = write_epoch->next_seq; |
| if (SSL_is_dtls(ssl)) { |
| assert((ret >> 48) == 0); |
| ret |= uint64_t{write_epoch->epoch} << 48; |
| } |
| return ret; |
| } |
| |
| return ssl->s3->write_sequence; |
| } |
| |
| uint16_t SSL_get_peer_signature_algorithm(const SSL *ssl) { |
| SSL_SESSION *session = SSL_get_session(ssl); |
| if (session == NULL) { |
| return 0; |
| } |
| |
| return session->peer_signature_algorithm; |
| } |
| |
| size_t SSL_get_client_random(const SSL *ssl, uint8_t *out, size_t max_out) { |
| if (max_out == 0) { |
| return sizeof(ssl->s3->client_random); |
| } |
| if (max_out > sizeof(ssl->s3->client_random)) { |
| max_out = sizeof(ssl->s3->client_random); |
| } |
| OPENSSL_memcpy(out, ssl->s3->client_random, max_out); |
| return max_out; |
| } |
| |
| size_t SSL_get_server_random(const SSL *ssl, uint8_t *out, size_t max_out) { |
| if (max_out == 0) { |
| return sizeof(ssl->s3->server_random); |
| } |
| if (max_out > sizeof(ssl->s3->server_random)) { |
| max_out = sizeof(ssl->s3->server_random); |
| } |
| OPENSSL_memcpy(out, ssl->s3->server_random, max_out); |
| return max_out; |
| } |
| |
| const SSL_CIPHER *SSL_get_pending_cipher(const SSL *ssl) { |
| SSL_HANDSHAKE *hs = ssl->s3->hs.get(); |
| if (hs == NULL) { |
| return NULL; |
| } |
| return hs->new_cipher; |
| } |
| |
| void SSL_set_retain_only_sha256_of_client_certs(SSL *ssl, int enabled) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->retain_only_sha256_of_client_certs = !!enabled; |
| } |
| |
| void SSL_CTX_set_retain_only_sha256_of_client_certs(SSL_CTX *ctx, int enabled) { |
| ctx->retain_only_sha256_of_client_certs = !!enabled; |
| } |
| |
| void SSL_CTX_set_grease_enabled(SSL_CTX *ctx, int enabled) { |
| ctx->grease_enabled = !!enabled; |
| } |
| |
| void SSL_CTX_set_permute_extensions(SSL_CTX *ctx, int enabled) { |
| ctx->permute_extensions = !!enabled; |
| } |
| |
| void SSL_set_permute_extensions(SSL *ssl, int enabled) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->permute_extensions = !!enabled; |
| } |
| |
| int32_t SSL_get_ticket_age_skew(const SSL *ssl) { |
| return ssl->s3->ticket_age_skew; |
| } |
| |
| void SSL_CTX_set_false_start_allowed_without_alpn(SSL_CTX *ctx, int allowed) { |
| ctx->false_start_allowed_without_alpn = !!allowed; |
| } |
| |
| int SSL_used_hello_retry_request(const SSL *ssl) { |
| return ssl->s3->used_hello_retry_request; |
| } |
| |
| void SSL_set_shed_handshake_config(SSL *ssl, int enable) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->shed_handshake_config = !!enable; |
| } |
| |
| void SSL_set_jdk11_workaround(SSL *ssl, int enable) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->jdk11_workaround = !!enable; |
| } |
| |
| void SSL_set_check_client_certificate_type(SSL *ssl, int enable) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->check_client_certificate_type = !!enable; |
| } |
| |
| void SSL_set_check_ecdsa_curve(SSL *ssl, int enable) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->check_ecdsa_curve = !!enable; |
| } |
| |
| void SSL_set_quic_use_legacy_codepoint(SSL *ssl, int use_legacy) { |
| if (!ssl->config) { |
| return; |
| } |
| ssl->config->quic_use_legacy_codepoint = !!use_legacy; |
| } |
| |
| int SSL_clear(SSL *ssl) { |
| if (!ssl->config) { |
| return 0; // SSL_clear may not be used after shedding config. |
| } |
| |
| // In OpenSSL, reusing a client |SSL| with |SSL_clear| causes the previously |
| // established session to be offered the next time around. wpa_supplicant |
| // depends on this behavior, so emulate it. |
| UniquePtr<SSL_SESSION> session; |
| if (!ssl->server && ssl->s3->established_session != NULL) { |
| session = UpRef(ssl->s3->established_session); |
| } |
| |
| // The ssl->d1->mtu is simultaneously configuration (preserved across |
| // clear) and connection-specific state (gets reset). |
| // |
| // TODO(davidben): Avoid this. |
| unsigned mtu = 0; |
| if (ssl->d1 != NULL) { |
| mtu = ssl->d1->mtu; |
| } |
| |
| ssl->method->ssl_free(ssl); |
| if (!ssl->method->ssl_new(ssl)) { |
| return 0; |
| } |
| |
| if (SSL_is_dtls(ssl) && (SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { |
| ssl->d1->mtu = mtu; |
| } |
| |
| if (session != nullptr) { |
| SSL_set_session(ssl, session.get()); |
| } |
| |
| return 1; |
| } |
| |
| int SSL_CTX_sess_connect(const SSL_CTX *ctx) { return 0; } |
| int SSL_CTX_sess_connect_good(const SSL_CTX *ctx) { return 0; } |
| int SSL_CTX_sess_connect_renegotiate(const SSL_CTX *ctx) { return 0; } |
| int SSL_CTX_sess_accept(const SSL_CTX *ctx) { return 0; } |
| int SSL_CTX_sess_accept_renegotiate(const SSL_CTX *ctx) { return 0; } |
| int SSL_CTX_sess_accept_good(const SSL_CTX *ctx) { return 0; } |
| int SSL_CTX_sess_hits(const SSL_CTX *ctx) { return 0; } |
| int SSL_CTX_sess_cb_hits(const SSL_CTX *ctx) { return 0; } |
| int SSL_CTX_sess_misses(const SSL_CTX *ctx) { return 0; } |
| int SSL_CTX_sess_timeouts(const SSL_CTX *ctx) { return 0; } |
| int SSL_CTX_sess_cache_full(const SSL_CTX *ctx) { return 0; } |
| |
| int SSL_num_renegotiations(const SSL *ssl) { |
| return SSL_total_renegotiations(ssl); |
| } |
| |
| int SSL_CTX_need_tmp_RSA(const SSL_CTX *ctx) { return 0; } |
| int SSL_need_tmp_RSA(const SSL *ssl) { return 0; } |
| int SSL_CTX_set_tmp_rsa(SSL_CTX *ctx, const RSA *rsa) { return 1; } |
| int SSL_set_tmp_rsa(SSL *ssl, const RSA *rsa) { return 1; } |
| void ERR_load_SSL_strings(void) {} |
| void SSL_load_error_strings(void) {} |
| int SSL_cache_hit(SSL *ssl) { return SSL_session_reused(ssl); } |
| |
| int SSL_CTX_set_tmp_ecdh(SSL_CTX *ctx, const EC_KEY *ec_key) { |
| if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)); |
| return SSL_CTX_set1_groups(ctx, &nid, 1); |
| } |
| |
| int SSL_set_tmp_ecdh(SSL *ssl, const EC_KEY *ec_key) { |
| if (ec_key == NULL || EC_KEY_get0_group(ec_key) == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| int nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)); |
| return SSL_set1_groups(ssl, &nid, 1); |
| } |
| |
| void SSL_CTX_set_ticket_aead_method(SSL_CTX *ctx, |
| const SSL_TICKET_AEAD_METHOD *aead_method) { |
| ctx->ticket_aead_method = aead_method; |
| } |
| |
| SSL_SESSION *SSL_process_tls13_new_session_ticket(SSL *ssl, const uint8_t *buf, |
| size_t buf_len) { |
| if (SSL_in_init(ssl) || |
| ssl_protocol_version(ssl) != TLS1_3_VERSION || |
| ssl->server) { |
| // Only TLS 1.3 clients are supported. |
| OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return nullptr; |
| } |
| |
| CBS cbs, body; |
| CBS_init(&cbs, buf, buf_len); |
| uint8_t type; |
| if (!CBS_get_u8(&cbs, &type) || |
| !CBS_get_u24_length_prefixed(&cbs, &body) || |
| CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| return nullptr; |
| } |
| |
| UniquePtr<SSL_SESSION> session = tls13_create_session_with_ticket(ssl, &body); |
| if (!session) { |
| // |tls13_create_session_with_ticket| puts the correct error. |
| return nullptr; |
| } |
| return session.release(); |
| } |
| |
| int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) { |
| num_tickets = std::min(num_tickets, kMaxTickets); |
| static_assert(kMaxTickets <= 0xff, "Too many tickets."); |
| ctx->num_tickets = static_cast<uint8_t>(num_tickets); |
| return 1; |
| } |
| |
| size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) { return ctx->num_tickets; } |
| |
| int SSL_set_tlsext_status_type(SSL *ssl, int type) { |
| if (!ssl->config) { |
| return 0; |
| } |
| ssl->config->ocsp_stapling_enabled = type == TLSEXT_STATUSTYPE_ocsp; |
| return 1; |
| } |
| |
| int SSL_get_tlsext_status_type(const SSL *ssl) { |
| if (ssl->server) { |
| SSL_HANDSHAKE *hs = ssl->s3->hs.get(); |
| return hs != nullptr && hs->ocsp_stapling_requested |
| ? TLSEXT_STATUSTYPE_ocsp |
| : TLSEXT_STATUSTYPE_nothing; |
| } |
| |
| return ssl->config != nullptr && ssl->config->ocsp_stapling_enabled |
| ? TLSEXT_STATUSTYPE_ocsp |
| : TLSEXT_STATUSTYPE_nothing; |
| } |
| |
| int SSL_set_tlsext_status_ocsp_resp(SSL *ssl, uint8_t *resp, size_t resp_len) { |
| if (SSL_set_ocsp_response(ssl, resp, resp_len)) { |
| OPENSSL_free(resp); |
| return 1; |
| } |
| return 0; |
| } |
| |
| size_t SSL_get_tlsext_status_ocsp_resp(const SSL *ssl, const uint8_t **out) { |
| size_t ret; |
| SSL_get0_ocsp_response(ssl, out, &ret); |
| return ret; |
| } |
| |
| int SSL_CTX_set_tlsext_status_cb(SSL_CTX *ctx, |
| int (*callback)(SSL *ssl, void *arg)) { |
| ctx->legacy_ocsp_callback = callback; |
| return 1; |
| } |
| |
| int SSL_CTX_set_tlsext_status_arg(SSL_CTX *ctx, void *arg) { |
| ctx->legacy_ocsp_callback_arg = arg; |
| return 1; |
| } |
| |
| uint16_t SSL_get_curve_id(const SSL *ssl) { return SSL_get_group_id(ssl); } |
| |
| const char *SSL_get_curve_name(uint16_t curve_id) { |
| return SSL_get_group_name(curve_id); |
| } |
| |
| size_t SSL_get_all_curve_names(const char **out, size_t max_out) { |
| return SSL_get_all_group_names(out, max_out); |
| } |
| |
| int SSL_CTX_set1_curves(SSL_CTX *ctx, const int *curves, size_t num_curves) { |
| return SSL_CTX_set1_groups(ctx, curves, num_curves); |
| } |
| |
| int SSL_set1_curves(SSL *ssl, const int *curves, size_t num_curves) { |
| return SSL_set1_groups(ssl, curves, num_curves); |
| } |
| |
| int SSL_CTX_set1_curves_list(SSL_CTX *ctx, const char *curves) { |
| return SSL_CTX_set1_groups_list(ctx, curves); |
| } |
| |
| int SSL_set1_curves_list(SSL *ssl, const char *curves) { |
| return SSL_set1_groups_list(ssl, curves); |
| } |
| |
| namespace fips202205 { |
| |
| // (References are to SP 800-52r2): |
| |
| // Section 3.4.2.2 |
| // "at least one of the NIST-approved curves, P-256 (secp256r1) and P384 |
| // (secp384r1), shall be supported as described in RFC 8422." |
| // |
| // Section 3.3.1 |
| // "The server shall be configured to only use cipher suites that are |
| // composed entirely of NIST approved algorithms" |
| static const uint16_t kGroups[] = {SSL_GROUP_SECP256R1, SSL_GROUP_SECP384R1}; |
| |
| static const uint16_t kSigAlgs[] = { |
| SSL_SIGN_RSA_PKCS1_SHA256, |
| SSL_SIGN_RSA_PKCS1_SHA384, |
| SSL_SIGN_RSA_PKCS1_SHA512, |
| // Table 4.1: |
| // "The curve should be P-256 or P-384" |
| SSL_SIGN_ECDSA_SECP256R1_SHA256, |
| SSL_SIGN_ECDSA_SECP384R1_SHA384, |
| SSL_SIGN_RSA_PSS_RSAE_SHA256, |
| SSL_SIGN_RSA_PSS_RSAE_SHA384, |
| SSL_SIGN_RSA_PSS_RSAE_SHA512, |
| }; |
| |
| static const char kTLS12Ciphers[] = |
| "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256:" |
| "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256:" |
| "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384:" |
| "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"; |
| |
| static int Configure(SSL_CTX *ctx) { |
| ctx->tls13_cipher_policy = ssl_compliance_policy_fips_202205; |
| |
| return |
| // Section 3.1: |
| // "Servers that support government-only applications shall be |
| // configured to use TLS 1.2 and should be configured to use TLS 1.3 |
| // as well. These servers should not be configured to use TLS 1.1 and |
| // shall not use TLS 1.0, SSL 3.0, or SSL 2.0. |
| SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION) && |
| SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION) && |
| // Sections 3.3.1.1.1 and 3.3.1.1.2 are ambiguous about whether |
| // HMAC-SHA-1 cipher suites are permitted with TLS 1.2. However, later the |
| // Encrypt-then-MAC extension is required for all CBC cipher suites and so |
| // it's easier to drop them. |
| SSL_CTX_set_strict_cipher_list(ctx, kTLS12Ciphers) && |
| SSL_CTX_set1_group_ids(ctx, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) && |
| SSL_CTX_set_signing_algorithm_prefs(ctx, kSigAlgs, |
| OPENSSL_ARRAY_SIZE(kSigAlgs)) && |
| SSL_CTX_set_verify_algorithm_prefs(ctx, kSigAlgs, |
| OPENSSL_ARRAY_SIZE(kSigAlgs)); |
| } |
| |
| static int Configure(SSL *ssl) { |
| ssl->config->tls13_cipher_policy = ssl_compliance_policy_fips_202205; |
| |
| // See |Configure(SSL_CTX)|, above, for reasoning. |
| return SSL_set_min_proto_version(ssl, TLS1_2_VERSION) && |
| SSL_set_max_proto_version(ssl, TLS1_3_VERSION) && |
| SSL_set_strict_cipher_list(ssl, kTLS12Ciphers) && |
| SSL_set1_group_ids(ssl, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) && |
| SSL_set_signing_algorithm_prefs(ssl, kSigAlgs, |
| OPENSSL_ARRAY_SIZE(kSigAlgs)) && |
| SSL_set_verify_algorithm_prefs(ssl, kSigAlgs, |
| OPENSSL_ARRAY_SIZE(kSigAlgs)); |
| } |
| |
| } // namespace fips202205 |
| |
| namespace wpa202304 { |
| |
| // See WPA version 3.1, section 3.5. |
| |
| static const uint16_t kGroups[] = {SSL_GROUP_SECP384R1}; |
| |
| static const uint16_t kSigAlgs[] = { |
| SSL_SIGN_RSA_PKCS1_SHA384, // |
| SSL_SIGN_RSA_PKCS1_SHA512, // |
| SSL_SIGN_ECDSA_SECP384R1_SHA384, // |
| SSL_SIGN_RSA_PSS_RSAE_SHA384, // |
| SSL_SIGN_RSA_PSS_RSAE_SHA512, // |
| }; |
| |
| static const char kTLS12Ciphers[] = |
| "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384:" |
| "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384"; |
| |
| static int Configure(SSL_CTX *ctx) { |
| ctx->tls13_cipher_policy = ssl_compliance_policy_wpa3_192_202304; |
| |
| return SSL_CTX_set_min_proto_version(ctx, TLS1_2_VERSION) && |
| SSL_CTX_set_max_proto_version(ctx, TLS1_3_VERSION) && |
| SSL_CTX_set_strict_cipher_list(ctx, kTLS12Ciphers) && |
| SSL_CTX_set1_group_ids(ctx, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) && |
| SSL_CTX_set_signing_algorithm_prefs(ctx, kSigAlgs, |
| OPENSSL_ARRAY_SIZE(kSigAlgs)) && |
| SSL_CTX_set_verify_algorithm_prefs(ctx, kSigAlgs, |
| OPENSSL_ARRAY_SIZE(kSigAlgs)); |
| } |
| |
| static int Configure(SSL *ssl) { |
| ssl->config->tls13_cipher_policy = ssl_compliance_policy_wpa3_192_202304; |
| |
| return SSL_set_min_proto_version(ssl, TLS1_2_VERSION) && |
| SSL_set_max_proto_version(ssl, TLS1_3_VERSION) && |
| SSL_set_strict_cipher_list(ssl, kTLS12Ciphers) && |
| SSL_set1_group_ids(ssl, kGroups, OPENSSL_ARRAY_SIZE(kGroups)) && |
| SSL_set_signing_algorithm_prefs(ssl, kSigAlgs, |
| OPENSSL_ARRAY_SIZE(kSigAlgs)) && |
| SSL_set_verify_algorithm_prefs(ssl, kSigAlgs, |
| OPENSSL_ARRAY_SIZE(kSigAlgs)); |
| } |
| |
| } // namespace wpa202304 |
| |
| namespace cnsa202407 { |
| |
| static int Configure(SSL_CTX *ctx) { |
| ctx->tls13_cipher_policy = ssl_compliance_policy_cnsa_202407; |
| return 1; |
| } |
| |
| static int Configure(SSL *ssl) { |
| ssl->config->tls13_cipher_policy = |
| ssl_compliance_policy_cnsa_202407; |
| return 1; |
| } |
| |
| } |
| |
| int SSL_CTX_set_compliance_policy(SSL_CTX *ctx, |
| enum ssl_compliance_policy_t policy) { |
| switch (policy) { |
| case ssl_compliance_policy_fips_202205: |
| return fips202205::Configure(ctx); |
| case ssl_compliance_policy_wpa3_192_202304: |
| return wpa202304::Configure(ctx); |
| case ssl_compliance_policy_cnsa_202407: |
| return cnsa202407::Configure(ctx); |
| default: |
| return 0; |
| } |
| } |
| |
| int SSL_set_compliance_policy(SSL *ssl, enum ssl_compliance_policy_t policy) { |
| switch (policy) { |
| case ssl_compliance_policy_fips_202205: |
| return fips202205::Configure(ssl); |
| case ssl_compliance_policy_wpa3_192_202304: |
| return wpa202304::Configure(ssl); |
| case ssl_compliance_policy_cnsa_202407: |
| return cnsa202407::Configure(ssl); |
| default: |
| return 0; |
| } |
| } |