| /* Copyright (c) 2020, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <openssl/hpke.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/curve25519.h> |
| #include <openssl/digest.h> |
| #include <openssl/ec.h> |
| #include <openssl/err.h> |
| #include <openssl/evp_errors.h> |
| #include <openssl/hkdf.h> |
| #include <openssl/mem.h> |
| #include <openssl/rand.h> |
| #include <openssl/sha.h> |
| |
| #include "../fipsmodule/ec/internal.h" |
| #include "../internal.h" |
| |
| |
| // This file implements RFC 9180. |
| |
| #define MAX_SEED_LEN X25519_PRIVATE_KEY_LEN |
| #define MAX_SHARED_SECRET_LEN SHA256_DIGEST_LENGTH |
| |
| struct evp_hpke_kem_st { |
| uint16_t id; |
| size_t public_key_len; |
| size_t private_key_len; |
| size_t seed_len; |
| size_t enc_len; |
| int (*init_key)(EVP_HPKE_KEY *key, const uint8_t *priv_key, |
| size_t priv_key_len); |
| int (*generate_key)(EVP_HPKE_KEY *key); |
| int (*encap_with_seed)(const EVP_HPKE_KEM *kem, uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, uint8_t *out_enc, |
| size_t *out_enc_len, size_t max_enc, |
| const uint8_t *peer_public_key, |
| size_t peer_public_key_len, const uint8_t *seed, |
| size_t seed_len); |
| int (*decap)(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, const uint8_t *enc, |
| size_t enc_len); |
| int (*auth_encap_with_seed)(const EVP_HPKE_KEY *key, |
| uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, uint8_t *out_enc, |
| size_t *out_enc_len, size_t max_enc, |
| const uint8_t *peer_public_key, |
| size_t peer_public_key_len, const uint8_t *seed, |
| size_t seed_len); |
| int (*auth_decap)(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, const uint8_t *enc, |
| size_t enc_len, const uint8_t *peer_public_key, |
| size_t peer_public_key_len); |
| }; |
| |
| struct evp_hpke_kdf_st { |
| uint16_t id; |
| // We only support HKDF-based KDFs. |
| const EVP_MD *(*hkdf_md_func)(void); |
| }; |
| |
| struct evp_hpke_aead_st { |
| uint16_t id; |
| const EVP_AEAD *(*aead_func)(void); |
| }; |
| |
| |
| // Low-level labeled KDF functions. |
| |
| static const char kHpkeVersionId[] = "HPKE-v1"; |
| |
| static int add_label_string(CBB *cbb, const char *label) { |
| return CBB_add_bytes(cbb, (const uint8_t *)label, strlen(label)); |
| } |
| |
| static int hpke_labeled_extract(const EVP_MD *hkdf_md, uint8_t *out_key, |
| size_t *out_len, const uint8_t *salt, |
| size_t salt_len, const uint8_t *suite_id, |
| size_t suite_id_len, const char *label, |
| const uint8_t *ikm, size_t ikm_len) { |
| // labeledIKM = concat("HPKE-v1", suite_id, label, IKM) |
| CBB labeled_ikm; |
| int ok = CBB_init(&labeled_ikm, 0) && |
| add_label_string(&labeled_ikm, kHpkeVersionId) && |
| CBB_add_bytes(&labeled_ikm, suite_id, suite_id_len) && |
| add_label_string(&labeled_ikm, label) && |
| CBB_add_bytes(&labeled_ikm, ikm, ikm_len) && |
| HKDF_extract(out_key, out_len, hkdf_md, CBB_data(&labeled_ikm), |
| CBB_len(&labeled_ikm), salt, salt_len); |
| CBB_cleanup(&labeled_ikm); |
| return ok; |
| } |
| |
| static int hpke_labeled_expand(const EVP_MD *hkdf_md, uint8_t *out_key, |
| size_t out_len, const uint8_t *prk, |
| size_t prk_len, const uint8_t *suite_id, |
| size_t suite_id_len, const char *label, |
| const uint8_t *info, size_t info_len) { |
| // labeledInfo = concat(I2OSP(L, 2), "HPKE-v1", suite_id, label, info) |
| CBB labeled_info; |
| int ok = CBB_init(&labeled_info, 0) && // |
| CBB_add_u16(&labeled_info, out_len) && |
| add_label_string(&labeled_info, kHpkeVersionId) && |
| CBB_add_bytes(&labeled_info, suite_id, suite_id_len) && |
| add_label_string(&labeled_info, label) && |
| CBB_add_bytes(&labeled_info, info, info_len) && |
| HKDF_expand(out_key, out_len, hkdf_md, prk, prk_len, |
| CBB_data(&labeled_info), CBB_len(&labeled_info)); |
| CBB_cleanup(&labeled_info); |
| return ok; |
| } |
| |
| |
| // KEM implementations. |
| |
| // dhkem_extract_and_expand implements the ExtractAndExpand operation in the |
| // DHKEM construction. See section 4.1 of RFC 9180. |
| static int dhkem_extract_and_expand(uint16_t kem_id, const EVP_MD *hkdf_md, |
| uint8_t *out_key, size_t out_len, |
| const uint8_t *dh, size_t dh_len, |
| const uint8_t *kem_context, |
| size_t kem_context_len) { |
| // concat("KEM", I2OSP(kem_id, 2)) |
| uint8_t suite_id[5] = {'K', 'E', 'M', kem_id >> 8, kem_id & 0xff}; |
| uint8_t prk[EVP_MAX_MD_SIZE]; |
| size_t prk_len; |
| return hpke_labeled_extract(hkdf_md, prk, &prk_len, NULL, 0, suite_id, |
| sizeof(suite_id), "eae_prk", dh, dh_len) && |
| hpke_labeled_expand(hkdf_md, out_key, out_len, prk, prk_len, suite_id, |
| sizeof(suite_id), "shared_secret", kem_context, |
| kem_context_len); |
| } |
| |
| static int x25519_init_key(EVP_HPKE_KEY *key, const uint8_t *priv_key, |
| size_t priv_key_len) { |
| if (priv_key_len != X25519_PRIVATE_KEY_LEN) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| OPENSSL_memcpy(key->private_key, priv_key, priv_key_len); |
| X25519_public_from_private(key->public_key, priv_key); |
| return 1; |
| } |
| |
| static int x25519_generate_key(EVP_HPKE_KEY *key) { |
| X25519_keypair(key->public_key, key->private_key); |
| return 1; |
| } |
| |
| static int x25519_encap_with_seed( |
| const EVP_HPKE_KEM *kem, uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, uint8_t *out_enc, size_t *out_enc_len, |
| size_t max_enc, const uint8_t *peer_public_key, size_t peer_public_key_len, |
| const uint8_t *seed, size_t seed_len) { |
| if (max_enc < X25519_PUBLIC_VALUE_LEN) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
| return 0; |
| } |
| if (seed_len != X25519_PRIVATE_KEY_LEN) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return 0; |
| } |
| X25519_public_from_private(out_enc, seed); |
| |
| uint8_t dh[X25519_SHARED_KEY_LEN]; |
| if (peer_public_key_len != X25519_PUBLIC_VALUE_LEN || |
| !X25519(dh, seed, peer_public_key)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
| return 0; |
| } |
| |
| uint8_t kem_context[2 * X25519_PUBLIC_VALUE_LEN]; |
| OPENSSL_memcpy(kem_context, out_enc, X25519_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, peer_public_key, |
| X25519_PUBLIC_VALUE_LEN); |
| if (!dhkem_extract_and_expand(kem->id, EVP_sha256(), out_shared_secret, |
| SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
| kem_context, sizeof(kem_context))) { |
| return 0; |
| } |
| |
| *out_enc_len = X25519_PUBLIC_VALUE_LEN; |
| *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| static int x25519_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, const uint8_t *enc, |
| size_t enc_len) { |
| uint8_t dh[X25519_SHARED_KEY_LEN]; |
| if (enc_len != X25519_PUBLIC_VALUE_LEN || |
| !X25519(dh, key->private_key, enc)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
| return 0; |
| } |
| |
| uint8_t kem_context[2 * X25519_PUBLIC_VALUE_LEN]; |
| OPENSSL_memcpy(kem_context, enc, X25519_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, key->public_key, |
| X25519_PUBLIC_VALUE_LEN); |
| if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
| SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
| kem_context, sizeof(kem_context))) { |
| return 0; |
| } |
| |
| *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| static int x25519_auth_encap_with_seed( |
| const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, uint8_t *out_enc, size_t *out_enc_len, |
| size_t max_enc, const uint8_t *peer_public_key, size_t peer_public_key_len, |
| const uint8_t *seed, size_t seed_len) { |
| if (max_enc < X25519_PUBLIC_VALUE_LEN) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
| return 0; |
| } |
| if (seed_len != X25519_PRIVATE_KEY_LEN) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return 0; |
| } |
| X25519_public_from_private(out_enc, seed); |
| |
| uint8_t dh[2 * X25519_SHARED_KEY_LEN]; |
| if (peer_public_key_len != X25519_PUBLIC_VALUE_LEN || |
| !X25519(dh, seed, peer_public_key) || |
| !X25519(dh + X25519_SHARED_KEY_LEN, key->private_key, peer_public_key)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
| return 0; |
| } |
| |
| uint8_t kem_context[3 * X25519_PUBLIC_VALUE_LEN]; |
| OPENSSL_memcpy(kem_context, out_enc, X25519_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, peer_public_key, |
| X25519_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + 2 * X25519_PUBLIC_VALUE_LEN, key->public_key, |
| X25519_PUBLIC_VALUE_LEN); |
| if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
| SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
| kem_context, sizeof(kem_context))) { |
| return 0; |
| } |
| |
| *out_enc_len = X25519_PUBLIC_VALUE_LEN; |
| *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| static int x25519_auth_decap(const EVP_HPKE_KEY *key, |
| uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, const uint8_t *enc, |
| size_t enc_len, const uint8_t *peer_public_key, |
| size_t peer_public_key_len) { |
| uint8_t dh[2 * X25519_SHARED_KEY_LEN]; |
| if (enc_len != X25519_PUBLIC_VALUE_LEN || |
| peer_public_key_len != X25519_PUBLIC_VALUE_LEN || |
| !X25519(dh, key->private_key, enc) || |
| !X25519(dh + X25519_SHARED_KEY_LEN, key->private_key, peer_public_key)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
| return 0; |
| } |
| |
| uint8_t kem_context[3 * X25519_PUBLIC_VALUE_LEN]; |
| OPENSSL_memcpy(kem_context, enc, X25519_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, key->public_key, |
| X25519_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + 2 * X25519_PUBLIC_VALUE_LEN, peer_public_key, |
| X25519_PUBLIC_VALUE_LEN); |
| if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
| SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
| kem_context, sizeof(kem_context))) { |
| return 0; |
| } |
| |
| *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| const EVP_HPKE_KEM *EVP_hpke_x25519_hkdf_sha256(void) { |
| static const EVP_HPKE_KEM kKEM = { |
| /*id=*/EVP_HPKE_DHKEM_X25519_HKDF_SHA256, |
| /*public_key_len=*/X25519_PUBLIC_VALUE_LEN, |
| /*private_key_len=*/X25519_PRIVATE_KEY_LEN, |
| /*seed_len=*/X25519_PRIVATE_KEY_LEN, |
| /*enc_len=*/X25519_PUBLIC_VALUE_LEN, |
| x25519_init_key, |
| x25519_generate_key, |
| x25519_encap_with_seed, |
| x25519_decap, |
| x25519_auth_encap_with_seed, |
| x25519_auth_decap, |
| }; |
| return &kKEM; |
| } |
| |
| #define P256_PRIVATE_KEY_LEN 32 |
| #define P256_PUBLIC_KEY_LEN 65 |
| #define P256_PUBLIC_VALUE_LEN 65 |
| #define P256_SEED_LEN 32 |
| #define P256_SHARED_KEY_LEN 32 |
| |
| static int p256_public_from_private(uint8_t out_pub[P256_PUBLIC_VALUE_LEN], |
| const uint8_t priv[P256_PRIVATE_KEY_LEN]) { |
| const EC_GROUP *const group = EC_group_p256(); |
| const uint8_t kAllZeros[P256_PRIVATE_KEY_LEN] = {0}; |
| EC_SCALAR private_scalar; |
| EC_JACOBIAN public_point; |
| EC_AFFINE public_point_affine; |
| |
| if (CRYPTO_memcmp(kAllZeros, priv, sizeof(kAllZeros)) == 0) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| if (!ec_scalar_from_bytes(group, &private_scalar, priv, |
| P256_PRIVATE_KEY_LEN) || |
| !ec_point_mul_scalar_base(group, &public_point, &private_scalar) || |
| !ec_jacobian_to_affine(group, &public_point_affine, &public_point)) { |
| return 0; |
| } |
| |
| size_t out_len_x, out_len_y; |
| out_pub[0] = POINT_CONVERSION_UNCOMPRESSED; |
| ec_felem_to_bytes(group, &out_pub[1], &out_len_x, &public_point_affine.X); |
| ec_felem_to_bytes(group, &out_pub[33], &out_len_y, &public_point_affine.Y); |
| return 1; |
| } |
| |
| static int p256_init_key(EVP_HPKE_KEY *key, const uint8_t *priv_key, |
| size_t priv_key_len) { |
| if (priv_key_len != P256_PRIVATE_KEY_LEN) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| if (!p256_public_from_private(key->public_key, priv_key)) { |
| return 0; |
| } |
| |
| OPENSSL_memcpy(key->private_key, priv_key, priv_key_len); |
| return 1; |
| } |
| |
| static int p256_private_key_from_seed(uint8_t out_priv[P256_PRIVATE_KEY_LEN], |
| const uint8_t seed[P256_SEED_LEN]) { |
| // https://www.rfc-editor.org/rfc/rfc9180.html#name-derivekeypair |
| const uint8_t suite_id[5] = {'K', 'E', 'M', |
| EVP_HPKE_DHKEM_P256_HKDF_SHA256 >> 8, |
| EVP_HPKE_DHKEM_P256_HKDF_SHA256 & 0xff}; |
| |
| uint8_t dkp_prk[32]; |
| size_t dkp_prk_len; |
| if (!hpke_labeled_extract(EVP_sha256(), dkp_prk, &dkp_prk_len, NULL, 0, |
| suite_id, sizeof(suite_id), "dkp_prk", seed, |
| P256_SEED_LEN)) { |
| return 0; |
| } |
| assert(dkp_prk_len == sizeof(dkp_prk)); |
| |
| const EC_GROUP *const group = EC_group_p256(); |
| EC_SCALAR private_scalar; |
| |
| for (unsigned counter = 0; counter < 256; counter++) { |
| const uint8_t counter_byte = counter & 0xff; |
| if (!hpke_labeled_expand(EVP_sha256(), out_priv, P256_PRIVATE_KEY_LEN, |
| dkp_prk, sizeof(dkp_prk), suite_id, |
| sizeof(suite_id), "candidate", &counter_byte, |
| sizeof(counter_byte))) { |
| return 0; |
| } |
| |
| // This checks that the scalar is less than the order. |
| if (ec_scalar_from_bytes(group, &private_scalar, out_priv, |
| P256_PRIVATE_KEY_LEN)) { |
| return 1; |
| } |
| } |
| |
| // This happens with probability of 2^-(32*256). |
| OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| static int p256_generate_key(EVP_HPKE_KEY *key) { |
| uint8_t seed[P256_SEED_LEN]; |
| RAND_bytes(seed, sizeof(seed)); |
| if (!p256_private_key_from_seed(key->private_key, seed) || |
| !p256_public_from_private(key->public_key, key->private_key)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int p256(uint8_t out_dh[P256_SHARED_KEY_LEN], |
| const uint8_t my_private[P256_PRIVATE_KEY_LEN], |
| const uint8_t their_public[P256_PUBLIC_VALUE_LEN]) { |
| const EC_GROUP *const group = EC_group_p256(); |
| EC_SCALAR private_scalar; |
| EC_FELEM x, y; |
| EC_JACOBIAN shared_point, their_point; |
| EC_AFFINE their_point_affine, shared_point_affine; |
| |
| if (their_public[0] != POINT_CONVERSION_UNCOMPRESSED || |
| !ec_felem_from_bytes(group, &x, &their_public[1], 32) || |
| !ec_felem_from_bytes(group, &y, &their_public[33], 32) || |
| !ec_point_set_affine_coordinates(group, &their_point_affine, &x, &y) || |
| !ec_scalar_from_bytes(group, &private_scalar, my_private, |
| P256_PRIVATE_KEY_LEN)) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| ec_affine_to_jacobian(group, &their_point, &their_point_affine); |
| if (!ec_point_mul_scalar(group, &shared_point, &their_point, |
| &private_scalar) || |
| !ec_jacobian_to_affine(group, &shared_point_affine, &shared_point)) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| size_t out_len; |
| ec_felem_to_bytes(group, out_dh, &out_len, &shared_point_affine.X); |
| assert(out_len == P256_SHARED_KEY_LEN); |
| return 1; |
| } |
| |
| static int p256_encap_with_seed(const EVP_HPKE_KEM *kem, |
| uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, uint8_t *out_enc, |
| size_t *out_enc_len, size_t max_enc, |
| const uint8_t *peer_public_key, |
| size_t peer_public_key_len, const uint8_t *seed, |
| size_t seed_len) { |
| if (max_enc < P256_PUBLIC_VALUE_LEN) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
| return 0; |
| } |
| if (seed_len != P256_SEED_LEN) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return 0; |
| } |
| uint8_t private_key[P256_PRIVATE_KEY_LEN]; |
| if (!p256_private_key_from_seed(private_key, seed)) { |
| return 0; |
| } |
| p256_public_from_private(out_enc, private_key); |
| |
| uint8_t dh[P256_SHARED_KEY_LEN]; |
| if (peer_public_key_len != P256_PUBLIC_VALUE_LEN || |
| !p256(dh, private_key, peer_public_key)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
| return 0; |
| } |
| |
| uint8_t kem_context[2 * P256_PUBLIC_VALUE_LEN]; |
| OPENSSL_memcpy(kem_context, out_enc, P256_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, peer_public_key, |
| P256_PUBLIC_VALUE_LEN); |
| if (!dhkem_extract_and_expand(kem->id, EVP_sha256(), out_shared_secret, |
| SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
| kem_context, sizeof(kem_context))) { |
| return 0; |
| } |
| |
| *out_enc_len = P256_PUBLIC_VALUE_LEN; |
| *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| static int p256_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, const uint8_t *enc, |
| size_t enc_len) { |
| uint8_t dh[P256_SHARED_KEY_LEN]; |
| if (enc_len != P256_PUBLIC_VALUE_LEN || // |
| !p256(dh, key->private_key, enc)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
| return 0; |
| } |
| |
| uint8_t kem_context[2 * P256_PUBLIC_VALUE_LEN]; |
| OPENSSL_memcpy(kem_context, enc, P256_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, key->public_key, |
| P256_PUBLIC_VALUE_LEN); |
| if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
| SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
| kem_context, sizeof(kem_context))) { |
| return 0; |
| } |
| |
| *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| static int p256_auth_encap_with_seed( |
| const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, uint8_t *out_enc, size_t *out_enc_len, |
| size_t max_enc, const uint8_t *peer_public_key, size_t peer_public_key_len, |
| const uint8_t *seed, size_t seed_len) { |
| if (max_enc < P256_PUBLIC_VALUE_LEN) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
| return 0; |
| } |
| if (seed_len != P256_SEED_LEN) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); |
| return 0; |
| } |
| uint8_t private_key[P256_PRIVATE_KEY_LEN]; |
| if (!p256_private_key_from_seed(private_key, seed)) { |
| return 0; |
| } |
| p256_public_from_private(out_enc, private_key); |
| |
| uint8_t dh[2 * P256_SHARED_KEY_LEN]; |
| if (peer_public_key_len != P256_PUBLIC_VALUE_LEN || |
| !p256(dh, private_key, peer_public_key) || |
| !p256(dh + P256_SHARED_KEY_LEN, key->private_key, peer_public_key)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
| return 0; |
| } |
| |
| uint8_t kem_context[3 * P256_PUBLIC_VALUE_LEN]; |
| OPENSSL_memcpy(kem_context, out_enc, P256_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, peer_public_key, |
| P256_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + 2 * P256_PUBLIC_VALUE_LEN, key->public_key, |
| P256_PUBLIC_VALUE_LEN); |
| if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
| SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
| kem_context, sizeof(kem_context))) { |
| return 0; |
| } |
| |
| *out_enc_len = P256_PUBLIC_VALUE_LEN; |
| *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| static int p256_auth_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, |
| size_t *out_shared_secret_len, const uint8_t *enc, |
| size_t enc_len, const uint8_t *peer_public_key, |
| size_t peer_public_key_len) { |
| uint8_t dh[2 * P256_SHARED_KEY_LEN]; |
| if (enc_len != P256_PUBLIC_VALUE_LEN || |
| peer_public_key_len != P256_PUBLIC_VALUE_LEN || |
| !p256(dh, key->private_key, enc) || |
| !p256(dh + P256_SHARED_KEY_LEN, key->private_key, peer_public_key)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); |
| return 0; |
| } |
| |
| uint8_t kem_context[3 * P256_PUBLIC_VALUE_LEN]; |
| OPENSSL_memcpy(kem_context, enc, P256_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, key->public_key, |
| P256_PUBLIC_VALUE_LEN); |
| OPENSSL_memcpy(kem_context + 2 * P256_PUBLIC_VALUE_LEN, peer_public_key, |
| P256_PUBLIC_VALUE_LEN); |
| if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, |
| SHA256_DIGEST_LENGTH, dh, sizeof(dh), |
| kem_context, sizeof(kem_context))) { |
| return 0; |
| } |
| |
| *out_shared_secret_len = SHA256_DIGEST_LENGTH; |
| return 1; |
| } |
| |
| const EVP_HPKE_KEM *EVP_hpke_p256_hkdf_sha256(void) { |
| static const EVP_HPKE_KEM kKEM = { |
| /*id=*/EVP_HPKE_DHKEM_P256_HKDF_SHA256, |
| /*public_key_len=*/P256_PUBLIC_KEY_LEN, |
| /*private_key_len=*/P256_PRIVATE_KEY_LEN, |
| /*seed_len=*/P256_SEED_LEN, |
| /*enc_len=*/P256_PUBLIC_VALUE_LEN, |
| p256_init_key, |
| p256_generate_key, |
| p256_encap_with_seed, |
| p256_decap, |
| p256_auth_encap_with_seed, |
| p256_auth_decap, |
| }; |
| return &kKEM; |
| } |
| |
| uint16_t EVP_HPKE_KEM_id(const EVP_HPKE_KEM *kem) { return kem->id; } |
| |
| size_t EVP_HPKE_KEM_public_key_len(const EVP_HPKE_KEM *kem) { |
| return kem->public_key_len; |
| } |
| |
| size_t EVP_HPKE_KEM_private_key_len(const EVP_HPKE_KEM *kem) { |
| return kem->private_key_len; |
| } |
| |
| size_t EVP_HPKE_KEM_enc_len(const EVP_HPKE_KEM *kem) { return kem->enc_len; } |
| |
| void EVP_HPKE_KEY_zero(EVP_HPKE_KEY *key) { |
| OPENSSL_memset(key, 0, sizeof(EVP_HPKE_KEY)); |
| } |
| |
| void EVP_HPKE_KEY_cleanup(EVP_HPKE_KEY *key) { |
| // Nothing to clean up for now, but we may introduce a cleanup process in the |
| // future. |
| } |
| |
| EVP_HPKE_KEY *EVP_HPKE_KEY_new(void) { |
| EVP_HPKE_KEY *key = OPENSSL_malloc(sizeof(EVP_HPKE_KEY)); |
| if (key == NULL) { |
| return NULL; |
| } |
| EVP_HPKE_KEY_zero(key); |
| return key; |
| } |
| |
| void EVP_HPKE_KEY_free(EVP_HPKE_KEY *key) { |
| if (key != NULL) { |
| EVP_HPKE_KEY_cleanup(key); |
| OPENSSL_free(key); |
| } |
| } |
| |
| int EVP_HPKE_KEY_copy(EVP_HPKE_KEY *dst, const EVP_HPKE_KEY *src) { |
| // For now, |EVP_HPKE_KEY| is trivially copyable. |
| OPENSSL_memcpy(dst, src, sizeof(EVP_HPKE_KEY)); |
| return 1; |
| } |
| |
| void EVP_HPKE_KEY_move(EVP_HPKE_KEY *out, EVP_HPKE_KEY *in) { |
| EVP_HPKE_KEY_cleanup(out); |
| // For now, |EVP_HPKE_KEY| is trivially movable. |
| // Note that Rust may move this structure. See |
| // bssl-crypto/src/scoped.rs:EvpHpkeKey. |
| OPENSSL_memcpy(out, in, sizeof(EVP_HPKE_KEY)); |
| EVP_HPKE_KEY_zero(in); |
| } |
| |
| int EVP_HPKE_KEY_init(EVP_HPKE_KEY *key, const EVP_HPKE_KEM *kem, |
| const uint8_t *priv_key, size_t priv_key_len) { |
| EVP_HPKE_KEY_zero(key); |
| key->kem = kem; |
| if (!kem->init_key(key, priv_key, priv_key_len)) { |
| key->kem = NULL; |
| return 0; |
| } |
| return 1; |
| } |
| |
| int EVP_HPKE_KEY_generate(EVP_HPKE_KEY *key, const EVP_HPKE_KEM *kem) { |
| EVP_HPKE_KEY_zero(key); |
| key->kem = kem; |
| if (!kem->generate_key(key)) { |
| key->kem = NULL; |
| return 0; |
| } |
| return 1; |
| } |
| |
| const EVP_HPKE_KEM *EVP_HPKE_KEY_kem(const EVP_HPKE_KEY *key) { |
| return key->kem; |
| } |
| |
| int EVP_HPKE_KEY_public_key(const EVP_HPKE_KEY *key, uint8_t *out, |
| size_t *out_len, size_t max_out) { |
| if (max_out < key->kem->public_key_len) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
| return 0; |
| } |
| OPENSSL_memcpy(out, key->public_key, key->kem->public_key_len); |
| *out_len = key->kem->public_key_len; |
| return 1; |
| } |
| |
| int EVP_HPKE_KEY_private_key(const EVP_HPKE_KEY *key, uint8_t *out, |
| size_t *out_len, size_t max_out) { |
| if (max_out < key->kem->private_key_len) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); |
| return 0; |
| } |
| OPENSSL_memcpy(out, key->private_key, key->kem->private_key_len); |
| *out_len = key->kem->private_key_len; |
| return 1; |
| } |
| |
| |
| // Supported KDFs and AEADs. |
| |
| const EVP_HPKE_KDF *EVP_hpke_hkdf_sha256(void) { |
| static const EVP_HPKE_KDF kKDF = {EVP_HPKE_HKDF_SHA256, &EVP_sha256}; |
| return &kKDF; |
| } |
| |
| uint16_t EVP_HPKE_KDF_id(const EVP_HPKE_KDF *kdf) { return kdf->id; } |
| |
| const EVP_MD *EVP_HPKE_KDF_hkdf_md(const EVP_HPKE_KDF *kdf) { |
| return kdf->hkdf_md_func(); |
| } |
| |
| const EVP_HPKE_AEAD *EVP_hpke_aes_128_gcm(void) { |
| static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_AES_128_GCM, |
| &EVP_aead_aes_128_gcm}; |
| return &kAEAD; |
| } |
| |
| const EVP_HPKE_AEAD *EVP_hpke_aes_256_gcm(void) { |
| static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_AES_256_GCM, |
| &EVP_aead_aes_256_gcm}; |
| return &kAEAD; |
| } |
| |
| const EVP_HPKE_AEAD *EVP_hpke_chacha20_poly1305(void) { |
| static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_CHACHA20_POLY1305, |
| &EVP_aead_chacha20_poly1305}; |
| return &kAEAD; |
| } |
| |
| uint16_t EVP_HPKE_AEAD_id(const EVP_HPKE_AEAD *aead) { return aead->id; } |
| |
| const EVP_AEAD *EVP_HPKE_AEAD_aead(const EVP_HPKE_AEAD *aead) { |
| return aead->aead_func(); |
| } |
| |
| |
| // HPKE implementation. |
| |
| // This is strlen("HPKE") + 3 * sizeof(uint16_t). |
| #define HPKE_SUITE_ID_LEN 10 |
| |
| // The suite_id for non-KEM pieces of HPKE is defined as concat("HPKE", |
| // I2OSP(kem_id, 2), I2OSP(kdf_id, 2), I2OSP(aead_id, 2)). |
| static int hpke_build_suite_id(const EVP_HPKE_CTX *ctx, |
| uint8_t out[HPKE_SUITE_ID_LEN]) { |
| CBB cbb; |
| CBB_init_fixed(&cbb, out, HPKE_SUITE_ID_LEN); |
| return add_label_string(&cbb, "HPKE") && // |
| CBB_add_u16(&cbb, ctx->kem->id) && // |
| CBB_add_u16(&cbb, ctx->kdf->id) && // |
| CBB_add_u16(&cbb, ctx->aead->id); |
| } |
| |
| #define HPKE_MODE_BASE 0 |
| #define HPKE_MODE_AUTH 2 |
| |
| static int hpke_key_schedule(EVP_HPKE_CTX *ctx, uint8_t mode, |
| const uint8_t *shared_secret, |
| size_t shared_secret_len, const uint8_t *info, |
| size_t info_len) { |
| uint8_t suite_id[HPKE_SUITE_ID_LEN]; |
| if (!hpke_build_suite_id(ctx, suite_id)) { |
| return 0; |
| } |
| |
| // psk_id_hash = LabeledExtract("", "psk_id_hash", psk_id) |
| // TODO(davidben): Precompute this value and store it with the EVP_HPKE_KDF. |
| const EVP_MD *hkdf_md = ctx->kdf->hkdf_md_func(); |
| uint8_t psk_id_hash[EVP_MAX_MD_SIZE]; |
| size_t psk_id_hash_len; |
| if (!hpke_labeled_extract(hkdf_md, psk_id_hash, &psk_id_hash_len, NULL, 0, |
| suite_id, sizeof(suite_id), "psk_id_hash", NULL, |
| 0)) { |
| return 0; |
| } |
| |
| // info_hash = LabeledExtract("", "info_hash", info) |
| uint8_t info_hash[EVP_MAX_MD_SIZE]; |
| size_t info_hash_len; |
| if (!hpke_labeled_extract(hkdf_md, info_hash, &info_hash_len, NULL, 0, |
| suite_id, sizeof(suite_id), "info_hash", info, |
| info_len)) { |
| return 0; |
| } |
| |
| // key_schedule_context = concat(mode, psk_id_hash, info_hash) |
| uint8_t context[sizeof(uint8_t) + 2 * EVP_MAX_MD_SIZE]; |
| size_t context_len; |
| CBB context_cbb; |
| CBB_init_fixed(&context_cbb, context, sizeof(context)); |
| if (!CBB_add_u8(&context_cbb, mode) || |
| !CBB_add_bytes(&context_cbb, psk_id_hash, psk_id_hash_len) || |
| !CBB_add_bytes(&context_cbb, info_hash, info_hash_len) || |
| !CBB_finish(&context_cbb, NULL, &context_len)) { |
| return 0; |
| } |
| |
| // secret = LabeledExtract(shared_secret, "secret", psk) |
| uint8_t secret[EVP_MAX_MD_SIZE]; |
| size_t secret_len; |
| if (!hpke_labeled_extract(hkdf_md, secret, &secret_len, shared_secret, |
| shared_secret_len, suite_id, sizeof(suite_id), |
| "secret", NULL, 0)) { |
| return 0; |
| } |
| |
| // key = LabeledExpand(secret, "key", key_schedule_context, Nk) |
| const EVP_AEAD *aead = EVP_HPKE_AEAD_aead(ctx->aead); |
| uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; |
| const size_t kKeyLen = EVP_AEAD_key_length(aead); |
| if (!hpke_labeled_expand(hkdf_md, key, kKeyLen, secret, secret_len, suite_id, |
| sizeof(suite_id), "key", context, context_len) || |
| !EVP_AEAD_CTX_init(&ctx->aead_ctx, aead, key, kKeyLen, |
| EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) { |
| return 0; |
| } |
| |
| // base_nonce = LabeledExpand(secret, "base_nonce", key_schedule_context, Nn) |
| if (!hpke_labeled_expand(hkdf_md, ctx->base_nonce, |
| EVP_AEAD_nonce_length(aead), secret, secret_len, |
| suite_id, sizeof(suite_id), "base_nonce", context, |
| context_len)) { |
| return 0; |
| } |
| |
| // exporter_secret = LabeledExpand(secret, "exp", key_schedule_context, Nh) |
| if (!hpke_labeled_expand(hkdf_md, ctx->exporter_secret, EVP_MD_size(hkdf_md), |
| secret, secret_len, suite_id, sizeof(suite_id), |
| "exp", context, context_len)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| void EVP_HPKE_CTX_zero(EVP_HPKE_CTX *ctx) { |
| OPENSSL_memset(ctx, 0, sizeof(EVP_HPKE_CTX)); |
| EVP_AEAD_CTX_zero(&ctx->aead_ctx); |
| } |
| |
| void EVP_HPKE_CTX_cleanup(EVP_HPKE_CTX *ctx) { |
| EVP_AEAD_CTX_cleanup(&ctx->aead_ctx); |
| } |
| |
| EVP_HPKE_CTX *EVP_HPKE_CTX_new(void) { |
| EVP_HPKE_CTX *ctx = OPENSSL_malloc(sizeof(EVP_HPKE_CTX)); |
| if (ctx == NULL) { |
| return NULL; |
| } |
| EVP_HPKE_CTX_zero(ctx); |
| return ctx; |
| } |
| |
| void EVP_HPKE_CTX_free(EVP_HPKE_CTX *ctx) { |
| if (ctx != NULL) { |
| EVP_HPKE_CTX_cleanup(ctx); |
| OPENSSL_free(ctx); |
| } |
| } |
| |
| int EVP_HPKE_CTX_setup_sender(EVP_HPKE_CTX *ctx, uint8_t *out_enc, |
| size_t *out_enc_len, size_t max_enc, |
| const EVP_HPKE_KEM *kem, const EVP_HPKE_KDF *kdf, |
| const EVP_HPKE_AEAD *aead, |
| const uint8_t *peer_public_key, |
| size_t peer_public_key_len, const uint8_t *info, |
| size_t info_len) { |
| uint8_t seed[MAX_SEED_LEN]; |
| RAND_bytes(seed, kem->seed_len); |
| return EVP_HPKE_CTX_setup_sender_with_seed_for_testing( |
| ctx, out_enc, out_enc_len, max_enc, kem, kdf, aead, peer_public_key, |
| peer_public_key_len, info, info_len, seed, kem->seed_len); |
| } |
| |
| int EVP_HPKE_CTX_setup_sender_with_seed_for_testing( |
| EVP_HPKE_CTX *ctx, uint8_t *out_enc, size_t *out_enc_len, size_t max_enc, |
| const EVP_HPKE_KEM *kem, const EVP_HPKE_KDF *kdf, const EVP_HPKE_AEAD *aead, |
| const uint8_t *peer_public_key, size_t peer_public_key_len, |
| const uint8_t *info, size_t info_len, const uint8_t *seed, |
| size_t seed_len) { |
| EVP_HPKE_CTX_zero(ctx); |
| ctx->is_sender = 1; |
| ctx->kem = kem; |
| ctx->kdf = kdf; |
| ctx->aead = aead; |
| uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; |
| size_t shared_secret_len; |
| if (!kem->encap_with_seed(kem, shared_secret, &shared_secret_len, out_enc, |
| out_enc_len, max_enc, peer_public_key, |
| peer_public_key_len, seed, seed_len) || |
| !hpke_key_schedule(ctx, HPKE_MODE_BASE, shared_secret, shared_secret_len, |
| info, info_len)) { |
| EVP_HPKE_CTX_cleanup(ctx); |
| return 0; |
| } |
| return 1; |
| } |
| |
| int EVP_HPKE_CTX_setup_recipient(EVP_HPKE_CTX *ctx, const EVP_HPKE_KEY *key, |
| const EVP_HPKE_KDF *kdf, |
| const EVP_HPKE_AEAD *aead, const uint8_t *enc, |
| size_t enc_len, const uint8_t *info, |
| size_t info_len) { |
| EVP_HPKE_CTX_zero(ctx); |
| ctx->is_sender = 0; |
| ctx->kem = key->kem; |
| ctx->kdf = kdf; |
| ctx->aead = aead; |
| uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; |
| size_t shared_secret_len; |
| if (!key->kem->decap(key, shared_secret, &shared_secret_len, enc, enc_len) || |
| !hpke_key_schedule(ctx, HPKE_MODE_BASE, shared_secret, shared_secret_len, |
| info, info_len)) { |
| EVP_HPKE_CTX_cleanup(ctx); |
| return 0; |
| } |
| return 1; |
| } |
| |
| |
| int EVP_HPKE_CTX_setup_auth_sender( |
| EVP_HPKE_CTX *ctx, uint8_t *out_enc, size_t *out_enc_len, size_t max_enc, |
| const EVP_HPKE_KEY *key, const EVP_HPKE_KDF *kdf, const EVP_HPKE_AEAD *aead, |
| const uint8_t *peer_public_key, size_t peer_public_key_len, |
| const uint8_t *info, size_t info_len) { |
| uint8_t seed[MAX_SEED_LEN]; |
| RAND_bytes(seed, key->kem->seed_len); |
| return EVP_HPKE_CTX_setup_auth_sender_with_seed_for_testing( |
| ctx, out_enc, out_enc_len, max_enc, key, kdf, aead, peer_public_key, |
| peer_public_key_len, info, info_len, seed, key->kem->seed_len); |
| } |
| |
| int EVP_HPKE_CTX_setup_auth_sender_with_seed_for_testing( |
| EVP_HPKE_CTX *ctx, uint8_t *out_enc, size_t *out_enc_len, size_t max_enc, |
| const EVP_HPKE_KEY *key, const EVP_HPKE_KDF *kdf, const EVP_HPKE_AEAD *aead, |
| const uint8_t *peer_public_key, size_t peer_public_key_len, |
| const uint8_t *info, size_t info_len, const uint8_t *seed, |
| size_t seed_len) { |
| if (key->kem->auth_encap_with_seed == NULL) { |
| // Not all HPKE KEMs support AuthEncap. |
| OPENSSL_PUT_ERROR(EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
| return 0; |
| } |
| |
| EVP_HPKE_CTX_zero(ctx); |
| ctx->is_sender = 1; |
| ctx->kem = key->kem; |
| ctx->kdf = kdf; |
| ctx->aead = aead; |
| uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; |
| size_t shared_secret_len; |
| if (!key->kem->auth_encap_with_seed( |
| key, shared_secret, &shared_secret_len, out_enc, out_enc_len, max_enc, |
| peer_public_key, peer_public_key_len, seed, seed_len) || |
| !hpke_key_schedule(ctx, HPKE_MODE_AUTH, shared_secret, shared_secret_len, |
| info, info_len)) { |
| EVP_HPKE_CTX_cleanup(ctx); |
| return 0; |
| } |
| return 1; |
| } |
| |
| int EVP_HPKE_CTX_setup_auth_recipient( |
| EVP_HPKE_CTX *ctx, const EVP_HPKE_KEY *key, const EVP_HPKE_KDF *kdf, |
| const EVP_HPKE_AEAD *aead, const uint8_t *enc, size_t enc_len, |
| const uint8_t *info, size_t info_len, const uint8_t *peer_public_key, |
| size_t peer_public_key_len) { |
| if (key->kem->auth_decap == NULL) { |
| // Not all HPKE KEMs support AuthDecap. |
| OPENSSL_PUT_ERROR(EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
| return 0; |
| } |
| |
| EVP_HPKE_CTX_zero(ctx); |
| ctx->is_sender = 0; |
| ctx->kem = key->kem; |
| ctx->kdf = kdf; |
| ctx->aead = aead; |
| uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; |
| size_t shared_secret_len; |
| if (!key->kem->auth_decap(key, shared_secret, &shared_secret_len, enc, |
| enc_len, peer_public_key, peer_public_key_len) || |
| !hpke_key_schedule(ctx, HPKE_MODE_AUTH, shared_secret, shared_secret_len, |
| info, info_len)) { |
| EVP_HPKE_CTX_cleanup(ctx); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static void hpke_nonce(const EVP_HPKE_CTX *ctx, uint8_t *out_nonce, |
| size_t nonce_len) { |
| assert(nonce_len >= 8); |
| |
| // Write padded big-endian bytes of |ctx->seq| to |out_nonce|. |
| OPENSSL_memset(out_nonce, 0, nonce_len); |
| uint64_t seq_copy = ctx->seq; |
| for (size_t i = 0; i < 8; i++) { |
| out_nonce[nonce_len - i - 1] = seq_copy & 0xff; |
| seq_copy >>= 8; |
| } |
| |
| // XOR the encoded sequence with the |ctx->base_nonce|. |
| for (size_t i = 0; i < nonce_len; i++) { |
| out_nonce[i] ^= ctx->base_nonce[i]; |
| } |
| } |
| |
| int EVP_HPKE_CTX_open(EVP_HPKE_CTX *ctx, uint8_t *out, size_t *out_len, |
| size_t max_out_len, const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| if (ctx->is_sender) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| if (ctx->seq == UINT64_MAX) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; |
| const size_t nonce_len = EVP_AEAD_nonce_length(ctx->aead_ctx.aead); |
| hpke_nonce(ctx, nonce, nonce_len); |
| |
| if (!EVP_AEAD_CTX_open(&ctx->aead_ctx, out, out_len, max_out_len, nonce, |
| nonce_len, in, in_len, ad, ad_len)) { |
| return 0; |
| } |
| ctx->seq++; |
| return 1; |
| } |
| |
| int EVP_HPKE_CTX_seal(EVP_HPKE_CTX *ctx, uint8_t *out, size_t *out_len, |
| size_t max_out_len, const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| if (!ctx->is_sender) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| if (ctx->seq == UINT64_MAX) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; |
| const size_t nonce_len = EVP_AEAD_nonce_length(ctx->aead_ctx.aead); |
| hpke_nonce(ctx, nonce, nonce_len); |
| |
| if (!EVP_AEAD_CTX_seal(&ctx->aead_ctx, out, out_len, max_out_len, nonce, |
| nonce_len, in, in_len, ad, ad_len)) { |
| return 0; |
| } |
| ctx->seq++; |
| return 1; |
| } |
| |
| int EVP_HPKE_CTX_export(const EVP_HPKE_CTX *ctx, uint8_t *out, |
| size_t secret_len, const uint8_t *context, |
| size_t context_len) { |
| uint8_t suite_id[HPKE_SUITE_ID_LEN]; |
| if (!hpke_build_suite_id(ctx, suite_id)) { |
| return 0; |
| } |
| const EVP_MD *hkdf_md = ctx->kdf->hkdf_md_func(); |
| if (!hpke_labeled_expand(hkdf_md, out, secret_len, ctx->exporter_secret, |
| EVP_MD_size(hkdf_md), suite_id, sizeof(suite_id), |
| "sec", context, context_len)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| size_t EVP_HPKE_CTX_max_overhead(const EVP_HPKE_CTX *ctx) { |
| assert(ctx->is_sender); |
| return EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(&ctx->aead_ctx)); |
| } |
| |
| const EVP_HPKE_KEM *EVP_HPKE_CTX_kem(const EVP_HPKE_CTX *ctx) { |
| return ctx->kem; |
| } |
| |
| const EVP_HPKE_AEAD *EVP_HPKE_CTX_aead(const EVP_HPKE_CTX *ctx) { |
| return ctx->aead; |
| } |
| |
| const EVP_HPKE_KDF *EVP_HPKE_CTX_kdf(const EVP_HPKE_CTX *ctx) { |
| return ctx->kdf; |
| } |