| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * ECC cipher suite support in OpenSSL originally developed by |
| * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project. |
| */ |
| /* ==================================================================== |
| * Copyright 2005 Nokia. All rights reserved. |
| * |
| * The portions of the attached software ("Contribution") is developed by |
| * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
| * license. |
| * |
| * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
| * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
| * support (see RFC 4279) to OpenSSL. |
| * |
| * No patent licenses or other rights except those expressly stated in |
| * the OpenSSL open source license shall be deemed granted or received |
| * expressly, by implication, estoppel, or otherwise. |
| * |
| * No assurances are provided by Nokia that the Contribution does not |
| * infringe the patent or other intellectual property rights of any third |
| * party or that the license provides you with all the necessary rights |
| * to make use of the Contribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
| * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
| * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
| * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
| * OTHERWISE. */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/buf.h> |
| #include <openssl/err.h> |
| #include <openssl/md5.h> |
| #include <openssl/mem.h> |
| #include <openssl/sha.h> |
| #include <openssl/stack.h> |
| |
| #include "internal.h" |
| #include "../crypto/internal.h" |
| |
| |
| /* kCiphers is an array of all supported ciphers, sorted by id. */ |
| static const SSL_CIPHER kCiphers[] = { |
| /* The RSA ciphers */ |
| /* Cipher 02 */ |
| { |
| SSL3_TXT_RSA_NULL_SHA, |
| SSL3_CK_RSA_NULL_SHA, |
| SSL_kRSA, |
| SSL_aRSA, |
| SSL_eNULL, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| /* Cipher 0A */ |
| { |
| SSL3_TXT_RSA_DES_192_CBC3_SHA, |
| SSL3_CK_RSA_DES_192_CBC3_SHA, |
| SSL_kRSA, |
| SSL_aRSA, |
| SSL_3DES, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| |
| /* New AES ciphersuites */ |
| |
| /* Cipher 2F */ |
| { |
| TLS1_TXT_RSA_WITH_AES_128_SHA, |
| TLS1_CK_RSA_WITH_AES_128_SHA, |
| SSL_kRSA, |
| SSL_aRSA, |
| SSL_AES128, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| /* Cipher 33 */ |
| { |
| TLS1_TXT_DHE_RSA_WITH_AES_128_SHA, |
| TLS1_CK_DHE_RSA_WITH_AES_128_SHA, |
| SSL_kDHE, |
| SSL_aRSA, |
| SSL_AES128, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| /* Cipher 35 */ |
| { |
| TLS1_TXT_RSA_WITH_AES_256_SHA, |
| TLS1_CK_RSA_WITH_AES_256_SHA, |
| SSL_kRSA, |
| SSL_aRSA, |
| SSL_AES256, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| /* Cipher 39 */ |
| { |
| TLS1_TXT_DHE_RSA_WITH_AES_256_SHA, |
| TLS1_CK_DHE_RSA_WITH_AES_256_SHA, |
| SSL_kDHE, |
| SSL_aRSA, |
| SSL_AES256, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| |
| /* TLS v1.2 ciphersuites */ |
| |
| /* Cipher 3C */ |
| { |
| TLS1_TXT_RSA_WITH_AES_128_SHA256, |
| TLS1_CK_RSA_WITH_AES_128_SHA256, |
| SSL_kRSA, |
| SSL_aRSA, |
| SSL_AES128, |
| SSL_SHA256, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher 3D */ |
| { |
| TLS1_TXT_RSA_WITH_AES_256_SHA256, |
| TLS1_CK_RSA_WITH_AES_256_SHA256, |
| SSL_kRSA, |
| SSL_aRSA, |
| SSL_AES256, |
| SSL_SHA256, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher 67 */ |
| { |
| TLS1_TXT_DHE_RSA_WITH_AES_128_SHA256, |
| TLS1_CK_DHE_RSA_WITH_AES_128_SHA256, |
| SSL_kDHE, |
| SSL_aRSA, |
| SSL_AES128, |
| SSL_SHA256, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher 6B */ |
| { |
| TLS1_TXT_DHE_RSA_WITH_AES_256_SHA256, |
| TLS1_CK_DHE_RSA_WITH_AES_256_SHA256, |
| SSL_kDHE, |
| SSL_aRSA, |
| SSL_AES256, |
| SSL_SHA256, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* PSK cipher suites. */ |
| |
| /* Cipher 8C */ |
| { |
| TLS1_TXT_PSK_WITH_AES_128_CBC_SHA, |
| TLS1_CK_PSK_WITH_AES_128_CBC_SHA, |
| SSL_kPSK, |
| SSL_aPSK, |
| SSL_AES128, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| /* Cipher 8D */ |
| { |
| TLS1_TXT_PSK_WITH_AES_256_CBC_SHA, |
| TLS1_CK_PSK_WITH_AES_256_CBC_SHA, |
| SSL_kPSK, |
| SSL_aPSK, |
| SSL_AES256, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| /* GCM ciphersuites from RFC5288 */ |
| |
| /* Cipher 9C */ |
| { |
| TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256, |
| TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, |
| SSL_kRSA, |
| SSL_aRSA, |
| SSL_AES128GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher 9D */ |
| { |
| TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384, |
| TLS1_CK_RSA_WITH_AES_256_GCM_SHA384, |
| SSL_kRSA, |
| SSL_aRSA, |
| SSL_AES256GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA384, |
| }, |
| |
| /* Cipher 9E */ |
| { |
| TLS1_TXT_DHE_RSA_WITH_AES_128_GCM_SHA256, |
| TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256, |
| SSL_kDHE, |
| SSL_aRSA, |
| SSL_AES128GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher 9F */ |
| { |
| TLS1_TXT_DHE_RSA_WITH_AES_256_GCM_SHA384, |
| TLS1_CK_DHE_RSA_WITH_AES_256_GCM_SHA384, |
| SSL_kDHE, |
| SSL_aRSA, |
| SSL_AES256GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA384, |
| }, |
| |
| /* TLS 1.3 suites. */ |
| |
| /* Cipher 1301 */ |
| { |
| TLS1_TXT_AES_128_GCM_SHA256, |
| TLS1_CK_AES_128_GCM_SHA256, |
| SSL_kGENERIC, |
| SSL_aGENERIC, |
| SSL_AES128GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher 1302 */ |
| { |
| TLS1_TXT_AES_256_GCM_SHA384, |
| TLS1_CK_AES_256_GCM_SHA384, |
| SSL_kGENERIC, |
| SSL_aGENERIC, |
| SSL_AES256GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA384, |
| }, |
| |
| /* Cipher 1303 */ |
| { |
| TLS1_TXT_CHACHA20_POLY1305_SHA256, |
| TLS1_CK_CHACHA20_POLY1305_SHA256, |
| SSL_kGENERIC, |
| SSL_aGENERIC, |
| SSL_CHACHA20POLY1305, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher C009 */ |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_AES128, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| /* Cipher C00A */ |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_AES256, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| /* Cipher C013 */ |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA, |
| TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aRSA, |
| SSL_AES128, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| /* Cipher C014 */ |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA, |
| TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aRSA, |
| SSL_AES256, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| |
| /* HMAC based TLS v1.2 ciphersuites from RFC5289 */ |
| |
| /* Cipher C023 */ |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256, |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_AES128, |
| SSL_SHA256, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher C024 */ |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384, |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_AES256, |
| SSL_SHA384, |
| SSL_HANDSHAKE_MAC_SHA384, |
| }, |
| |
| /* Cipher C027 */ |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256, |
| TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256, |
| SSL_kECDHE, |
| SSL_aRSA, |
| SSL_AES128, |
| SSL_SHA256, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher C028 */ |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384, |
| TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384, |
| SSL_kECDHE, |
| SSL_aRSA, |
| SSL_AES256, |
| SSL_SHA384, |
| SSL_HANDSHAKE_MAC_SHA384, |
| }, |
| |
| |
| /* GCM based TLS v1.2 ciphersuites from RFC5289 */ |
| |
| /* Cipher C02B */ |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_AES128GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher C02C */ |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, |
| TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_AES256GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA384, |
| }, |
| |
| /* Cipher C02F */ |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256, |
| TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, |
| SSL_kECDHE, |
| SSL_aRSA, |
| SSL_AES128GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher C030 */ |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384, |
| TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, |
| SSL_kECDHE, |
| SSL_aRSA, |
| SSL_AES256GCM, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA384, |
| }, |
| |
| /* ECDHE-PSK cipher suites. */ |
| |
| /* Cipher C035 */ |
| { |
| TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA, |
| TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aPSK, |
| SSL_AES128, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| /* Cipher C036 */ |
| { |
| TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA, |
| TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA, |
| SSL_kECDHE, |
| SSL_aPSK, |
| SSL_AES256, |
| SSL_SHA1, |
| SSL_HANDSHAKE_MAC_DEFAULT, |
| }, |
| |
| /* ChaCha20-Poly1305 cipher suites. */ |
| |
| #if !defined(BORINGSSL_ANDROID_SYSTEM) |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_OLD, |
| TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305_OLD, |
| SSL_kECDHE, |
| SSL_aRSA, |
| SSL_CHACHA20POLY1305_OLD, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_OLD, |
| TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305_OLD, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_CHACHA20POLY1305_OLD, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| #endif |
| |
| /* Cipher CCA8 */ |
| { |
| TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, |
| TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, |
| SSL_kECDHE, |
| SSL_aRSA, |
| SSL_CHACHA20POLY1305, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher CCA9 */ |
| { |
| TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, |
| TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, |
| SSL_kECDHE, |
| SSL_aECDSA, |
| SSL_CHACHA20POLY1305, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| /* Cipher CCAB */ |
| { |
| TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, |
| TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256, |
| SSL_kECDHE, |
| SSL_aPSK, |
| SSL_CHACHA20POLY1305, |
| SSL_AEAD, |
| SSL_HANDSHAKE_MAC_SHA256, |
| }, |
| |
| }; |
| |
| static const size_t kCiphersLen = OPENSSL_ARRAY_SIZE(kCiphers); |
| |
| #define CIPHER_ADD 1 |
| #define CIPHER_KILL 2 |
| #define CIPHER_DEL 3 |
| #define CIPHER_ORD 4 |
| #define CIPHER_SPECIAL 5 |
| |
| typedef struct cipher_order_st { |
| const SSL_CIPHER *cipher; |
| int active; |
| int in_group; |
| struct cipher_order_st *next, *prev; |
| } CIPHER_ORDER; |
| |
| typedef struct cipher_alias_st { |
| /* name is the name of the cipher alias. */ |
| const char *name; |
| |
| /* The following fields are bitmasks for the corresponding fields on |
| * |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the |
| * bit corresponding to the cipher's value is set to 1. If any bitmask is |
| * all zeroes, the alias matches nothing. Use |~0u| for the default value. */ |
| uint32_t algorithm_mkey; |
| uint32_t algorithm_auth; |
| uint32_t algorithm_enc; |
| uint32_t algorithm_mac; |
| |
| /* min_version, if non-zero, matches all ciphers which were added in that |
| * particular protocol version. */ |
| uint16_t min_version; |
| } CIPHER_ALIAS; |
| |
| static const CIPHER_ALIAS kCipherAliases[] = { |
| /* "ALL" doesn't include eNULL. It must be explicitly enabled. */ |
| {"ALL", ~0u, ~0u, ~SSL_eNULL, ~0u, 0}, |
| |
| /* The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing. */ |
| |
| /* key exchange aliases |
| * (some of those using only a single bit here combine |
| * multiple key exchange algs according to the RFCs, |
| * e.g. kEDH combines DHE_DSS and DHE_RSA) */ |
| {"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0}, |
| |
| {"kDHE", SSL_kDHE, ~0u, ~0u, ~0u, 0}, |
| {"kEDH", SSL_kDHE, ~0u, ~0u, ~0u, 0}, |
| {"DH", SSL_kDHE, ~0u, ~0u, ~0u, 0}, |
| |
| {"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, |
| {"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, |
| {"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, |
| |
| {"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0}, |
| |
| /* server authentication aliases */ |
| {"aRSA", ~0u, SSL_aRSA, ~SSL_eNULL, ~0u, 0}, |
| {"aECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0}, |
| {"ECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0}, |
| {"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0}, |
| |
| /* aliases combining key exchange and server authentication */ |
| {"DHE", SSL_kDHE, ~0u, ~0u, ~0u, 0}, |
| {"EDH", SSL_kDHE, ~0u, ~0u, ~0u, 0}, |
| {"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, |
| {"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0}, |
| {"RSA", SSL_kRSA, SSL_aRSA, ~SSL_eNULL, ~0u, 0}, |
| {"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0}, |
| |
| /* symmetric encryption aliases */ |
| {"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0}, |
| {"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0}, |
| {"AES256", ~0u, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0}, |
| {"AES", ~0u, ~0u, SSL_AES, ~0u, 0}, |
| {"AESGCM", ~0u, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0}, |
| {"CHACHA20", ~0u, ~0u, SSL_CHACHA20POLY1305 | SSL_CHACHA20POLY1305_OLD, ~0u, |
| 0}, |
| |
| /* MAC aliases */ |
| {"SHA1", ~0u, ~0u, ~SSL_eNULL, SSL_SHA1, 0}, |
| {"SHA", ~0u, ~0u, ~SSL_eNULL, SSL_SHA1, 0}, |
| {"SHA256", ~0u, ~0u, ~0u, SSL_SHA256, 0}, |
| {"SHA384", ~0u, ~0u, ~0u, SSL_SHA384, 0}, |
| |
| /* Legacy protocol minimum version aliases. "TLSv1" is intentionally the |
| * same as "SSLv3". */ |
| {"SSLv3", ~0u, ~0u, ~SSL_eNULL, ~0u, SSL3_VERSION}, |
| {"TLSv1", ~0u, ~0u, ~SSL_eNULL, ~0u, SSL3_VERSION}, |
| {"TLSv1.2", ~0u, ~0u, ~SSL_eNULL, ~0u, TLS1_2_VERSION}, |
| |
| /* Legacy strength classes. */ |
| {"HIGH", ~0u, ~0u, ~SSL_eNULL, ~0u, 0}, |
| {"FIPS", ~0u, ~0u, ~SSL_eNULL, ~0u, 0}, |
| }; |
| |
| static const size_t kCipherAliasesLen = OPENSSL_ARRAY_SIZE(kCipherAliases); |
| |
| static int ssl_cipher_id_cmp(const void *in_a, const void *in_b) { |
| const SSL_CIPHER *a = in_a; |
| const SSL_CIPHER *b = in_b; |
| |
| if (a->id > b->id) { |
| return 1; |
| } else if (a->id < b->id) { |
| return -1; |
| } else { |
| return 0; |
| } |
| } |
| |
| const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) { |
| SSL_CIPHER c; |
| |
| c.id = 0x03000000L | value; |
| return bsearch(&c, kCiphers, kCiphersLen, sizeof(SSL_CIPHER), |
| ssl_cipher_id_cmp); |
| } |
| |
| int ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead, |
| size_t *out_mac_secret_len, |
| size_t *out_fixed_iv_len, |
| const SSL_CIPHER *cipher, uint16_t version) { |
| *out_aead = NULL; |
| *out_mac_secret_len = 0; |
| *out_fixed_iv_len = 0; |
| |
| if (cipher->algorithm_mac == SSL_AEAD) { |
| if (cipher->algorithm_enc == SSL_AES128GCM) { |
| *out_aead = EVP_aead_aes_128_gcm(); |
| *out_fixed_iv_len = 4; |
| } else if (cipher->algorithm_enc == SSL_AES256GCM) { |
| *out_aead = EVP_aead_aes_256_gcm(); |
| *out_fixed_iv_len = 4; |
| #if !defined(BORINGSSL_ANDROID_SYSTEM) |
| } else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305_OLD) { |
| *out_aead = EVP_aead_chacha20_poly1305_old(); |
| *out_fixed_iv_len = 0; |
| #endif |
| } else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305) { |
| *out_aead = EVP_aead_chacha20_poly1305(); |
| *out_fixed_iv_len = 12; |
| } else { |
| return 0; |
| } |
| |
| /* In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code |
| * above computes the TLS 1.2 construction. */ |
| if (version >= TLS1_3_VERSION) { |
| *out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead); |
| } |
| } else if (cipher->algorithm_mac == SSL_SHA1) { |
| if (cipher->algorithm_enc == SSL_eNULL) { |
| if (version == SSL3_VERSION) { |
| *out_aead = EVP_aead_null_sha1_ssl3(); |
| } else { |
| *out_aead = EVP_aead_null_sha1_tls(); |
| } |
| } else if (cipher->algorithm_enc == SSL_3DES) { |
| if (version == SSL3_VERSION) { |
| *out_aead = EVP_aead_des_ede3_cbc_sha1_ssl3(); |
| *out_fixed_iv_len = 8; |
| } else if (version == TLS1_VERSION) { |
| *out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(); |
| *out_fixed_iv_len = 8; |
| } else { |
| *out_aead = EVP_aead_des_ede3_cbc_sha1_tls(); |
| } |
| } else if (cipher->algorithm_enc == SSL_AES128) { |
| if (version == SSL3_VERSION) { |
| *out_aead = EVP_aead_aes_128_cbc_sha1_ssl3(); |
| *out_fixed_iv_len = 16; |
| } else if (version == TLS1_VERSION) { |
| *out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(); |
| *out_fixed_iv_len = 16; |
| } else { |
| *out_aead = EVP_aead_aes_128_cbc_sha1_tls(); |
| } |
| } else if (cipher->algorithm_enc == SSL_AES256) { |
| if (version == SSL3_VERSION) { |
| *out_aead = EVP_aead_aes_256_cbc_sha1_ssl3(); |
| *out_fixed_iv_len = 16; |
| } else if (version == TLS1_VERSION) { |
| *out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(); |
| *out_fixed_iv_len = 16; |
| } else { |
| *out_aead = EVP_aead_aes_256_cbc_sha1_tls(); |
| } |
| } else { |
| return 0; |
| } |
| |
| *out_mac_secret_len = SHA_DIGEST_LENGTH; |
| } else if (cipher->algorithm_mac == SSL_SHA256) { |
| if (cipher->algorithm_enc == SSL_AES128) { |
| *out_aead = EVP_aead_aes_128_cbc_sha256_tls(); |
| } else if (cipher->algorithm_enc == SSL_AES256) { |
| *out_aead = EVP_aead_aes_256_cbc_sha256_tls(); |
| } else { |
| return 0; |
| } |
| |
| *out_mac_secret_len = SHA256_DIGEST_LENGTH; |
| } else if (cipher->algorithm_mac == SSL_SHA384) { |
| if (cipher->algorithm_enc != SSL_AES256) { |
| return 0; |
| } |
| |
| *out_aead = EVP_aead_aes_256_cbc_sha384_tls(); |
| *out_mac_secret_len = SHA384_DIGEST_LENGTH; |
| } else { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| const EVP_MD *ssl_get_handshake_digest(uint32_t algorithm_prf) { |
| switch (algorithm_prf) { |
| case SSL_HANDSHAKE_MAC_DEFAULT: |
| return EVP_sha1(); |
| case SSL_HANDSHAKE_MAC_SHA256: |
| return EVP_sha256(); |
| case SSL_HANDSHAKE_MAC_SHA384: |
| return EVP_sha384(); |
| default: |
| return NULL; |
| } |
| } |
| |
| #define ITEM_SEP(a) \ |
| (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ',')) |
| |
| /* rule_equals returns one iff the NUL-terminated string |rule| is equal to the |
| * |buf_len| bytes at |buf|. */ |
| static int rule_equals(const char *rule, const char *buf, size_t buf_len) { |
| /* |strncmp| alone only checks that |buf| is a prefix of |rule|. */ |
| return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0'; |
| } |
| |
| static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr, |
| CIPHER_ORDER **tail) { |
| if (curr == *tail) { |
| return; |
| } |
| if (curr == *head) { |
| *head = curr->next; |
| } |
| if (curr->prev != NULL) { |
| curr->prev->next = curr->next; |
| } |
| if (curr->next != NULL) { |
| curr->next->prev = curr->prev; |
| } |
| (*tail)->next = curr; |
| curr->prev = *tail; |
| curr->next = NULL; |
| *tail = curr; |
| } |
| |
| static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr, |
| CIPHER_ORDER **tail) { |
| if (curr == *head) { |
| return; |
| } |
| if (curr == *tail) { |
| *tail = curr->prev; |
| } |
| if (curr->next != NULL) { |
| curr->next->prev = curr->prev; |
| } |
| if (curr->prev != NULL) { |
| curr->prev->next = curr->next; |
| } |
| (*head)->prev = curr; |
| curr->next = *head; |
| curr->prev = NULL; |
| *head = curr; |
| } |
| |
| static void ssl_cipher_collect_ciphers(const SSL_PROTOCOL_METHOD *ssl_method, |
| CIPHER_ORDER *co_list, |
| CIPHER_ORDER **head_p, |
| CIPHER_ORDER **tail_p) { |
| /* The set of ciphers is static, but some subset may be unsupported by |
| * |ssl_method|, so the list may be smaller. */ |
| size_t co_list_num = 0; |
| for (size_t i = 0; i < kCiphersLen; i++) { |
| const SSL_CIPHER *cipher = &kCiphers[i]; |
| if (ssl_method->supports_cipher(cipher) && |
| /* TLS 1.3 ciphers do not participate in this mechanism. */ |
| cipher->algorithm_mkey != SSL_kGENERIC) { |
| co_list[co_list_num].cipher = cipher; |
| co_list[co_list_num].next = NULL; |
| co_list[co_list_num].prev = NULL; |
| co_list[co_list_num].active = 0; |
| co_list[co_list_num].in_group = 0; |
| co_list_num++; |
| } |
| } |
| |
| /* Prepare linked list from list entries. */ |
| if (co_list_num > 0) { |
| co_list[0].prev = NULL; |
| |
| if (co_list_num > 1) { |
| co_list[0].next = &co_list[1]; |
| |
| for (size_t i = 1; i < co_list_num - 1; i++) { |
| co_list[i].prev = &co_list[i - 1]; |
| co_list[i].next = &co_list[i + 1]; |
| } |
| |
| co_list[co_list_num - 1].prev = &co_list[co_list_num - 2]; |
| } |
| |
| co_list[co_list_num - 1].next = NULL; |
| |
| *head_p = &co_list[0]; |
| *tail_p = &co_list[co_list_num - 1]; |
| } |
| } |
| |
| /* ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its |
| * parameters in the linked list from |*head_p| to |*tail_p|. It writes the new |
| * head and tail of the list to |*head_p| and |*tail_p|, respectively. |
| * |
| * - If |cipher_id| is non-zero, only that cipher is selected. |
| * - Otherwise, if |strength_bits| is non-negative, it selects ciphers |
| * of that strength. |
| * - Otherwise, it selects ciphers that match each bitmasks in |alg_*| and |
| * |min_version|. */ |
| static void ssl_cipher_apply_rule( |
| uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth, |
| uint32_t alg_enc, uint32_t alg_mac, uint16_t min_version, int rule, |
| int strength_bits, int in_group, CIPHER_ORDER **head_p, |
| CIPHER_ORDER **tail_p) { |
| CIPHER_ORDER *head, *tail, *curr, *next, *last; |
| const SSL_CIPHER *cp; |
| int reverse = 0; |
| |
| if (cipher_id == 0 && strength_bits == -1 && min_version == 0 && |
| (alg_mkey == 0 || alg_auth == 0 || alg_enc == 0 || alg_mac == 0)) { |
| /* The rule matches nothing, so bail early. */ |
| return; |
| } |
| |
| if (rule == CIPHER_DEL) { |
| /* needed to maintain sorting between currently deleted ciphers */ |
| reverse = 1; |
| } |
| |
| head = *head_p; |
| tail = *tail_p; |
| |
| if (reverse) { |
| next = tail; |
| last = head; |
| } else { |
| next = head; |
| last = tail; |
| } |
| |
| curr = NULL; |
| for (;;) { |
| if (curr == last) { |
| break; |
| } |
| |
| curr = next; |
| if (curr == NULL) { |
| break; |
| } |
| |
| next = reverse ? curr->prev : curr->next; |
| cp = curr->cipher; |
| |
| /* Selection criteria is either a specific cipher, the value of |
| * |strength_bits|, or the algorithms used. */ |
| if (cipher_id != 0) { |
| if (cipher_id != cp->id) { |
| continue; |
| } |
| } else if (strength_bits >= 0) { |
| if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) { |
| continue; |
| } |
| } else { |
| if (!(alg_mkey & cp->algorithm_mkey) || |
| !(alg_auth & cp->algorithm_auth) || |
| !(alg_enc & cp->algorithm_enc) || |
| !(alg_mac & cp->algorithm_mac) || |
| (min_version != 0 && SSL_CIPHER_get_min_version(cp) != min_version)) { |
| continue; |
| } |
| } |
| |
| /* add the cipher if it has not been added yet. */ |
| if (rule == CIPHER_ADD) { |
| /* reverse == 0 */ |
| if (!curr->active) { |
| ll_append_tail(&head, curr, &tail); |
| curr->active = 1; |
| curr->in_group = in_group; |
| } |
| } |
| |
| /* Move the added cipher to this location */ |
| else if (rule == CIPHER_ORD) { |
| /* reverse == 0 */ |
| if (curr->active) { |
| ll_append_tail(&head, curr, &tail); |
| curr->in_group = 0; |
| } |
| } else if (rule == CIPHER_DEL) { |
| /* reverse == 1 */ |
| if (curr->active) { |
| /* most recently deleted ciphersuites get best positions |
| * for any future CIPHER_ADD (note that the CIPHER_DEL loop |
| * works in reverse to maintain the order) */ |
| ll_append_head(&head, curr, &tail); |
| curr->active = 0; |
| curr->in_group = 0; |
| } |
| } else if (rule == CIPHER_KILL) { |
| /* reverse == 0 */ |
| if (head == curr) { |
| head = curr->next; |
| } else { |
| curr->prev->next = curr->next; |
| } |
| |
| if (tail == curr) { |
| tail = curr->prev; |
| } |
| curr->active = 0; |
| if (curr->next != NULL) { |
| curr->next->prev = curr->prev; |
| } |
| if (curr->prev != NULL) { |
| curr->prev->next = curr->next; |
| } |
| curr->next = NULL; |
| curr->prev = NULL; |
| } |
| } |
| |
| *head_p = head; |
| *tail_p = tail; |
| } |
| |
| static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p, |
| CIPHER_ORDER **tail_p) { |
| int max_strength_bits, i, *number_uses; |
| CIPHER_ORDER *curr; |
| |
| /* This routine sorts the ciphers with descending strength. The sorting must |
| * keep the pre-sorted sequence, so we apply the normal sorting routine as |
| * '+' movement to the end of the list. */ |
| max_strength_bits = 0; |
| curr = *head_p; |
| while (curr != NULL) { |
| if (curr->active && |
| SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) { |
| max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL); |
| } |
| curr = curr->next; |
| } |
| |
| number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int)); |
| if (!number_uses) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| OPENSSL_memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int)); |
| |
| /* Now find the strength_bits values actually used. */ |
| curr = *head_p; |
| while (curr != NULL) { |
| if (curr->active) { |
| number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++; |
| } |
| curr = curr->next; |
| } |
| |
| /* Go through the list of used strength_bits values in descending order. */ |
| for (i = max_strength_bits; i >= 0; i--) { |
| if (number_uses[i] > 0) { |
| ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i, 0, head_p, tail_p); |
| } |
| } |
| |
| OPENSSL_free(number_uses); |
| return 1; |
| } |
| |
| static int ssl_cipher_process_rulestr(const SSL_PROTOCOL_METHOD *ssl_method, |
| const char *rule_str, |
| CIPHER_ORDER **head_p, |
| CIPHER_ORDER **tail_p) { |
| uint32_t alg_mkey, alg_auth, alg_enc, alg_mac; |
| uint16_t min_version; |
| const char *l, *buf; |
| int multi, skip_rule, rule, ok, in_group = 0, has_group = 0; |
| size_t j, buf_len; |
| uint32_t cipher_id; |
| char ch; |
| |
| l = rule_str; |
| for (;;) { |
| ch = *l; |
| |
| if (ch == '\0') { |
| break; /* done */ |
| } |
| |
| if (in_group) { |
| if (ch == ']') { |
| if (*tail_p) { |
| (*tail_p)->in_group = 0; |
| } |
| in_group = 0; |
| l++; |
| continue; |
| } |
| |
| if (ch == '|') { |
| rule = CIPHER_ADD; |
| l++; |
| continue; |
| } else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') && |
| !(ch >= '0' && ch <= '9')) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP); |
| return 0; |
| } else { |
| rule = CIPHER_ADD; |
| } |
| } else if (ch == '-') { |
| rule = CIPHER_DEL; |
| l++; |
| } else if (ch == '+') { |
| rule = CIPHER_ORD; |
| l++; |
| } else if (ch == '!') { |
| rule = CIPHER_KILL; |
| l++; |
| } else if (ch == '@') { |
| rule = CIPHER_SPECIAL; |
| l++; |
| } else if (ch == '[') { |
| if (in_group) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NESTED_GROUP); |
| return 0; |
| } |
| in_group = 1; |
| has_group = 1; |
| l++; |
| continue; |
| } else { |
| rule = CIPHER_ADD; |
| } |
| |
| /* If preference groups are enabled, the only legal operator is +. |
| * Otherwise the in_group bits will get mixed up. */ |
| if (has_group && rule != CIPHER_ADD) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS); |
| return 0; |
| } |
| |
| if (ITEM_SEP(ch)) { |
| l++; |
| continue; |
| } |
| |
| multi = 0; |
| cipher_id = 0; |
| alg_mkey = ~0u; |
| alg_auth = ~0u; |
| alg_enc = ~0u; |
| alg_mac = ~0u; |
| min_version = 0; |
| skip_rule = 0; |
| |
| for (;;) { |
| ch = *l; |
| buf = l; |
| buf_len = 0; |
| while (((ch >= 'A') && (ch <= 'Z')) || ((ch >= '0') && (ch <= '9')) || |
| ((ch >= 'a') && (ch <= 'z')) || (ch == '-') || (ch == '.')) { |
| ch = *(++l); |
| buf_len++; |
| } |
| |
| if (buf_len == 0) { |
| /* We hit something we cannot deal with, it is no command or separator |
| * nor alphanumeric, so we call this an error. */ |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); |
| return 0; |
| } |
| |
| if (rule == CIPHER_SPECIAL) { |
| break; |
| } |
| |
| /* Look for a matching exact cipher. These aren't allowed in multipart |
| * rules. */ |
| if (!multi && ch != '+') { |
| for (j = 0; j < kCiphersLen; j++) { |
| const SSL_CIPHER *cipher = &kCiphers[j]; |
| if (rule_equals(cipher->name, buf, buf_len)) { |
| cipher_id = cipher->id; |
| break; |
| } |
| } |
| } |
| if (cipher_id == 0) { |
| /* If not an exact cipher, look for a matching cipher alias. */ |
| for (j = 0; j < kCipherAliasesLen; j++) { |
| if (rule_equals(kCipherAliases[j].name, buf, buf_len)) { |
| alg_mkey &= kCipherAliases[j].algorithm_mkey; |
| alg_auth &= kCipherAliases[j].algorithm_auth; |
| alg_enc &= kCipherAliases[j].algorithm_enc; |
| alg_mac &= kCipherAliases[j].algorithm_mac; |
| |
| if (min_version != 0 && |
| min_version != kCipherAliases[j].min_version) { |
| skip_rule = 1; |
| } else { |
| min_version = kCipherAliases[j].min_version; |
| } |
| break; |
| } |
| } |
| if (j == kCipherAliasesLen) { |
| skip_rule = 1; |
| } |
| } |
| |
| /* Check for a multipart rule. */ |
| if (ch != '+') { |
| break; |
| } |
| l++; |
| multi = 1; |
| } |
| |
| /* If one of the CHACHA20_POLY1305 variants is selected, include the other |
| * as well. They have the same name to avoid requiring changes in |
| * configuration. Apply this transformation late so that the cipher name |
| * still behaves as an exact name and not an alias in multipart rules. |
| * |
| * This is temporary and will be removed when the pre-standard construction |
| * is removed. */ |
| if (cipher_id == TLS1_CK_ECDHE_RSA_CHACHA20_POLY1305_OLD || |
| cipher_id == TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256) { |
| cipher_id = 0; |
| alg_mkey = SSL_kECDHE; |
| alg_auth = SSL_aRSA; |
| alg_enc = SSL_CHACHA20POLY1305|SSL_CHACHA20POLY1305_OLD; |
| alg_mac = SSL_AEAD; |
| } else if (cipher_id == TLS1_CK_ECDHE_ECDSA_CHACHA20_POLY1305_OLD || |
| cipher_id == TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256) { |
| cipher_id = 0; |
| alg_mkey = SSL_kECDHE; |
| alg_auth = SSL_aECDSA; |
| alg_enc = SSL_CHACHA20POLY1305|SSL_CHACHA20POLY1305_OLD; |
| alg_mac = SSL_AEAD; |
| } |
| |
| /* Ok, we have the rule, now apply it. */ |
| if (rule == CIPHER_SPECIAL) { |
| /* special command */ |
| ok = 0; |
| if (buf_len == 8 && !strncmp(buf, "STRENGTH", 8)) { |
| ok = ssl_cipher_strength_sort(head_p, tail_p); |
| } else { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); |
| } |
| |
| if (ok == 0) { |
| return 0; |
| } |
| |
| /* We do not support any "multi" options together with "@", so throw away |
| * the rest of the command, if any left, until end or ':' is found. */ |
| while (*l != '\0' && !ITEM_SEP(*l)) { |
| l++; |
| } |
| } else if (!skip_rule) { |
| ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac, |
| min_version, rule, -1, in_group, head_p, tail_p); |
| } |
| } |
| |
| if (in_group) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| STACK_OF(SSL_CIPHER) * |
| ssl_create_cipher_list(const SSL_PROTOCOL_METHOD *ssl_method, |
| struct ssl_cipher_preference_list_st **out_cipher_list, |
| const char *rule_str) { |
| STACK_OF(SSL_CIPHER) *cipherstack = NULL; |
| CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr; |
| uint8_t *in_group_flags = NULL; |
| unsigned int num_in_group_flags = 0; |
| struct ssl_cipher_preference_list_st *pref_list = NULL; |
| |
| /* Return with error if nothing to do. */ |
| if (rule_str == NULL || out_cipher_list == NULL) { |
| return NULL; |
| } |
| |
| /* Now we have to collect the available ciphers from the compiled in ciphers. |
| * We cannot get more than the number compiled in, so it is used for |
| * allocation. */ |
| co_list = OPENSSL_malloc(sizeof(CIPHER_ORDER) * kCiphersLen); |
| if (co_list == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| |
| ssl_cipher_collect_ciphers(ssl_method, co_list, &head, &tail); |
| |
| /* Now arrange all ciphers by preference: |
| * TODO(davidben): Compute this order once and copy it. */ |
| |
| /* Everything else being equal, prefer ECDHE_ECDSA and ECDHE_RSA over other |
| * key exchange mechanisms */ |
| ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, ~0u, ~0u, 0, CIPHER_ADD, -1, |
| 0, &head, &tail); |
| ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, 0, |
| &head, &tail); |
| ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, 0, &head, |
| &tail); |
| |
| /* Order the bulk ciphers. First the preferred AEAD ciphers. We prefer |
| * CHACHA20 unless there is hardware support for fast and constant-time |
| * AES_GCM. Of the two CHACHA20 variants, the new one is preferred over the |
| * old one. */ |
| if (EVP_has_aes_hardware()) { |
| ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, 0, |
| &head, &tail); |
| ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, 0, |
| &head, &tail); |
| ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD, |
| -1, 0, &head, &tail); |
| ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305_OLD, ~0u, 0, |
| CIPHER_ADD, -1, 0, &head, &tail); |
| } else { |
| ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD, |
| -1, 0, &head, &tail); |
| ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305_OLD, ~0u, 0, |
| CIPHER_ADD, -1, 0, &head, &tail); |
| ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, 0, |
| &head, &tail); |
| ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, 0, |
| &head, &tail); |
| } |
| |
| /* Then the legacy non-AEAD ciphers: AES_128_CBC, AES_256_CBC, |
| * 3DES_EDE_CBC_SHA. */ |
| ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128, ~0u, 0, CIPHER_ADD, -1, 0, |
| &head, &tail); |
| ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256, ~0u, 0, CIPHER_ADD, -1, 0, |
| &head, &tail); |
| ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_3DES, ~0u, 0, CIPHER_ADD, -1, 0, &head, |
| &tail); |
| |
| /* Temporarily enable everything else for sorting */ |
| ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, 0, &head, |
| &tail); |
| |
| /* Move ciphers without forward secrecy to the end. */ |
| ssl_cipher_apply_rule(0, (SSL_kRSA | SSL_kPSK), ~0u, ~0u, ~0u, 0, |
| CIPHER_ORD, -1, 0, &head, &tail); |
| |
| /* Now disable everything (maintaining the ordering!) */ |
| ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, 0, &head, |
| &tail); |
| |
| /* If the rule_string begins with DEFAULT, apply the default rule before |
| * using the (possibly available) additional rules. */ |
| const char *rule_p = rule_str; |
| if (strncmp(rule_str, "DEFAULT", 7) == 0) { |
| if (!ssl_cipher_process_rulestr(ssl_method, SSL_DEFAULT_CIPHER_LIST, &head, |
| &tail)) { |
| goto err; |
| } |
| rule_p += 7; |
| if (*rule_p == ':') { |
| rule_p++; |
| } |
| } |
| |
| if (*rule_p != '\0' && |
| !ssl_cipher_process_rulestr(ssl_method, rule_p, &head, &tail)) { |
| goto err; |
| } |
| |
| /* Allocate new "cipherstack" for the result, return with error |
| * if we cannot get one. */ |
| cipherstack = sk_SSL_CIPHER_new_null(); |
| if (cipherstack == NULL) { |
| goto err; |
| } |
| |
| in_group_flags = OPENSSL_malloc(kCiphersLen); |
| if (!in_group_flags) { |
| goto err; |
| } |
| |
| /* The cipher selection for the list is done. The ciphers are added |
| * to the resulting precedence to the STACK_OF(SSL_CIPHER). */ |
| for (curr = head; curr != NULL; curr = curr->next) { |
| if (curr->active) { |
| if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) { |
| goto err; |
| } |
| in_group_flags[num_in_group_flags++] = curr->in_group; |
| } |
| } |
| OPENSSL_free(co_list); /* Not needed any longer */ |
| co_list = NULL; |
| |
| pref_list = OPENSSL_malloc(sizeof(struct ssl_cipher_preference_list_st)); |
| if (!pref_list) { |
| goto err; |
| } |
| pref_list->ciphers = cipherstack; |
| pref_list->in_group_flags = OPENSSL_malloc(num_in_group_flags); |
| if (!pref_list->in_group_flags) { |
| goto err; |
| } |
| OPENSSL_memcpy(pref_list->in_group_flags, in_group_flags, num_in_group_flags); |
| OPENSSL_free(in_group_flags); |
| in_group_flags = NULL; |
| if (*out_cipher_list != NULL) { |
| ssl_cipher_preference_list_free(*out_cipher_list); |
| } |
| *out_cipher_list = pref_list; |
| pref_list = NULL; |
| |
| return cipherstack; |
| |
| err: |
| OPENSSL_free(co_list); |
| OPENSSL_free(in_group_flags); |
| sk_SSL_CIPHER_free(cipherstack); |
| if (pref_list) { |
| OPENSSL_free(pref_list->in_group_flags); |
| } |
| OPENSSL_free(pref_list); |
| return NULL; |
| } |
| |
| uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; } |
| |
| uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher) { |
| uint32_t id = cipher->id; |
| /* All ciphers are SSLv3. */ |
| assert((id & 0xff000000) == 0x03000000); |
| return id & 0xffff; |
| } |
| |
| int SSL_CIPHER_is_AES(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_enc & SSL_AES) != 0; |
| } |
| |
| int SSL_CIPHER_has_MD5_HMAC(const SSL_CIPHER *cipher) { |
| return 0; |
| } |
| |
| int SSL_CIPHER_has_SHA1_HMAC(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_mac & SSL_SHA1) != 0; |
| } |
| |
| int SSL_CIPHER_has_SHA256_HMAC(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_mac & SSL_SHA256) != 0; |
| } |
| |
| int SSL_CIPHER_is_AESGCM(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM)) != 0; |
| } |
| |
| int SSL_CIPHER_is_AES128GCM(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_enc & SSL_AES128GCM) != 0; |
| } |
| |
| int SSL_CIPHER_is_AES128CBC(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_enc & SSL_AES128) != 0; |
| } |
| |
| int SSL_CIPHER_is_AES256CBC(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_enc & SSL_AES256) != 0; |
| } |
| |
| int SSL_CIPHER_is_CHACHA20POLY1305(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_enc & |
| (SSL_CHACHA20POLY1305 | SSL_CHACHA20POLY1305_OLD)) != 0; |
| } |
| |
| int SSL_CIPHER_is_NULL(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_enc & SSL_eNULL) != 0; |
| } |
| |
| int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_enc & SSL_eNULL) == 0 && |
| cipher->algorithm_mac != SSL_AEAD; |
| } |
| |
| int SSL_CIPHER_is_ECDSA(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_auth & SSL_aECDSA) != 0; |
| } |
| |
| int SSL_CIPHER_is_DHE(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_mkey & SSL_kDHE) != 0; |
| } |
| |
| int SSL_CIPHER_is_ECDHE(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_mkey & SSL_kECDHE) != 0; |
| } |
| |
| int SSL_CIPHER_is_static_RSA(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_mkey & SSL_kRSA) != 0; |
| } |
| |
| uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) { |
| if (cipher->algorithm_mkey == SSL_kGENERIC || |
| cipher->algorithm_auth == SSL_aGENERIC) { |
| return TLS1_3_VERSION; |
| } |
| |
| if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) { |
| /* Cipher suites before TLS 1.2 use the default PRF, while all those added |
| * afterwards specify a particular hash. */ |
| return TLS1_2_VERSION; |
| } |
| return SSL3_VERSION; |
| } |
| |
| uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) { |
| if (cipher->algorithm_mkey == SSL_kGENERIC || |
| cipher->algorithm_auth == SSL_aGENERIC) { |
| return TLS1_3_VERSION; |
| } |
| return TLS1_2_VERSION; |
| } |
| |
| /* return the actual cipher being used */ |
| const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) { |
| if (cipher != NULL) { |
| return cipher->name; |
| } |
| |
| return "(NONE)"; |
| } |
| |
| const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) { |
| if (cipher == NULL) { |
| return ""; |
| } |
| |
| switch (cipher->algorithm_mkey) { |
| case SSL_kRSA: |
| return "RSA"; |
| |
| case SSL_kDHE: |
| switch (cipher->algorithm_auth) { |
| case SSL_aRSA: |
| return "DHE_RSA"; |
| default: |
| assert(0); |
| return "UNKNOWN"; |
| } |
| |
| case SSL_kECDHE: |
| switch (cipher->algorithm_auth) { |
| case SSL_aECDSA: |
| return "ECDHE_ECDSA"; |
| case SSL_aRSA: |
| return "ECDHE_RSA"; |
| case SSL_aPSK: |
| return "ECDHE_PSK"; |
| default: |
| assert(0); |
| return "UNKNOWN"; |
| } |
| |
| case SSL_kPSK: |
| assert(cipher->algorithm_auth == SSL_aPSK); |
| return "PSK"; |
| |
| case SSL_kGENERIC: |
| assert(cipher->algorithm_auth == SSL_aGENERIC); |
| return "GENERIC"; |
| |
| default: |
| assert(0); |
| return "UNKNOWN"; |
| } |
| } |
| |
| static const char *ssl_cipher_get_enc_name(const SSL_CIPHER *cipher) { |
| switch (cipher->algorithm_enc) { |
| case SSL_3DES: |
| return "3DES_EDE_CBC"; |
| case SSL_AES128: |
| return "AES_128_CBC"; |
| case SSL_AES256: |
| return "AES_256_CBC"; |
| case SSL_AES128GCM: |
| return "AES_128_GCM"; |
| case SSL_AES256GCM: |
| return "AES_256_GCM"; |
| case SSL_CHACHA20POLY1305: |
| case SSL_CHACHA20POLY1305_OLD: |
| return "CHACHA20_POLY1305"; |
| break; |
| default: |
| assert(0); |
| return "UNKNOWN"; |
| } |
| } |
| |
| static const char *ssl_cipher_get_prf_name(const SSL_CIPHER *cipher) { |
| switch (cipher->algorithm_prf) { |
| case SSL_HANDSHAKE_MAC_DEFAULT: |
| /* Before TLS 1.2, the PRF component is the hash used in the HMAC, which |
| * is SHA-1 for all supported ciphers. */ |
| assert(cipher->algorithm_mac == SSL_SHA1); |
| return "SHA"; |
| case SSL_HANDSHAKE_MAC_SHA256: |
| return "SHA256"; |
| case SSL_HANDSHAKE_MAC_SHA384: |
| return "SHA384"; |
| } |
| assert(0); |
| return "UNKNOWN"; |
| } |
| |
| char *SSL_CIPHER_get_rfc_name(const SSL_CIPHER *cipher) { |
| if (cipher == NULL) { |
| return NULL; |
| } |
| |
| const char *kx_name = SSL_CIPHER_get_kx_name(cipher); |
| const char *enc_name = ssl_cipher_get_enc_name(cipher); |
| const char *prf_name = ssl_cipher_get_prf_name(cipher); |
| |
| /* The final name is TLS_{kx_name}_WITH_{enc_name}_{prf_name} or |
| * TLS_{enc_name}_{prf_name} depending on whether the cipher is AEAD-only. */ |
| size_t len = 4 + strlen(enc_name) + 1 + strlen(prf_name) + 1; |
| |
| if (cipher->algorithm_mkey != SSL_kGENERIC) { |
| len += strlen(kx_name) + 6; |
| } |
| |
| char *ret = OPENSSL_malloc(len); |
| if (ret == NULL) { |
| return NULL; |
| } |
| |
| if (BUF_strlcpy(ret, "TLS_", len) >= len || |
| (cipher->algorithm_mkey != SSL_kGENERIC && |
| (BUF_strlcat(ret, kx_name, len) >= len || |
| BUF_strlcat(ret, "_WITH_", len) >= len)) || |
| BUF_strlcat(ret, enc_name, len) >= len || |
| BUF_strlcat(ret, "_", len) >= len || |
| BUF_strlcat(ret, prf_name, len) >= len) { |
| assert(0); |
| OPENSSL_free(ret); |
| return NULL; |
| } |
| |
| assert(strlen(ret) + 1 == len); |
| return ret; |
| } |
| |
| int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) { |
| if (cipher == NULL) { |
| return 0; |
| } |
| |
| int alg_bits, strength_bits; |
| switch (cipher->algorithm_enc) { |
| case SSL_AES128: |
| case SSL_AES128GCM: |
| alg_bits = 128; |
| strength_bits = 128; |
| break; |
| |
| case SSL_AES256: |
| case SSL_AES256GCM: |
| #if !defined(BORINGSSL_ANDROID_SYSTEM) |
| case SSL_CHACHA20POLY1305_OLD: |
| #endif |
| case SSL_CHACHA20POLY1305: |
| alg_bits = 256; |
| strength_bits = 256; |
| break; |
| |
| case SSL_3DES: |
| alg_bits = 168; |
| strength_bits = 112; |
| break; |
| |
| case SSL_eNULL: |
| alg_bits = 0; |
| strength_bits = 0; |
| break; |
| |
| default: |
| assert(0); |
| alg_bits = 0; |
| strength_bits = 0; |
| } |
| |
| if (out_alg_bits != NULL) { |
| *out_alg_bits = alg_bits; |
| } |
| return strength_bits; |
| } |
| |
| const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf, |
| int len) { |
| const char *kx, *au, *enc, *mac; |
| uint32_t alg_mkey, alg_auth, alg_enc, alg_mac; |
| |
| alg_mkey = cipher->algorithm_mkey; |
| alg_auth = cipher->algorithm_auth; |
| alg_enc = cipher->algorithm_enc; |
| alg_mac = cipher->algorithm_mac; |
| |
| switch (alg_mkey) { |
| case SSL_kRSA: |
| kx = "RSA"; |
| break; |
| |
| case SSL_kDHE: |
| kx = "DH"; |
| break; |
| |
| case SSL_kECDHE: |
| kx = "ECDH"; |
| break; |
| |
| case SSL_kPSK: |
| kx = "PSK"; |
| break; |
| |
| case SSL_kGENERIC: |
| kx = "GENERIC"; |
| break; |
| |
| default: |
| kx = "unknown"; |
| } |
| |
| switch (alg_auth) { |
| case SSL_aRSA: |
| au = "RSA"; |
| break; |
| |
| case SSL_aECDSA: |
| au = "ECDSA"; |
| break; |
| |
| case SSL_aPSK: |
| au = "PSK"; |
| break; |
| |
| case SSL_aGENERIC: |
| au = "GENERIC"; |
| break; |
| |
| default: |
| au = "unknown"; |
| break; |
| } |
| |
| switch (alg_enc) { |
| case SSL_3DES: |
| enc = "3DES(168)"; |
| break; |
| |
| case SSL_AES128: |
| enc = "AES(128)"; |
| break; |
| |
| case SSL_AES256: |
| enc = "AES(256)"; |
| break; |
| |
| case SSL_AES128GCM: |
| enc = "AESGCM(128)"; |
| break; |
| |
| case SSL_AES256GCM: |
| enc = "AESGCM(256)"; |
| break; |
| |
| case SSL_CHACHA20POLY1305_OLD: |
| enc = "ChaCha20-Poly1305-Old"; |
| break; |
| |
| case SSL_CHACHA20POLY1305: |
| enc = "ChaCha20-Poly1305"; |
| break; |
| |
| case SSL_eNULL: |
| enc="None"; |
| break; |
| |
| default: |
| enc = "unknown"; |
| break; |
| } |
| |
| switch (alg_mac) { |
| case SSL_SHA1: |
| mac = "SHA1"; |
| break; |
| |
| case SSL_SHA256: |
| mac = "SHA256"; |
| break; |
| |
| case SSL_SHA384: |
| mac = "SHA384"; |
| break; |
| |
| case SSL_AEAD: |
| mac = "AEAD"; |
| break; |
| |
| default: |
| mac = "unknown"; |
| break; |
| } |
| |
| if (buf == NULL) { |
| len = 128; |
| buf = OPENSSL_malloc(len); |
| if (buf == NULL) { |
| return NULL; |
| } |
| } else if (len < 128) { |
| return "Buffer too small"; |
| } |
| |
| BIO_snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n", |
| cipher->name, kx, au, enc, mac); |
| return buf; |
| } |
| |
| const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) { |
| return "TLSv1/SSLv3"; |
| } |
| |
| COMP_METHOD *SSL_COMP_get_compression_methods(void) { return NULL; } |
| |
| int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; } |
| |
| const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; } |
| |
| void SSL_COMP_free_compression_methods(void) {} |
| |
| int ssl_cipher_get_key_type(const SSL_CIPHER *cipher) { |
| uint32_t alg_a = cipher->algorithm_auth; |
| |
| if (alg_a & SSL_aECDSA) { |
| return EVP_PKEY_EC; |
| } else if (alg_a & SSL_aRSA) { |
| return EVP_PKEY_RSA; |
| } |
| |
| return EVP_PKEY_NONE; |
| } |
| |
| int ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) { |
| return (cipher->algorithm_auth & SSL_aCERT) != 0; |
| } |
| |
| int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) { |
| /* Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. */ |
| if (cipher->algorithm_mkey & SSL_kDHE || |
| cipher->algorithm_mkey & SSL_kECDHE) { |
| return 1; |
| } |
| |
| /* It is optional in all others. */ |
| return 0; |
| } |
| |
| size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) { |
| size_t block_size; |
| switch (cipher->algorithm_enc) { |
| case SSL_3DES: |
| block_size = 8; |
| break; |
| case SSL_AES128: |
| case SSL_AES256: |
| block_size = 16; |
| break; |
| default: |
| return 0; |
| } |
| |
| /* All supported TLS 1.0 ciphers use SHA-1. */ |
| assert(cipher->algorithm_mac == SSL_SHA1); |
| size_t ret = 1 + SHA_DIGEST_LENGTH; |
| ret += block_size - (ret % block_size); |
| return ret; |
| } |