blob: e9840127e0a3f82c0ed6a09a3c86ccd866c2d50a [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/ssl.h>
#include <limits.h>
#include <openssl/ec.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/type_check.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include "internal.h"
static int ssl_set_cert(CERT *c, X509 *x509);
static int ssl_set_pkey(CERT *c, EVP_PKEY *pkey);
static int is_key_type_supported(int key_type) {
return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC;
}
int SSL_use_certificate(SSL *ssl, X509 *x) {
if (x == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return ssl_set_cert(ssl->cert, x);
}
int SSL_use_certificate_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
X509 *x509 = d2i_X509(NULL, &p, (long)der_len);
if (x509 == NULL || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
X509_free(x509);
return 0;
}
int ret = SSL_use_certificate(ssl, x509);
X509_free(x509);
return ret;
}
int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
EVP_PKEY *pkey;
int ret;
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
pkey = EVP_PKEY_new();
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
return 0;
}
RSA_up_ref(rsa);
EVP_PKEY_assign_RSA(pkey, rsa);
ret = ssl_set_pkey(ssl->cert, pkey);
EVP_PKEY_free(pkey);
return ret;
}
static int ssl_set_pkey(CERT *c, EVP_PKEY *pkey) {
if (!is_key_type_supported(pkey->type)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
return 0;
}
X509 *x509_leaf = c->x509_leaf;
if (x509_leaf != NULL) {
/* Sanity-check that the private key and the certificate match, unless the
* key is opaque (in case of, say, a smartcard). */
if (!EVP_PKEY_is_opaque(pkey) &&
!X509_check_private_key(x509_leaf, pkey)) {
X509_free(c->x509_leaf);
c->x509_leaf = NULL;
return 0;
}
}
EVP_PKEY_free(c->privatekey);
EVP_PKEY_up_ref(pkey);
c->privatekey = pkey;
return 1;
}
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
RSA *rsa = RSA_private_key_from_bytes(der, der_len);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
int ret = SSL_use_RSAPrivateKey(ssl, rsa);
RSA_free(rsa);
return ret;
}
int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
int ret;
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
ret = ssl_set_pkey(ssl->cert, pkey);
return ret;
}
int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
size_t der_len) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
EVP_PKEY *pkey = d2i_PrivateKey(type, NULL, &p, (long)der_len);
if (pkey == NULL || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
EVP_PKEY_free(pkey);
return 0;
}
int ret = SSL_use_PrivateKey(ssl, pkey);
EVP_PKEY_free(pkey);
return ret;
}
int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x) {
if (x == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return ssl_set_cert(ctx->cert, x);
}
static int ssl_set_cert(CERT *c, X509 *x) {
EVP_PKEY *pkey = X509_get_pubkey(x);
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_X509_LIB);
return 0;
}
if (!is_key_type_supported(pkey->type)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
EVP_PKEY_free(pkey);
return 0;
}
/* An ECC certificate may be usable for ECDH or ECDSA. We only support ECDSA
* certificates, so sanity-check the key usage extension. */
if (pkey->type == EVP_PKEY_EC) {
/* This call populates extension flags (ex_flags). */
X509_check_purpose(x, -1, 0);
if ((x->ex_flags & EXFLAG_KUSAGE) &&
!(x->ex_kusage & X509v3_KU_DIGITAL_SIGNATURE)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
EVP_PKEY_free(pkey);
return 0;
}
}
if (c->privatekey != NULL) {
/* Sanity-check that the private key and the certificate match, unless the
* key is opaque (in case of, say, a smartcard). */
if (!EVP_PKEY_is_opaque(c->privatekey) &&
!X509_check_private_key(x, c->privatekey)) {
/* don't fail for a cert/key mismatch, just free current private key
* (when switching to a different cert & key, first this function should
* be used, then ssl_set_pkey */
EVP_PKEY_free(c->privatekey);
c->privatekey = NULL;
/* clear error queue */
ERR_clear_error();
}
}
EVP_PKEY_free(pkey);
X509_free(c->x509_leaf);
X509_up_ref(x);
c->x509_leaf = x;
return 1;
}
int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, size_t der_len,
const uint8_t *der) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
X509 *x509 = d2i_X509(NULL, &p, (long)der_len);
if (x509 == NULL || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
X509_free(x509);
return 0;
}
int ret = SSL_CTX_use_certificate(ctx, x509);
X509_free(x509);
return ret;
}
int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
int ret;
EVP_PKEY *pkey;
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
pkey = EVP_PKEY_new();
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
return 0;
}
RSA_up_ref(rsa);
EVP_PKEY_assign_RSA(pkey, rsa);
ret = ssl_set_pkey(ctx->cert, pkey);
EVP_PKEY_free(pkey);
return ret;
}
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
size_t der_len) {
RSA *rsa = RSA_private_key_from_bytes(der, der_len);
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
int ret = SSL_CTX_use_RSAPrivateKey(ctx, rsa);
RSA_free(rsa);
return ret;
}
int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return ssl_set_pkey(ctx->cert, pkey);
}
int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
size_t der_len) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
EVP_PKEY *pkey = d2i_PrivateKey(type, NULL, &p, (long)der_len);
if (pkey == NULL || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
EVP_PKEY_free(pkey);
return 0;
}
int ret = SSL_CTX_use_PrivateKey(ctx, pkey);
EVP_PKEY_free(pkey);
return ret;
}
void SSL_set_private_key_method(SSL *ssl,
const SSL_PRIVATE_KEY_METHOD *key_method) {
ssl->cert->key_method = key_method;
}
void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
const SSL_PRIVATE_KEY_METHOD *key_method) {
ctx->cert->key_method = key_method;
}
static int set_signing_algorithm_prefs(CERT *cert, const uint16_t *prefs,
size_t num_prefs) {
OPENSSL_free(cert->sigalgs);
cert->num_sigalgs = 0;
cert->sigalgs = BUF_memdup(prefs, num_prefs * sizeof(prefs[0]));
if (cert->sigalgs == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
cert->num_sigalgs = num_prefs;
return 1;
}
int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
size_t num_prefs) {
return set_signing_algorithm_prefs(ctx->cert, prefs, num_prefs);
}
int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
size_t num_prefs) {
return set_signing_algorithm_prefs(ssl->cert, prefs, num_prefs);
}
OPENSSL_COMPILE_ASSERT(sizeof(int) >= 2 * sizeof(uint16_t),
digest_list_conversion_cannot_overflow);
int SSL_set_private_key_digest_prefs(SSL *ssl, const int *digest_nids,
size_t num_digests) {
OPENSSL_free(ssl->cert->sigalgs);
ssl->cert->num_sigalgs = 0;
ssl->cert->sigalgs = OPENSSL_malloc(sizeof(uint16_t) * 2 * num_digests);
if (ssl->cert->sigalgs == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
return 0;
}
/* Convert the digest list to a signature algorithms list.
*
* TODO(davidben): Replace this API with one that can express RSA-PSS, etc. */
for (size_t i = 0; i < num_digests; i++) {
switch (digest_nids[i]) {
case NID_sha1:
ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA1;
ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] = SSL_SIGN_ECDSA_SHA1;
ssl->cert->num_sigalgs += 2;
break;
case NID_sha256:
ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA256;
ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] =
SSL_SIGN_ECDSA_SECP256R1_SHA256;
ssl->cert->num_sigalgs += 2;
break;
case NID_sha384:
ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA384;
ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] =
SSL_SIGN_ECDSA_SECP384R1_SHA384;
ssl->cert->num_sigalgs += 2;
break;
case NID_sha512:
ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA512;
ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] =
SSL_SIGN_ECDSA_SECP521R1_SHA512;
ssl->cert->num_sigalgs += 2;
break;
}
}
return 1;
}
int ssl_has_private_key(const SSL *ssl) {
return ssl->cert->privatekey != NULL || ssl->cert->key_method != NULL;
}
int ssl_is_ecdsa_key_type(int type) {
switch (type) {
/* TODO(davidben): Remove support for |EVP_PKEY_EC| key types. */
case EVP_PKEY_EC:
case NID_X9_62_prime256v1:
case NID_secp384r1:
case NID_secp521r1:
return 1;
default:
return 0;
}
}
int ssl_private_key_type(SSL *ssl) {
if (ssl->cert->key_method != NULL) {
return ssl->cert->key_method->type(ssl);
}
switch (EVP_PKEY_id(ssl->cert->privatekey)) {
case EVP_PKEY_RSA:
return NID_rsaEncryption;
case EVP_PKEY_EC:
return EC_GROUP_get_curve_name(
EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(ssl->cert->privatekey)));
default:
return NID_undef;
}
}
size_t ssl_private_key_max_signature_len(SSL *ssl) {
if (ssl->cert->key_method != NULL) {
return ssl->cert->key_method->max_signature_len(ssl);
}
return EVP_PKEY_size(ssl->cert->privatekey);
}
/* TODO(davidben): Forbid RSA-PKCS1 in TLS 1.3. For now we allow it because NSS
* has yet to start doing RSA-PSS, so enforcing it would complicate interop
* testing. */
static int is_rsa_pkcs1(const EVP_MD **out_md, uint16_t sigalg) {
switch (sigalg) {
case SSL_SIGN_RSA_PKCS1_MD5_SHA1:
*out_md = EVP_md5_sha1();
return 1;
case SSL_SIGN_RSA_PKCS1_SHA1:
*out_md = EVP_sha1();
return 1;
case SSL_SIGN_RSA_PKCS1_SHA256:
*out_md = EVP_sha256();
return 1;
case SSL_SIGN_RSA_PKCS1_SHA384:
*out_md = EVP_sha384();
return 1;
case SSL_SIGN_RSA_PKCS1_SHA512:
*out_md = EVP_sha512();
return 1;
default:
return 0;
}
}
static int ssl_sign_rsa_pkcs1(SSL *ssl, uint8_t *out, size_t *out_len,
size_t max_out, const EVP_MD *md,
const uint8_t *in, size_t in_len) {
EVP_MD_CTX ctx;
EVP_MD_CTX_init(&ctx);
*out_len = max_out;
int ret = EVP_DigestSignInit(&ctx, NULL, md, NULL, ssl->cert->privatekey) &&
EVP_DigestSignUpdate(&ctx, in, in_len) &&
EVP_DigestSignFinal(&ctx, out, out_len);
EVP_MD_CTX_cleanup(&ctx);
return ret;
}
static int ssl_verify_rsa_pkcs1(SSL *ssl, const uint8_t *signature,
size_t signature_len, const EVP_MD *md,
EVP_PKEY *pkey, const uint8_t *in,
size_t in_len) {
if (pkey->type != EVP_PKEY_RSA) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
EVP_MD_CTX md_ctx;
EVP_MD_CTX_init(&md_ctx);
int ret = EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, pkey) &&
EVP_DigestVerifyUpdate(&md_ctx, in, in_len) &&
EVP_DigestVerifyFinal(&md_ctx, signature, signature_len);
EVP_MD_CTX_cleanup(&md_ctx);
return ret;
}
static int is_ecdsa(int *out_curve, const EVP_MD **out_md, uint16_t sigalg) {
switch (sigalg) {
case SSL_SIGN_ECDSA_SHA1:
*out_curve = NID_undef;
*out_md = EVP_sha1();
return 1;
case SSL_SIGN_ECDSA_SECP256R1_SHA256:
*out_curve = NID_X9_62_prime256v1;
*out_md = EVP_sha256();
return 1;
case SSL_SIGN_ECDSA_SECP384R1_SHA384:
*out_curve = NID_secp384r1;
*out_md = EVP_sha384();
return 1;
case SSL_SIGN_ECDSA_SECP521R1_SHA512:
*out_curve = NID_secp521r1;
*out_md = EVP_sha512();
return 1;
default:
return 0;
}
}
static int ssl_sign_ecdsa(SSL *ssl, uint8_t *out, size_t *out_len,
size_t max_out, int curve, const EVP_MD *md,
const uint8_t *in, size_t in_len) {
EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(ssl->cert->privatekey);
if (ec_key == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* In TLS 1.3, the curve is also specified by the signature algorithm. */
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION &&
(curve == NID_undef ||
EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) != curve)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
EVP_MD_CTX ctx;
EVP_MD_CTX_init(&ctx);
*out_len = max_out;
int ret = EVP_DigestSignInit(&ctx, NULL, md, NULL, ssl->cert->privatekey) &&
EVP_DigestSignUpdate(&ctx, in, in_len) &&
EVP_DigestSignFinal(&ctx, out, out_len);
EVP_MD_CTX_cleanup(&ctx);
return ret;
}
static int ssl_verify_ecdsa(SSL *ssl, const uint8_t *signature,
size_t signature_len, int curve, const EVP_MD *md,
EVP_PKEY *pkey, const uint8_t *in, size_t in_len) {
EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(pkey);
if (ec_key == NULL) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
/* In TLS 1.3, the curve is also specified by the signature algorithm. */
if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION &&
(curve == NID_undef ||
EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) != curve)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
EVP_MD_CTX md_ctx;
EVP_MD_CTX_init(&md_ctx);
int ret = EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, pkey) &&
EVP_DigestVerifyUpdate(&md_ctx, in, in_len) &&
EVP_DigestVerifyFinal(&md_ctx, signature, signature_len);
EVP_MD_CTX_cleanup(&md_ctx);
return ret;
}
static int is_rsa_pss(const EVP_MD **out_md, uint16_t sigalg) {
switch (sigalg) {
case SSL_SIGN_RSA_PSS_SHA256:
*out_md = EVP_sha256();
return 1;
case SSL_SIGN_RSA_PSS_SHA384:
*out_md = EVP_sha384();
return 1;
case SSL_SIGN_RSA_PSS_SHA512:
*out_md = EVP_sha512();
return 1;
default:
return 0;
}
}
static int ssl_sign_rsa_pss(SSL *ssl, uint8_t *out, size_t *out_len,
size_t max_out, const EVP_MD *md,
const uint8_t *in, size_t in_len) {
EVP_MD_CTX ctx;
EVP_MD_CTX_init(&ctx);
*out_len = max_out;
EVP_PKEY_CTX *pctx;
int ret =
EVP_DigestSignInit(&ctx, &pctx, md, NULL, ssl->cert->privatekey) &&
EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) &&
EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */) &&
EVP_DigestSignUpdate(&ctx, in, in_len) &&
EVP_DigestSignFinal(&ctx, out, out_len);
EVP_MD_CTX_cleanup(&ctx);
return ret;
}
static int ssl_verify_rsa_pss(SSL *ssl, const uint8_t *signature,
size_t signature_len, const EVP_MD *md,
EVP_PKEY *pkey, const uint8_t *in,
size_t in_len) {
if (pkey->type != EVP_PKEY_RSA) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
EVP_MD_CTX md_ctx;
EVP_MD_CTX_init(&md_ctx);
EVP_PKEY_CTX *pctx;
int ret =
EVP_DigestVerifyInit(&md_ctx, &pctx, md, NULL, pkey) &&
EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) &&
EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */) &&
EVP_DigestVerifyUpdate(&md_ctx, in, in_len) &&
EVP_DigestVerifyFinal(&md_ctx, signature, signature_len);
EVP_MD_CTX_cleanup(&md_ctx);
return ret;
}
enum ssl_private_key_result_t ssl_private_key_sign(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
uint16_t signature_algorithm, const uint8_t *in, size_t in_len) {
if (ssl->cert->key_method != NULL) {
if (ssl->cert->key_method->sign != NULL) {
return ssl->cert->key_method->sign(ssl, out, out_len, max_out,
signature_algorithm, in, in_len);
}
/* TODO(davidben): Remove support for |sign_digest|-only
* |SSL_PRIVATE_KEY_METHOD|s. */
const EVP_MD *md;
int curve;
if (!is_rsa_pkcs1(&md, signature_algorithm) &&
!is_ecdsa(&curve, &md, signature_algorithm)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL_FOR_CUSTOM_KEY);
return ssl_private_key_failure;
}
uint8_t hash[EVP_MAX_MD_SIZE];
unsigned hash_len;
if (!EVP_Digest(in, in_len, hash, &hash_len, md, NULL)) {
return ssl_private_key_failure;
}
return ssl->cert->key_method->sign_digest(ssl, out, out_len, max_out, md,
hash, hash_len);
}
const EVP_MD *md;
if (is_rsa_pkcs1(&md, signature_algorithm) &&
ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
return ssl_sign_rsa_pkcs1(ssl, out, out_len, max_out, md, in, in_len)
? ssl_private_key_success
: ssl_private_key_failure;
}
int curve;
if (is_ecdsa(&curve, &md, signature_algorithm)) {
return ssl_sign_ecdsa(ssl, out, out_len, max_out, curve, md, in, in_len)
? ssl_private_key_success
: ssl_private_key_failure;
}
if (is_rsa_pss(&md, signature_algorithm)) {
return ssl_sign_rsa_pss(ssl, out, out_len, max_out, md, in, in_len)
? ssl_private_key_success
: ssl_private_key_failure;
}
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return ssl_private_key_failure;
}
int ssl_public_key_verify(SSL *ssl, const uint8_t *signature,
size_t signature_len, uint16_t signature_algorithm,
EVP_PKEY *pkey, const uint8_t *in, size_t in_len) {
const EVP_MD *md;
if (is_rsa_pkcs1(&md, signature_algorithm) &&
ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
return ssl_verify_rsa_pkcs1(ssl, signature, signature_len, md, pkey, in,
in_len);
}
int curve;
if (is_ecdsa(&curve, &md, signature_algorithm)) {
return ssl_verify_ecdsa(ssl, signature, signature_len, curve, md, pkey, in,
in_len);
}
if (is_rsa_pss(&md, signature_algorithm)) {
return ssl_verify_rsa_pss(ssl, signature, signature_len, md, pkey, in,
in_len);
}
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return 0;
}
enum ssl_private_key_result_t ssl_private_key_decrypt(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
const uint8_t *in, size_t in_len) {
if (ssl->cert->key_method != NULL) {
return ssl->cert->key_method->decrypt(ssl, out, out_len, max_out, in,
in_len);
}
RSA *rsa = EVP_PKEY_get0_RSA(ssl->cert->privatekey);
if (rsa == NULL) {
/* Decrypt operations are only supported for RSA keys. */
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return ssl_private_key_failure;
}
/* Decrypt with no padding. PKCS#1 padding will be removed as part
* of the timing-sensitive code by the caller. */
if (!RSA_decrypt(rsa, out_len, out, max_out, in, in_len, RSA_NO_PADDING)) {
return ssl_private_key_failure;
}
return ssl_private_key_success;
}
enum ssl_private_key_result_t ssl_private_key_complete(SSL *ssl, uint8_t *out,
size_t *out_len,
size_t max_out) {
/* Only custom keys may be asynchronous. */
return ssl->cert->key_method->complete(ssl, out, out_len, max_out);
}
int ssl_private_key_supports_signature_algorithm(SSL *ssl,
uint16_t signature_algorithm) {
const EVP_MD *md;
if (is_rsa_pkcs1(&md, signature_algorithm) &&
ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
return ssl_private_key_type(ssl) == NID_rsaEncryption;
}
int curve;
if (is_ecdsa(&curve, &md, signature_algorithm)) {
int type = ssl_private_key_type(ssl);
if (!ssl_is_ecdsa_key_type(type)) {
return 0;
}
/* Prior to TLS 1.3, ECDSA curves did not match the signature algorithm. */
if (ssl3_protocol_version(ssl) < TLS1_3_VERSION) {
return 1;
}
return curve != NID_undef && type == curve;
}
if (is_rsa_pss(&md, signature_algorithm)) {
if (ssl_private_key_type(ssl) != NID_rsaEncryption) {
return 0;
}
/* Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
* emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
* hash in TLS. Reasonable RSA key sizes are large enough for the largest
* defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too large for
* SHA-512. 1024-bit RSA is sometimes used for test credentials, so check
* the size to fall back to another algorithm. */
if (ssl_private_key_max_signature_len(ssl) < 2 * EVP_MD_size(md) + 2) {
return 0;
}
/* RSA-PSS is only supported by message-based private keys. */
if (ssl->cert->key_method != NULL && ssl->cert->key_method->sign == NULL) {
return 0;
}
return 1;
}
return 0;
}