| /* ==================================================================== |
| * Copyright (c) 2012 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/digest.h> |
| #include <openssl/nid.h> |
| #include <openssl/sha.h> |
| |
| #include "../internal.h" |
| #include "internal.h" |
| #include "../fipsmodule/cipher/internal.h" |
| |
| |
| // MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's length |
| // field. (SHA-384/512 have 128-bit length.) |
| #define MAX_HASH_BIT_COUNT_BYTES 16 |
| |
| // MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support. |
| // Currently SHA-384/512 has a 128-byte block size and that's the largest |
| // supported by TLS.) |
| #define MAX_HASH_BLOCK_SIZE 128 |
| |
| int EVP_tls_cbc_remove_padding(crypto_word_t *out_padding_ok, size_t *out_len, |
| const uint8_t *in, size_t in_len, |
| size_t block_size, size_t mac_size) { |
| const size_t overhead = 1 /* padding length byte */ + mac_size; |
| |
| // These lengths are all public so we can test them in non-constant time. |
| if (overhead > in_len) { |
| return 0; |
| } |
| |
| size_t padding_length = in[in_len - 1]; |
| |
| crypto_word_t good = constant_time_ge_w(in_len, overhead + padding_length); |
| // The padding consists of a length byte at the end of the record and |
| // then that many bytes of padding, all with the same value as the |
| // length byte. Thus, with the length byte included, there are i+1 |
| // bytes of padding. |
| // |
| // We can't check just |padding_length+1| bytes because that leaks |
| // decrypted information. Therefore we always have to check the maximum |
| // amount of padding possible. (Again, the length of the record is |
| // public information so we can use it.) |
| size_t to_check = 256; // maximum amount of padding, inc length byte. |
| if (to_check > in_len) { |
| to_check = in_len; |
| } |
| |
| for (size_t i = 0; i < to_check; i++) { |
| uint8_t mask = constant_time_ge_8(padding_length, i); |
| uint8_t b = in[in_len - 1 - i]; |
| // The final |padding_length+1| bytes should all have the value |
| // |padding_length|. Therefore the XOR should be zero. |
| good &= ~(mask & (padding_length ^ b)); |
| } |
| |
| // If any of the final |padding_length+1| bytes had the wrong value, |
| // one or more of the lower eight bits of |good| will be cleared. |
| good = constant_time_eq_w(0xff, good & 0xff); |
| |
| // Always treat |padding_length| as zero on error. If, assuming block size of |
| // 16, a padding of [<15 arbitrary bytes> 15] treated |padding_length| as 16 |
| // and returned -1, distinguishing good MAC and bad padding from bad MAC and |
| // bad padding would give POODLE's padding oracle. |
| padding_length = good & (padding_length + 1); |
| *out_len = in_len - padding_length; |
| *out_padding_ok = good; |
| return 1; |
| } |
| |
| void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in, |
| size_t in_len, size_t orig_len) { |
| uint8_t rotated_mac1[EVP_MAX_MD_SIZE], rotated_mac2[EVP_MAX_MD_SIZE]; |
| uint8_t *rotated_mac = rotated_mac1; |
| uint8_t *rotated_mac_tmp = rotated_mac2; |
| |
| // mac_end is the index of |in| just after the end of the MAC. |
| size_t mac_end = in_len; |
| size_t mac_start = mac_end - md_size; |
| |
| assert(orig_len >= in_len); |
| assert(in_len >= md_size); |
| assert(md_size <= EVP_MAX_MD_SIZE); |
| assert(md_size > 0); |
| |
| // scan_start contains the number of bytes that we can ignore because |
| // the MAC's position can only vary by 255 bytes. |
| size_t scan_start = 0; |
| // This information is public so it's safe to branch based on it. |
| if (orig_len > md_size + 255 + 1) { |
| scan_start = orig_len - (md_size + 255 + 1); |
| } |
| |
| size_t rotate_offset = 0; |
| uint8_t mac_started = 0; |
| OPENSSL_memset(rotated_mac, 0, md_size); |
| for (size_t i = scan_start, j = 0; i < orig_len; i++, j++) { |
| if (j >= md_size) { |
| j -= md_size; |
| } |
| crypto_word_t is_mac_start = constant_time_eq_w(i, mac_start); |
| mac_started |= is_mac_start; |
| uint8_t mac_ended = constant_time_ge_8(i, mac_end); |
| rotated_mac[j] |= in[i] & mac_started & ~mac_ended; |
| // Save the offset that |mac_start| is mapped to. |
| rotate_offset |= j & is_mac_start; |
| } |
| |
| // Now rotate the MAC. We rotate in log(md_size) steps, one for each bit |
| // position. |
| for (size_t offset = 1; offset < md_size; offset <<= 1, rotate_offset >>= 1) { |
| // Rotate by |offset| iff the corresponding bit is set in |
| // |rotate_offset|, placing the result in |rotated_mac_tmp|. |
| const uint8_t skip_rotate = (rotate_offset & 1) - 1; |
| for (size_t i = 0, j = offset; i < md_size; i++, j++) { |
| if (j >= md_size) { |
| j -= md_size; |
| } |
| rotated_mac_tmp[i] = |
| constant_time_select_8(skip_rotate, rotated_mac[i], rotated_mac[j]); |
| } |
| |
| // Swap pointers so |rotated_mac| contains the (possibly) rotated value. |
| // Note the number of iterations and thus the identity of these pointers is |
| // public information. |
| uint8_t *tmp = rotated_mac; |
| rotated_mac = rotated_mac_tmp; |
| rotated_mac_tmp = tmp; |
| } |
| |
| OPENSSL_memcpy(out, rotated_mac, md_size); |
| } |
| |
| // u32toBE serialises an unsigned, 32-bit number (n) as four bytes at (p) in |
| // big-endian order. The value of p is advanced by four. |
| #define u32toBE(n, p) \ |
| do { \ |
| *((p)++) = (uint8_t)((n) >> 24); \ |
| *((p)++) = (uint8_t)((n) >> 16); \ |
| *((p)++) = (uint8_t)((n) >> 8); \ |
| *((p)++) = (uint8_t)((n)); \ |
| } while (0) |
| |
| // u64toBE serialises an unsigned, 64-bit number (n) as eight bytes at (p) in |
| // big-endian order. The value of p is advanced by eight. |
| #define u64toBE(n, p) \ |
| do { \ |
| *((p)++) = (uint8_t)((n) >> 56); \ |
| *((p)++) = (uint8_t)((n) >> 48); \ |
| *((p)++) = (uint8_t)((n) >> 40); \ |
| *((p)++) = (uint8_t)((n) >> 32); \ |
| *((p)++) = (uint8_t)((n) >> 24); \ |
| *((p)++) = (uint8_t)((n) >> 16); \ |
| *((p)++) = (uint8_t)((n) >> 8); \ |
| *((p)++) = (uint8_t)((n)); \ |
| } while (0) |
| |
| typedef union { |
| SHA_CTX sha1; |
| SHA256_CTX sha256; |
| SHA512_CTX sha512; |
| } HASH_CTX; |
| |
| static void tls1_sha1_transform(HASH_CTX *ctx, const uint8_t *block) { |
| SHA1_Transform(&ctx->sha1, block); |
| } |
| |
| static void tls1_sha256_transform(HASH_CTX *ctx, const uint8_t *block) { |
| SHA256_Transform(&ctx->sha256, block); |
| } |
| |
| static void tls1_sha512_transform(HASH_CTX *ctx, const uint8_t *block) { |
| SHA512_Transform(&ctx->sha512, block); |
| } |
| |
| // These functions serialize the state of a hash and thus perform the standard |
| // "final" operation without adding the padding and length that such a function |
| // typically does. |
| static void tls1_sha1_final_raw(HASH_CTX *ctx, uint8_t *md_out) { |
| SHA_CTX *sha1 = &ctx->sha1; |
| u32toBE(sha1->h[0], md_out); |
| u32toBE(sha1->h[1], md_out); |
| u32toBE(sha1->h[2], md_out); |
| u32toBE(sha1->h[3], md_out); |
| u32toBE(sha1->h[4], md_out); |
| } |
| |
| static void tls1_sha256_final_raw(HASH_CTX *ctx, uint8_t *md_out) { |
| SHA256_CTX *sha256 = &ctx->sha256; |
| for (unsigned i = 0; i < 8; i++) { |
| u32toBE(sha256->h[i], md_out); |
| } |
| } |
| |
| static void tls1_sha512_final_raw(HASH_CTX *ctx, uint8_t *md_out) { |
| SHA512_CTX *sha512 = &ctx->sha512; |
| for (unsigned i = 0; i < 8; i++) { |
| u64toBE(sha512->h[i], md_out); |
| } |
| } |
| |
| int EVP_tls_cbc_record_digest_supported(const EVP_MD *md) { |
| switch (EVP_MD_type(md)) { |
| case NID_sha1: |
| case NID_sha256: |
| case NID_sha384: |
| return 1; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out, |
| size_t *md_out_size, const uint8_t header[13], |
| const uint8_t *data, size_t data_plus_mac_size, |
| size_t data_plus_mac_plus_padding_size, |
| const uint8_t *mac_secret, |
| unsigned mac_secret_length) { |
| HASH_CTX md_state; |
| void (*md_final_raw)(HASH_CTX *ctx, uint8_t *md_out); |
| void (*md_transform)(HASH_CTX *ctx, const uint8_t *block); |
| unsigned md_size, md_block_size = 64, md_block_shift = 6; |
| // md_length_size is the number of bytes in the length field that terminates |
| // the hash. |
| unsigned md_length_size = 8; |
| |
| // Bound the acceptable input so we can forget about many possible overflows |
| // later in this function. This is redundant with the record size limits in |
| // TLS. |
| if (data_plus_mac_plus_padding_size >= 1024 * 1024) { |
| assert(0); |
| return 0; |
| } |
| |
| switch (EVP_MD_type(md)) { |
| case NID_sha1: |
| SHA1_Init(&md_state.sha1); |
| md_final_raw = tls1_sha1_final_raw; |
| md_transform = tls1_sha1_transform; |
| md_size = SHA_DIGEST_LENGTH; |
| break; |
| |
| case NID_sha256: |
| SHA256_Init(&md_state.sha256); |
| md_final_raw = tls1_sha256_final_raw; |
| md_transform = tls1_sha256_transform; |
| md_size = SHA256_DIGEST_LENGTH; |
| break; |
| |
| case NID_sha384: |
| SHA384_Init(&md_state.sha512); |
| md_final_raw = tls1_sha512_final_raw; |
| md_transform = tls1_sha512_transform; |
| md_size = SHA384_DIGEST_LENGTH; |
| md_block_size = 128; |
| md_block_shift = 7; |
| md_length_size = 16; |
| break; |
| |
| default: |
| // EVP_tls_cbc_record_digest_supported should have been called first to |
| // check that the hash function is supported. |
| assert(0); |
| *md_out_size = 0; |
| return 0; |
| } |
| |
| assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES); |
| assert(md_block_size <= MAX_HASH_BLOCK_SIZE); |
| assert(md_block_size == (1u << md_block_shift)); |
| assert(md_size <= EVP_MAX_MD_SIZE); |
| |
| static const size_t kHeaderLength = 13; |
| |
| // kVarianceBlocks is the number of blocks of the hash that we have to |
| // calculate in constant time because they could be altered by the |
| // padding value. |
| // |
| // TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not |
| // required to be minimal. Therefore we say that the final |kVarianceBlocks| |
| // blocks can vary based on the padding and on the hash used. This value |
| // must be derived from public information. |
| const size_t kVarianceBlocks = |
| ( 255 + 1 + // maximum padding bytes + padding length |
| md_size + // length of hash's output |
| md_block_size - 1 // ceiling |
| ) / md_block_size |
| + 1; // the 0x80 marker and the encoded message length could or not |
| // require an extra block; since the exact value depends on the |
| // message length; thus, one extra block is always added to run |
| // in constant time. |
| |
| // From now on we're dealing with the MAC, which conceptually has 13 |
| // bytes of `header' before the start of the data. |
| size_t len = data_plus_mac_plus_padding_size + kHeaderLength; |
| // max_mac_bytes contains the maximum bytes of bytes in the MAC, including |
| // |header|, assuming that there's no padding. |
| size_t max_mac_bytes = len - md_size - 1; |
| // num_blocks is the maximum number of hash blocks. |
| size_t num_blocks = |
| (max_mac_bytes + 1 + md_length_size + md_block_size - 1) / md_block_size; |
| // In order to calculate the MAC in constant time we have to handle |
| // the final blocks specially because the padding value could cause the |
| // end to appear somewhere in the final |kVarianceBlocks| blocks and we |
| // can't leak where. However, |num_starting_blocks| worth of data can |
| // be hashed right away because no padding value can affect whether |
| // they are plaintext. |
| size_t num_starting_blocks = 0; |
| // k is the starting byte offset into the conceptual header||data where |
| // we start processing. |
| size_t k = 0; |
| // mac_end_offset is the index just past the end of the data to be MACed. |
| size_t mac_end_offset = data_plus_mac_size + kHeaderLength - md_size; |
| // c is the index of the 0x80 byte in the final hash block that contains |
| // application data. |
| size_t c = mac_end_offset & (md_block_size - 1); |
| // index_a is the hash block number that contains the 0x80 terminating value. |
| size_t index_a = mac_end_offset >> md_block_shift; |
| // index_b is the hash block number that contains the 64-bit hash length, in |
| // bits. |
| size_t index_b = (mac_end_offset + md_length_size) >> md_block_shift; |
| |
| if (num_blocks > kVarianceBlocks) { |
| num_starting_blocks = num_blocks - kVarianceBlocks; |
| k = md_block_size * num_starting_blocks; |
| } |
| |
| // bits is the hash-length in bits. It includes the additional hash |
| // block for the masked HMAC key. |
| size_t bits = 8 * mac_end_offset; // at most 18 bits to represent |
| |
| // Compute the initial HMAC block. |
| bits += 8 * md_block_size; |
| // hmac_pad is the masked HMAC key. |
| uint8_t hmac_pad[MAX_HASH_BLOCK_SIZE]; |
| OPENSSL_memset(hmac_pad, 0, md_block_size); |
| assert(mac_secret_length <= sizeof(hmac_pad)); |
| OPENSSL_memcpy(hmac_pad, mac_secret, mac_secret_length); |
| for (size_t i = 0; i < md_block_size; i++) { |
| hmac_pad[i] ^= 0x36; |
| } |
| |
| md_transform(&md_state, hmac_pad); |
| |
| // The length check means |bits| fits in four bytes. |
| uint8_t length_bytes[MAX_HASH_BIT_COUNT_BYTES]; |
| OPENSSL_memset(length_bytes, 0, md_length_size - 4); |
| length_bytes[md_length_size - 4] = (uint8_t)(bits >> 24); |
| length_bytes[md_length_size - 3] = (uint8_t)(bits >> 16); |
| length_bytes[md_length_size - 2] = (uint8_t)(bits >> 8); |
| length_bytes[md_length_size - 1] = (uint8_t)bits; |
| |
| if (k > 0) { |
| // k is a multiple of md_block_size. |
| uint8_t first_block[MAX_HASH_BLOCK_SIZE]; |
| OPENSSL_memcpy(first_block, header, 13); |
| OPENSSL_memcpy(first_block + 13, data, md_block_size - 13); |
| md_transform(&md_state, first_block); |
| for (size_t i = 1; i < k / md_block_size; i++) { |
| md_transform(&md_state, data + md_block_size * i - 13); |
| } |
| } |
| |
| uint8_t mac_out[EVP_MAX_MD_SIZE]; |
| OPENSSL_memset(mac_out, 0, sizeof(mac_out)); |
| |
| // We now process the final hash blocks. For each block, we construct |
| // it in constant time. If the |i==index_a| then we'll include the 0x80 |
| // bytes and zero pad etc. For each block we selectively copy it, in |
| // constant time, to |mac_out|. |
| for (size_t i = num_starting_blocks; |
| i <= num_starting_blocks + kVarianceBlocks; i++) { |
| uint8_t block[MAX_HASH_BLOCK_SIZE]; |
| uint8_t is_block_a = constant_time_eq_8(i, index_a); |
| uint8_t is_block_b = constant_time_eq_8(i, index_b); |
| for (size_t j = 0; j < md_block_size; j++) { |
| uint8_t b = 0; |
| if (k < kHeaderLength) { |
| b = header[k]; |
| } else if (k < data_plus_mac_plus_padding_size + kHeaderLength) { |
| b = data[k - kHeaderLength]; |
| } |
| k++; |
| |
| uint8_t is_past_c = is_block_a & constant_time_ge_8(j, c); |
| uint8_t is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1); |
| // If this is the block containing the end of the |
| // application data, and we are at the offset for the |
| // 0x80 value, then overwrite b with 0x80. |
| b = constant_time_select_8(is_past_c, 0x80, b); |
| // If this the the block containing the end of the |
| // application data and we're past the 0x80 value then |
| // just write zero. |
| b = b & ~is_past_cp1; |
| // If this is index_b (the final block), but not |
| // index_a (the end of the data), then the 64-bit |
| // length didn't fit into index_a and we're having to |
| // add an extra block of zeros. |
| b &= ~is_block_b | is_block_a; |
| |
| // The final bytes of one of the blocks contains the |
| // length. |
| if (j >= md_block_size - md_length_size) { |
| // If this is index_b, write a length byte. |
| b = constant_time_select_8( |
| is_block_b, length_bytes[j - (md_block_size - md_length_size)], b); |
| } |
| block[j] = b; |
| } |
| |
| md_transform(&md_state, block); |
| md_final_raw(&md_state, block); |
| // If this is index_b, copy the hash value to |mac_out|. |
| for (size_t j = 0; j < md_size; j++) { |
| mac_out[j] |= block[j] & is_block_b; |
| } |
| } |
| |
| EVP_MD_CTX md_ctx; |
| EVP_MD_CTX_init(&md_ctx); |
| if (!EVP_DigestInit_ex(&md_ctx, md, NULL /* engine */)) { |
| EVP_MD_CTX_cleanup(&md_ctx); |
| return 0; |
| } |
| |
| // Complete the HMAC in the standard manner. |
| for (size_t i = 0; i < md_block_size; i++) { |
| hmac_pad[i] ^= 0x6a; |
| } |
| |
| EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size); |
| EVP_DigestUpdate(&md_ctx, mac_out, md_size); |
| unsigned md_out_size_u; |
| EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u); |
| *md_out_size = md_out_size_u; |
| EVP_MD_CTX_cleanup(&md_ctx); |
| |
| return 1; |
| } |