|  | /* Copyright 2020 The BoringSSL Authors | 
|  | * | 
|  | * Permission to use, copy, modify, and/or distribute this software for any | 
|  | * purpose with or without fee is hereby granted, provided that the above | 
|  | * copyright notice and this permission notice appear in all copies. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
|  | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
|  | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
|  | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
|  | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
|  | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
|  | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
|  |  | 
|  | #include <openssl/hpke.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/aead.h> | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/curve25519.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/ec.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/evp_errors.h> | 
|  | #include <openssl/hkdf.h> | 
|  | #include <openssl/mem.h> | 
|  | #include <openssl/rand.h> | 
|  | #include <openssl/sha.h> | 
|  |  | 
|  | #include "../fipsmodule/ec/internal.h" | 
|  | #include "../internal.h" | 
|  |  | 
|  |  | 
|  | // This file implements RFC 9180. | 
|  |  | 
|  | #define MAX_SEED_LEN X25519_PRIVATE_KEY_LEN | 
|  | #define MAX_SHARED_SECRET_LEN SHA256_DIGEST_LENGTH | 
|  |  | 
|  | struct evp_hpke_kem_st { | 
|  | uint16_t id; | 
|  | size_t public_key_len; | 
|  | size_t private_key_len; | 
|  | size_t seed_len; | 
|  | size_t enc_len; | 
|  | int (*init_key)(EVP_HPKE_KEY *key, const uint8_t *priv_key, | 
|  | size_t priv_key_len); | 
|  | int (*generate_key)(EVP_HPKE_KEY *key); | 
|  | int (*encap_with_seed)(const EVP_HPKE_KEM *kem, uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, uint8_t *out_enc, | 
|  | size_t *out_enc_len, size_t max_enc, | 
|  | const uint8_t *peer_public_key, | 
|  | size_t peer_public_key_len, const uint8_t *seed, | 
|  | size_t seed_len); | 
|  | int (*decap)(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, const uint8_t *enc, | 
|  | size_t enc_len); | 
|  | int (*auth_encap_with_seed)(const EVP_HPKE_KEY *key, | 
|  | uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, uint8_t *out_enc, | 
|  | size_t *out_enc_len, size_t max_enc, | 
|  | const uint8_t *peer_public_key, | 
|  | size_t peer_public_key_len, const uint8_t *seed, | 
|  | size_t seed_len); | 
|  | int (*auth_decap)(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, const uint8_t *enc, | 
|  | size_t enc_len, const uint8_t *peer_public_key, | 
|  | size_t peer_public_key_len); | 
|  | }; | 
|  |  | 
|  | struct evp_hpke_kdf_st { | 
|  | uint16_t id; | 
|  | // We only support HKDF-based KDFs. | 
|  | const EVP_MD *(*hkdf_md_func)(void); | 
|  | }; | 
|  |  | 
|  | struct evp_hpke_aead_st { | 
|  | uint16_t id; | 
|  | const EVP_AEAD *(*aead_func)(void); | 
|  | }; | 
|  |  | 
|  |  | 
|  | // Low-level labeled KDF functions. | 
|  |  | 
|  | static const char kHpkeVersionId[] = "HPKE-v1"; | 
|  |  | 
|  | static int add_label_string(CBB *cbb, const char *label) { | 
|  | return CBB_add_bytes(cbb, (const uint8_t *)label, strlen(label)); | 
|  | } | 
|  |  | 
|  | static int hpke_labeled_extract(const EVP_MD *hkdf_md, uint8_t *out_key, | 
|  | size_t *out_len, const uint8_t *salt, | 
|  | size_t salt_len, const uint8_t *suite_id, | 
|  | size_t suite_id_len, const char *label, | 
|  | const uint8_t *ikm, size_t ikm_len) { | 
|  | // labeledIKM = concat("HPKE-v1", suite_id, label, IKM) | 
|  | CBB labeled_ikm; | 
|  | int ok = CBB_init(&labeled_ikm, 0) && | 
|  | add_label_string(&labeled_ikm, kHpkeVersionId) && | 
|  | CBB_add_bytes(&labeled_ikm, suite_id, suite_id_len) && | 
|  | add_label_string(&labeled_ikm, label) && | 
|  | CBB_add_bytes(&labeled_ikm, ikm, ikm_len) && | 
|  | HKDF_extract(out_key, out_len, hkdf_md, CBB_data(&labeled_ikm), | 
|  | CBB_len(&labeled_ikm), salt, salt_len); | 
|  | CBB_cleanup(&labeled_ikm); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | static int hpke_labeled_expand(const EVP_MD *hkdf_md, uint8_t *out_key, | 
|  | size_t out_len, const uint8_t *prk, | 
|  | size_t prk_len, const uint8_t *suite_id, | 
|  | size_t suite_id_len, const char *label, | 
|  | const uint8_t *info, size_t info_len) { | 
|  | // labeledInfo = concat(I2OSP(L, 2), "HPKE-v1", suite_id, label, info) | 
|  | CBB labeled_info; | 
|  | int ok = CBB_init(&labeled_info, 0) &&  // | 
|  | CBB_add_u16(&labeled_info, out_len) && | 
|  | add_label_string(&labeled_info, kHpkeVersionId) && | 
|  | CBB_add_bytes(&labeled_info, suite_id, suite_id_len) && | 
|  | add_label_string(&labeled_info, label) && | 
|  | CBB_add_bytes(&labeled_info, info, info_len) && | 
|  | HKDF_expand(out_key, out_len, hkdf_md, prk, prk_len, | 
|  | CBB_data(&labeled_info), CBB_len(&labeled_info)); | 
|  | CBB_cleanup(&labeled_info); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  |  | 
|  | // KEM implementations. | 
|  |  | 
|  | // dhkem_extract_and_expand implements the ExtractAndExpand operation in the | 
|  | // DHKEM construction. See section 4.1 of RFC 9180. | 
|  | static int dhkem_extract_and_expand(uint16_t kem_id, const EVP_MD *hkdf_md, | 
|  | uint8_t *out_key, size_t out_len, | 
|  | const uint8_t *dh, size_t dh_len, | 
|  | const uint8_t *kem_context, | 
|  | size_t kem_context_len) { | 
|  | // concat("KEM", I2OSP(kem_id, 2)) | 
|  | uint8_t suite_id[5] = {'K', 'E', 'M', static_cast<uint8_t>(kem_id >> 8), | 
|  | static_cast<uint8_t>(kem_id & 0xff)}; | 
|  | uint8_t prk[EVP_MAX_MD_SIZE]; | 
|  | size_t prk_len; | 
|  | return hpke_labeled_extract(hkdf_md, prk, &prk_len, NULL, 0, suite_id, | 
|  | sizeof(suite_id), "eae_prk", dh, dh_len) && | 
|  | hpke_labeled_expand(hkdf_md, out_key, out_len, prk, prk_len, suite_id, | 
|  | sizeof(suite_id), "shared_secret", kem_context, | 
|  | kem_context_len); | 
|  | } | 
|  |  | 
|  | static int x25519_init_key(EVP_HPKE_KEY *key, const uint8_t *priv_key, | 
|  | size_t priv_key_len) { | 
|  | if (priv_key_len != X25519_PRIVATE_KEY_LEN) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | OPENSSL_memcpy(key->private_key, priv_key, priv_key_len); | 
|  | X25519_public_from_private(key->public_key, priv_key); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int x25519_generate_key(EVP_HPKE_KEY *key) { | 
|  | X25519_keypair(key->public_key, key->private_key); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int x25519_encap_with_seed( | 
|  | const EVP_HPKE_KEM *kem, uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, uint8_t *out_enc, size_t *out_enc_len, | 
|  | size_t max_enc, const uint8_t *peer_public_key, size_t peer_public_key_len, | 
|  | const uint8_t *seed, size_t seed_len) { | 
|  | if (max_enc < X25519_PUBLIC_VALUE_LEN) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); | 
|  | return 0; | 
|  | } | 
|  | if (seed_len != X25519_PRIVATE_KEY_LEN) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | X25519_public_from_private(out_enc, seed); | 
|  |  | 
|  | uint8_t dh[X25519_SHARED_KEY_LEN]; | 
|  | if (peer_public_key_len != X25519_PUBLIC_VALUE_LEN || | 
|  | !X25519(dh, seed, peer_public_key)) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t kem_context[2 * X25519_PUBLIC_VALUE_LEN]; | 
|  | OPENSSL_memcpy(kem_context, out_enc, X25519_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, peer_public_key, | 
|  | X25519_PUBLIC_VALUE_LEN); | 
|  | if (!dhkem_extract_and_expand(kem->id, EVP_sha256(), out_shared_secret, | 
|  | SHA256_DIGEST_LENGTH, dh, sizeof(dh), | 
|  | kem_context, sizeof(kem_context))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_enc_len = X25519_PUBLIC_VALUE_LEN; | 
|  | *out_shared_secret_len = SHA256_DIGEST_LENGTH; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int x25519_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, const uint8_t *enc, | 
|  | size_t enc_len) { | 
|  | uint8_t dh[X25519_SHARED_KEY_LEN]; | 
|  | if (enc_len != X25519_PUBLIC_VALUE_LEN || | 
|  | !X25519(dh, key->private_key, enc)) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t kem_context[2 * X25519_PUBLIC_VALUE_LEN]; | 
|  | OPENSSL_memcpy(kem_context, enc, X25519_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, key->public_key, | 
|  | X25519_PUBLIC_VALUE_LEN); | 
|  | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, | 
|  | SHA256_DIGEST_LENGTH, dh, sizeof(dh), | 
|  | kem_context, sizeof(kem_context))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_shared_secret_len = SHA256_DIGEST_LENGTH; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int x25519_auth_encap_with_seed( | 
|  | const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, uint8_t *out_enc, size_t *out_enc_len, | 
|  | size_t max_enc, const uint8_t *peer_public_key, size_t peer_public_key_len, | 
|  | const uint8_t *seed, size_t seed_len) { | 
|  | if (max_enc < X25519_PUBLIC_VALUE_LEN) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); | 
|  | return 0; | 
|  | } | 
|  | if (seed_len != X25519_PRIVATE_KEY_LEN) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | X25519_public_from_private(out_enc, seed); | 
|  |  | 
|  | uint8_t dh[2 * X25519_SHARED_KEY_LEN]; | 
|  | if (peer_public_key_len != X25519_PUBLIC_VALUE_LEN || | 
|  | !X25519(dh, seed, peer_public_key) || | 
|  | !X25519(dh + X25519_SHARED_KEY_LEN, key->private_key, peer_public_key)) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t kem_context[3 * X25519_PUBLIC_VALUE_LEN]; | 
|  | OPENSSL_memcpy(kem_context, out_enc, X25519_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, peer_public_key, | 
|  | X25519_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + 2 * X25519_PUBLIC_VALUE_LEN, key->public_key, | 
|  | X25519_PUBLIC_VALUE_LEN); | 
|  | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, | 
|  | SHA256_DIGEST_LENGTH, dh, sizeof(dh), | 
|  | kem_context, sizeof(kem_context))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_enc_len = X25519_PUBLIC_VALUE_LEN; | 
|  | *out_shared_secret_len = SHA256_DIGEST_LENGTH; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int x25519_auth_decap(const EVP_HPKE_KEY *key, | 
|  | uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, const uint8_t *enc, | 
|  | size_t enc_len, const uint8_t *peer_public_key, | 
|  | size_t peer_public_key_len) { | 
|  | uint8_t dh[2 * X25519_SHARED_KEY_LEN]; | 
|  | if (enc_len != X25519_PUBLIC_VALUE_LEN || | 
|  | peer_public_key_len != X25519_PUBLIC_VALUE_LEN || | 
|  | !X25519(dh, key->private_key, enc) || | 
|  | !X25519(dh + X25519_SHARED_KEY_LEN, key->private_key, peer_public_key)) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t kem_context[3 * X25519_PUBLIC_VALUE_LEN]; | 
|  | OPENSSL_memcpy(kem_context, enc, X25519_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, key->public_key, | 
|  | X25519_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + 2 * X25519_PUBLIC_VALUE_LEN, peer_public_key, | 
|  | X25519_PUBLIC_VALUE_LEN); | 
|  | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, | 
|  | SHA256_DIGEST_LENGTH, dh, sizeof(dh), | 
|  | kem_context, sizeof(kem_context))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_shared_secret_len = SHA256_DIGEST_LENGTH; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const EVP_HPKE_KEM *EVP_hpke_x25519_hkdf_sha256(void) { | 
|  | static const EVP_HPKE_KEM kKEM = { | 
|  | /*id=*/EVP_HPKE_DHKEM_X25519_HKDF_SHA256, | 
|  | /*public_key_len=*/X25519_PUBLIC_VALUE_LEN, | 
|  | /*private_key_len=*/X25519_PRIVATE_KEY_LEN, | 
|  | /*seed_len=*/X25519_PRIVATE_KEY_LEN, | 
|  | /*enc_len=*/X25519_PUBLIC_VALUE_LEN, | 
|  | x25519_init_key, | 
|  | x25519_generate_key, | 
|  | x25519_encap_with_seed, | 
|  | x25519_decap, | 
|  | x25519_auth_encap_with_seed, | 
|  | x25519_auth_decap, | 
|  | }; | 
|  | return &kKEM; | 
|  | } | 
|  |  | 
|  | #define P256_PRIVATE_KEY_LEN 32 | 
|  | #define P256_PUBLIC_KEY_LEN 65 | 
|  | #define P256_PUBLIC_VALUE_LEN 65 | 
|  | #define P256_SEED_LEN 32 | 
|  | #define P256_SHARED_KEY_LEN 32 | 
|  |  | 
|  | static int p256_public_from_private(uint8_t out_pub[P256_PUBLIC_VALUE_LEN], | 
|  | const uint8_t priv[P256_PRIVATE_KEY_LEN]) { | 
|  | const EC_GROUP *const group = EC_group_p256(); | 
|  | const uint8_t kAllZeros[P256_PRIVATE_KEY_LEN] = {0}; | 
|  | EC_SCALAR private_scalar; | 
|  | EC_JACOBIAN public_point; | 
|  | EC_AFFINE public_point_affine; | 
|  |  | 
|  | if (CRYPTO_memcmp(kAllZeros, priv, sizeof(kAllZeros)) == 0) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!ec_scalar_from_bytes(group, &private_scalar, priv, | 
|  | P256_PRIVATE_KEY_LEN) || | 
|  | !ec_point_mul_scalar_base(group, &public_point, &private_scalar) || | 
|  | !ec_jacobian_to_affine(group, &public_point_affine, &public_point)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t out_len_x, out_len_y; | 
|  | out_pub[0] = POINT_CONVERSION_UNCOMPRESSED; | 
|  | ec_felem_to_bytes(group, &out_pub[1], &out_len_x, &public_point_affine.X); | 
|  | ec_felem_to_bytes(group, &out_pub[33], &out_len_y, &public_point_affine.Y); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int p256_init_key(EVP_HPKE_KEY *key, const uint8_t *priv_key, | 
|  | size_t priv_key_len) { | 
|  | if (priv_key_len != P256_PRIVATE_KEY_LEN) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!p256_public_from_private(key->public_key, priv_key)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | OPENSSL_memcpy(key->private_key, priv_key, priv_key_len); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int p256_private_key_from_seed(uint8_t out_priv[P256_PRIVATE_KEY_LEN], | 
|  | const uint8_t seed[P256_SEED_LEN]) { | 
|  | // https://www.rfc-editor.org/rfc/rfc9180.html#name-derivekeypair | 
|  | const uint8_t suite_id[5] = {'K', 'E', 'M', | 
|  | EVP_HPKE_DHKEM_P256_HKDF_SHA256 >> 8, | 
|  | EVP_HPKE_DHKEM_P256_HKDF_SHA256 & 0xff}; | 
|  |  | 
|  | uint8_t dkp_prk[32]; | 
|  | size_t dkp_prk_len; | 
|  | if (!hpke_labeled_extract(EVP_sha256(), dkp_prk, &dkp_prk_len, NULL, 0, | 
|  | suite_id, sizeof(suite_id), "dkp_prk", seed, | 
|  | P256_SEED_LEN)) { | 
|  | return 0; | 
|  | } | 
|  | assert(dkp_prk_len == sizeof(dkp_prk)); | 
|  |  | 
|  | const EC_GROUP *const group = EC_group_p256(); | 
|  | EC_SCALAR private_scalar; | 
|  |  | 
|  | for (unsigned counter = 0; counter < 256; counter++) { | 
|  | const uint8_t counter_byte = counter & 0xff; | 
|  | if (!hpke_labeled_expand(EVP_sha256(), out_priv, P256_PRIVATE_KEY_LEN, | 
|  | dkp_prk, sizeof(dkp_prk), suite_id, | 
|  | sizeof(suite_id), "candidate", &counter_byte, | 
|  | sizeof(counter_byte))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // This checks that the scalar is less than the order. | 
|  | if (ec_scalar_from_bytes(group, &private_scalar, out_priv, | 
|  | P256_PRIVATE_KEY_LEN)) { | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This happens with probability of 2^-(32*256). | 
|  | OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int p256_generate_key(EVP_HPKE_KEY *key) { | 
|  | uint8_t seed[P256_SEED_LEN]; | 
|  | RAND_bytes(seed, sizeof(seed)); | 
|  | if (!p256_private_key_from_seed(key->private_key, seed) || | 
|  | !p256_public_from_private(key->public_key, key->private_key)) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int p256(uint8_t out_dh[P256_SHARED_KEY_LEN], | 
|  | const uint8_t my_private[P256_PRIVATE_KEY_LEN], | 
|  | const uint8_t their_public[P256_PUBLIC_VALUE_LEN]) { | 
|  | const EC_GROUP *const group = EC_group_p256(); | 
|  | EC_SCALAR private_scalar; | 
|  | EC_FELEM x, y; | 
|  | EC_JACOBIAN shared_point, their_point; | 
|  | EC_AFFINE their_point_affine, shared_point_affine; | 
|  |  | 
|  | if (their_public[0] != POINT_CONVERSION_UNCOMPRESSED || | 
|  | !ec_felem_from_bytes(group, &x, &their_public[1], 32) || | 
|  | !ec_felem_from_bytes(group, &y, &their_public[33], 32) || | 
|  | !ec_point_set_affine_coordinates(group, &their_point_affine, &x, &y) || | 
|  | !ec_scalar_from_bytes(group, &private_scalar, my_private, | 
|  | P256_PRIVATE_KEY_LEN)) { | 
|  | OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ec_affine_to_jacobian(group, &their_point, &their_point_affine); | 
|  | if (!ec_point_mul_scalar(group, &shared_point, &their_point, | 
|  | &private_scalar) || | 
|  | !ec_jacobian_to_affine(group, &shared_point_affine, &shared_point)) { | 
|  | OPENSSL_PUT_ERROR(EVP, ERR_R_INTERNAL_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | size_t out_len; | 
|  | ec_felem_to_bytes(group, out_dh, &out_len, &shared_point_affine.X); | 
|  | assert(out_len == P256_SHARED_KEY_LEN); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int p256_encap_with_seed(const EVP_HPKE_KEM *kem, | 
|  | uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, uint8_t *out_enc, | 
|  | size_t *out_enc_len, size_t max_enc, | 
|  | const uint8_t *peer_public_key, | 
|  | size_t peer_public_key_len, const uint8_t *seed, | 
|  | size_t seed_len) { | 
|  | if (max_enc < P256_PUBLIC_VALUE_LEN) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); | 
|  | return 0; | 
|  | } | 
|  | if (seed_len != P256_SEED_LEN) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | uint8_t private_key[P256_PRIVATE_KEY_LEN]; | 
|  | if (!p256_private_key_from_seed(private_key, seed)) { | 
|  | return 0; | 
|  | } | 
|  | p256_public_from_private(out_enc, private_key); | 
|  |  | 
|  | uint8_t dh[P256_SHARED_KEY_LEN]; | 
|  | if (peer_public_key_len != P256_PUBLIC_VALUE_LEN || | 
|  | !p256(dh, private_key, peer_public_key)) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t kem_context[2 * P256_PUBLIC_VALUE_LEN]; | 
|  | OPENSSL_memcpy(kem_context, out_enc, P256_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, peer_public_key, | 
|  | P256_PUBLIC_VALUE_LEN); | 
|  | if (!dhkem_extract_and_expand(kem->id, EVP_sha256(), out_shared_secret, | 
|  | SHA256_DIGEST_LENGTH, dh, sizeof(dh), | 
|  | kem_context, sizeof(kem_context))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_enc_len = P256_PUBLIC_VALUE_LEN; | 
|  | *out_shared_secret_len = SHA256_DIGEST_LENGTH; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int p256_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, const uint8_t *enc, | 
|  | size_t enc_len) { | 
|  | uint8_t dh[P256_SHARED_KEY_LEN]; | 
|  | if (enc_len != P256_PUBLIC_VALUE_LEN ||  // | 
|  | !p256(dh, key->private_key, enc)) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t kem_context[2 * P256_PUBLIC_VALUE_LEN]; | 
|  | OPENSSL_memcpy(kem_context, enc, P256_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, key->public_key, | 
|  | P256_PUBLIC_VALUE_LEN); | 
|  | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, | 
|  | SHA256_DIGEST_LENGTH, dh, sizeof(dh), | 
|  | kem_context, sizeof(kem_context))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_shared_secret_len = SHA256_DIGEST_LENGTH; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int p256_auth_encap_with_seed( | 
|  | const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, uint8_t *out_enc, size_t *out_enc_len, | 
|  | size_t max_enc, const uint8_t *peer_public_key, size_t peer_public_key_len, | 
|  | const uint8_t *seed, size_t seed_len) { | 
|  | if (max_enc < P256_PUBLIC_VALUE_LEN) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); | 
|  | return 0; | 
|  | } | 
|  | if (seed_len != P256_SEED_LEN) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
|  | return 0; | 
|  | } | 
|  | uint8_t private_key[P256_PRIVATE_KEY_LEN]; | 
|  | if (!p256_private_key_from_seed(private_key, seed)) { | 
|  | return 0; | 
|  | } | 
|  | p256_public_from_private(out_enc, private_key); | 
|  |  | 
|  | uint8_t dh[2 * P256_SHARED_KEY_LEN]; | 
|  | if (peer_public_key_len != P256_PUBLIC_VALUE_LEN || | 
|  | !p256(dh, private_key, peer_public_key) || | 
|  | !p256(dh + P256_SHARED_KEY_LEN, key->private_key, peer_public_key)) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t kem_context[3 * P256_PUBLIC_VALUE_LEN]; | 
|  | OPENSSL_memcpy(kem_context, out_enc, P256_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, peer_public_key, | 
|  | P256_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + 2 * P256_PUBLIC_VALUE_LEN, key->public_key, | 
|  | P256_PUBLIC_VALUE_LEN); | 
|  | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, | 
|  | SHA256_DIGEST_LENGTH, dh, sizeof(dh), | 
|  | kem_context, sizeof(kem_context))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_enc_len = P256_PUBLIC_VALUE_LEN; | 
|  | *out_shared_secret_len = SHA256_DIGEST_LENGTH; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int p256_auth_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret, | 
|  | size_t *out_shared_secret_len, const uint8_t *enc, | 
|  | size_t enc_len, const uint8_t *peer_public_key, | 
|  | size_t peer_public_key_len) { | 
|  | uint8_t dh[2 * P256_SHARED_KEY_LEN]; | 
|  | if (enc_len != P256_PUBLIC_VALUE_LEN || | 
|  | peer_public_key_len != P256_PUBLIC_VALUE_LEN || | 
|  | !p256(dh, key->private_key, enc) || | 
|  | !p256(dh + P256_SHARED_KEY_LEN, key->private_key, peer_public_key)) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t kem_context[3 * P256_PUBLIC_VALUE_LEN]; | 
|  | OPENSSL_memcpy(kem_context, enc, P256_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + P256_PUBLIC_VALUE_LEN, key->public_key, | 
|  | P256_PUBLIC_VALUE_LEN); | 
|  | OPENSSL_memcpy(kem_context + 2 * P256_PUBLIC_VALUE_LEN, peer_public_key, | 
|  | P256_PUBLIC_VALUE_LEN); | 
|  | if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret, | 
|  | SHA256_DIGEST_LENGTH, dh, sizeof(dh), | 
|  | kem_context, sizeof(kem_context))) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | *out_shared_secret_len = SHA256_DIGEST_LENGTH; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const EVP_HPKE_KEM *EVP_hpke_p256_hkdf_sha256(void) { | 
|  | static const EVP_HPKE_KEM kKEM = { | 
|  | /*id=*/EVP_HPKE_DHKEM_P256_HKDF_SHA256, | 
|  | /*public_key_len=*/P256_PUBLIC_KEY_LEN, | 
|  | /*private_key_len=*/P256_PRIVATE_KEY_LEN, | 
|  | /*seed_len=*/P256_SEED_LEN, | 
|  | /*enc_len=*/P256_PUBLIC_VALUE_LEN, | 
|  | p256_init_key, | 
|  | p256_generate_key, | 
|  | p256_encap_with_seed, | 
|  | p256_decap, | 
|  | p256_auth_encap_with_seed, | 
|  | p256_auth_decap, | 
|  | }; | 
|  | return &kKEM; | 
|  | } | 
|  |  | 
|  | uint16_t EVP_HPKE_KEM_id(const EVP_HPKE_KEM *kem) { return kem->id; } | 
|  |  | 
|  | size_t EVP_HPKE_KEM_public_key_len(const EVP_HPKE_KEM *kem) { | 
|  | return kem->public_key_len; | 
|  | } | 
|  |  | 
|  | size_t EVP_HPKE_KEM_private_key_len(const EVP_HPKE_KEM *kem) { | 
|  | return kem->private_key_len; | 
|  | } | 
|  |  | 
|  | size_t EVP_HPKE_KEM_enc_len(const EVP_HPKE_KEM *kem) { return kem->enc_len; } | 
|  |  | 
|  | void EVP_HPKE_KEY_zero(EVP_HPKE_KEY *key) { | 
|  | OPENSSL_memset(key, 0, sizeof(EVP_HPKE_KEY)); | 
|  | } | 
|  |  | 
|  | void EVP_HPKE_KEY_cleanup(EVP_HPKE_KEY *key) { | 
|  | // Nothing to clean up for now, but we may introduce a cleanup process in the | 
|  | // future. | 
|  | } | 
|  |  | 
|  | EVP_HPKE_KEY *EVP_HPKE_KEY_new(void) { | 
|  | EVP_HPKE_KEY *key = | 
|  | reinterpret_cast<EVP_HPKE_KEY *>(OPENSSL_malloc(sizeof(EVP_HPKE_KEY))); | 
|  | if (key == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | EVP_HPKE_KEY_zero(key); | 
|  | return key; | 
|  | } | 
|  |  | 
|  | void EVP_HPKE_KEY_free(EVP_HPKE_KEY *key) { | 
|  | if (key != NULL) { | 
|  | EVP_HPKE_KEY_cleanup(key); | 
|  | OPENSSL_free(key); | 
|  | } | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_KEY_copy(EVP_HPKE_KEY *dst, const EVP_HPKE_KEY *src) { | 
|  | // For now, |EVP_HPKE_KEY| is trivially copyable. | 
|  | OPENSSL_memcpy(dst, src, sizeof(EVP_HPKE_KEY)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void EVP_HPKE_KEY_move(EVP_HPKE_KEY *out, EVP_HPKE_KEY *in) { | 
|  | EVP_HPKE_KEY_cleanup(out); | 
|  | // For now, |EVP_HPKE_KEY| is trivially movable. | 
|  | // Note that Rust may move this structure. See | 
|  | // bssl-crypto/src/scoped.rs:EvpHpkeKey. | 
|  | OPENSSL_memcpy(out, in, sizeof(EVP_HPKE_KEY)); | 
|  | EVP_HPKE_KEY_zero(in); | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_KEY_init(EVP_HPKE_KEY *key, const EVP_HPKE_KEM *kem, | 
|  | const uint8_t *priv_key, size_t priv_key_len) { | 
|  | EVP_HPKE_KEY_zero(key); | 
|  | key->kem = kem; | 
|  | if (!kem->init_key(key, priv_key, priv_key_len)) { | 
|  | key->kem = NULL; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_KEY_generate(EVP_HPKE_KEY *key, const EVP_HPKE_KEM *kem) { | 
|  | EVP_HPKE_KEY_zero(key); | 
|  | key->kem = kem; | 
|  | if (!kem->generate_key(key)) { | 
|  | key->kem = NULL; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const EVP_HPKE_KEM *EVP_HPKE_KEY_kem(const EVP_HPKE_KEY *key) { | 
|  | return key->kem; | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_KEY_public_key(const EVP_HPKE_KEY *key, uint8_t *out, | 
|  | size_t *out_len, size_t max_out) { | 
|  | if (max_out < key->kem->public_key_len) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memcpy(out, key->public_key, key->kem->public_key_len); | 
|  | *out_len = key->kem->public_key_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_KEY_private_key(const EVP_HPKE_KEY *key, uint8_t *out, | 
|  | size_t *out_len, size_t max_out) { | 
|  | if (max_out < key->kem->private_key_len) { | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE); | 
|  | return 0; | 
|  | } | 
|  | OPENSSL_memcpy(out, key->private_key, key->kem->private_key_len); | 
|  | *out_len = key->kem->private_key_len; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Supported KDFs and AEADs. | 
|  |  | 
|  | const EVP_HPKE_KDF *EVP_hpke_hkdf_sha256(void) { | 
|  | static const EVP_HPKE_KDF kKDF = {EVP_HPKE_HKDF_SHA256, &EVP_sha256}; | 
|  | return &kKDF; | 
|  | } | 
|  |  | 
|  | uint16_t EVP_HPKE_KDF_id(const EVP_HPKE_KDF *kdf) { return kdf->id; } | 
|  |  | 
|  | const EVP_MD *EVP_HPKE_KDF_hkdf_md(const EVP_HPKE_KDF *kdf) { | 
|  | return kdf->hkdf_md_func(); | 
|  | } | 
|  |  | 
|  | const EVP_HPKE_AEAD *EVP_hpke_aes_128_gcm(void) { | 
|  | static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_AES_128_GCM, | 
|  | &EVP_aead_aes_128_gcm}; | 
|  | return &kAEAD; | 
|  | } | 
|  |  | 
|  | const EVP_HPKE_AEAD *EVP_hpke_aes_256_gcm(void) { | 
|  | static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_AES_256_GCM, | 
|  | &EVP_aead_aes_256_gcm}; | 
|  | return &kAEAD; | 
|  | } | 
|  |  | 
|  | const EVP_HPKE_AEAD *EVP_hpke_chacha20_poly1305(void) { | 
|  | static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_CHACHA20_POLY1305, | 
|  | &EVP_aead_chacha20_poly1305}; | 
|  | return &kAEAD; | 
|  | } | 
|  |  | 
|  | uint16_t EVP_HPKE_AEAD_id(const EVP_HPKE_AEAD *aead) { return aead->id; } | 
|  |  | 
|  | const EVP_AEAD *EVP_HPKE_AEAD_aead(const EVP_HPKE_AEAD *aead) { | 
|  | return aead->aead_func(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // HPKE implementation. | 
|  |  | 
|  | // This is strlen("HPKE") + 3 * sizeof(uint16_t). | 
|  | #define HPKE_SUITE_ID_LEN 10 | 
|  |  | 
|  | // The suite_id for non-KEM pieces of HPKE is defined as concat("HPKE", | 
|  | // I2OSP(kem_id, 2), I2OSP(kdf_id, 2), I2OSP(aead_id, 2)). | 
|  | static int hpke_build_suite_id(const EVP_HPKE_CTX *ctx, | 
|  | uint8_t out[HPKE_SUITE_ID_LEN]) { | 
|  | CBB cbb; | 
|  | CBB_init_fixed(&cbb, out, HPKE_SUITE_ID_LEN); | 
|  | return add_label_string(&cbb, "HPKE") &&   // | 
|  | CBB_add_u16(&cbb, ctx->kem->id) &&  // | 
|  | CBB_add_u16(&cbb, ctx->kdf->id) &&  // | 
|  | CBB_add_u16(&cbb, ctx->aead->id); | 
|  | } | 
|  |  | 
|  | #define HPKE_MODE_BASE 0 | 
|  | #define HPKE_MODE_AUTH 2 | 
|  |  | 
|  | static int hpke_key_schedule(EVP_HPKE_CTX *ctx, uint8_t mode, | 
|  | const uint8_t *shared_secret, | 
|  | size_t shared_secret_len, const uint8_t *info, | 
|  | size_t info_len) { | 
|  | uint8_t suite_id[HPKE_SUITE_ID_LEN]; | 
|  | if (!hpke_build_suite_id(ctx, suite_id)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // psk_id_hash = LabeledExtract("", "psk_id_hash", psk_id) | 
|  | // TODO(davidben): Precompute this value and store it with the EVP_HPKE_KDF. | 
|  | const EVP_MD *hkdf_md = ctx->kdf->hkdf_md_func(); | 
|  | uint8_t psk_id_hash[EVP_MAX_MD_SIZE]; | 
|  | size_t psk_id_hash_len; | 
|  | if (!hpke_labeled_extract(hkdf_md, psk_id_hash, &psk_id_hash_len, NULL, 0, | 
|  | suite_id, sizeof(suite_id), "psk_id_hash", NULL, | 
|  | 0)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // info_hash = LabeledExtract("", "info_hash", info) | 
|  | uint8_t info_hash[EVP_MAX_MD_SIZE]; | 
|  | size_t info_hash_len; | 
|  | if (!hpke_labeled_extract(hkdf_md, info_hash, &info_hash_len, NULL, 0, | 
|  | suite_id, sizeof(suite_id), "info_hash", info, | 
|  | info_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // key_schedule_context = concat(mode, psk_id_hash, info_hash) | 
|  | uint8_t context[sizeof(uint8_t) + 2 * EVP_MAX_MD_SIZE]; | 
|  | size_t context_len; | 
|  | CBB context_cbb; | 
|  | CBB_init_fixed(&context_cbb, context, sizeof(context)); | 
|  | if (!CBB_add_u8(&context_cbb, mode) || | 
|  | !CBB_add_bytes(&context_cbb, psk_id_hash, psk_id_hash_len) || | 
|  | !CBB_add_bytes(&context_cbb, info_hash, info_hash_len) || | 
|  | !CBB_finish(&context_cbb, NULL, &context_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // secret = LabeledExtract(shared_secret, "secret", psk) | 
|  | uint8_t secret[EVP_MAX_MD_SIZE]; | 
|  | size_t secret_len; | 
|  | if (!hpke_labeled_extract(hkdf_md, secret, &secret_len, shared_secret, | 
|  | shared_secret_len, suite_id, sizeof(suite_id), | 
|  | "secret", NULL, 0)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // key = LabeledExpand(secret, "key", key_schedule_context, Nk) | 
|  | const EVP_AEAD *aead = EVP_HPKE_AEAD_aead(ctx->aead); | 
|  | uint8_t key[EVP_AEAD_MAX_KEY_LENGTH]; | 
|  | const size_t kKeyLen = EVP_AEAD_key_length(aead); | 
|  | if (!hpke_labeled_expand(hkdf_md, key, kKeyLen, secret, secret_len, suite_id, | 
|  | sizeof(suite_id), "key", context, context_len) || | 
|  | !EVP_AEAD_CTX_init(&ctx->aead_ctx, aead, key, kKeyLen, | 
|  | EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // base_nonce = LabeledExpand(secret, "base_nonce", key_schedule_context, Nn) | 
|  | if (!hpke_labeled_expand(hkdf_md, ctx->base_nonce, | 
|  | EVP_AEAD_nonce_length(aead), secret, secret_len, | 
|  | suite_id, sizeof(suite_id), "base_nonce", context, | 
|  | context_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // exporter_secret = LabeledExpand(secret, "exp", key_schedule_context, Nh) | 
|  | if (!hpke_labeled_expand(hkdf_md, ctx->exporter_secret, EVP_MD_size(hkdf_md), | 
|  | secret, secret_len, suite_id, sizeof(suite_id), | 
|  | "exp", context, context_len)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void EVP_HPKE_CTX_zero(EVP_HPKE_CTX *ctx) { | 
|  | OPENSSL_memset(ctx, 0, sizeof(EVP_HPKE_CTX)); | 
|  | EVP_AEAD_CTX_zero(&ctx->aead_ctx); | 
|  | } | 
|  |  | 
|  | void EVP_HPKE_CTX_cleanup(EVP_HPKE_CTX *ctx) { | 
|  | EVP_AEAD_CTX_cleanup(&ctx->aead_ctx); | 
|  | } | 
|  |  | 
|  | EVP_HPKE_CTX *EVP_HPKE_CTX_new(void) { | 
|  | EVP_HPKE_CTX *ctx = | 
|  | reinterpret_cast<EVP_HPKE_CTX *>(OPENSSL_malloc(sizeof(EVP_HPKE_CTX))); | 
|  | if (ctx == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | EVP_HPKE_CTX_zero(ctx); | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | void EVP_HPKE_CTX_free(EVP_HPKE_CTX *ctx) { | 
|  | if (ctx != NULL) { | 
|  | EVP_HPKE_CTX_cleanup(ctx); | 
|  | OPENSSL_free(ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_CTX_setup_sender(EVP_HPKE_CTX *ctx, uint8_t *out_enc, | 
|  | size_t *out_enc_len, size_t max_enc, | 
|  | const EVP_HPKE_KEM *kem, const EVP_HPKE_KDF *kdf, | 
|  | const EVP_HPKE_AEAD *aead, | 
|  | const uint8_t *peer_public_key, | 
|  | size_t peer_public_key_len, const uint8_t *info, | 
|  | size_t info_len) { | 
|  | uint8_t seed[MAX_SEED_LEN]; | 
|  | RAND_bytes(seed, kem->seed_len); | 
|  | return EVP_HPKE_CTX_setup_sender_with_seed_for_testing( | 
|  | ctx, out_enc, out_enc_len, max_enc, kem, kdf, aead, peer_public_key, | 
|  | peer_public_key_len, info, info_len, seed, kem->seed_len); | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_CTX_setup_sender_with_seed_for_testing( | 
|  | EVP_HPKE_CTX *ctx, uint8_t *out_enc, size_t *out_enc_len, size_t max_enc, | 
|  | const EVP_HPKE_KEM *kem, const EVP_HPKE_KDF *kdf, const EVP_HPKE_AEAD *aead, | 
|  | const uint8_t *peer_public_key, size_t peer_public_key_len, | 
|  | const uint8_t *info, size_t info_len, const uint8_t *seed, | 
|  | size_t seed_len) { | 
|  | EVP_HPKE_CTX_zero(ctx); | 
|  | ctx->is_sender = 1; | 
|  | ctx->kem = kem; | 
|  | ctx->kdf = kdf; | 
|  | ctx->aead = aead; | 
|  | uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; | 
|  | size_t shared_secret_len; | 
|  | if (!kem->encap_with_seed(kem, shared_secret, &shared_secret_len, out_enc, | 
|  | out_enc_len, max_enc, peer_public_key, | 
|  | peer_public_key_len, seed, seed_len) || | 
|  | !hpke_key_schedule(ctx, HPKE_MODE_BASE, shared_secret, shared_secret_len, | 
|  | info, info_len)) { | 
|  | EVP_HPKE_CTX_cleanup(ctx); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_CTX_setup_recipient(EVP_HPKE_CTX *ctx, const EVP_HPKE_KEY *key, | 
|  | const EVP_HPKE_KDF *kdf, | 
|  | const EVP_HPKE_AEAD *aead, const uint8_t *enc, | 
|  | size_t enc_len, const uint8_t *info, | 
|  | size_t info_len) { | 
|  | EVP_HPKE_CTX_zero(ctx); | 
|  | ctx->is_sender = 0; | 
|  | ctx->kem = key->kem; | 
|  | ctx->kdf = kdf; | 
|  | ctx->aead = aead; | 
|  | uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; | 
|  | size_t shared_secret_len; | 
|  | if (!key->kem->decap(key, shared_secret, &shared_secret_len, enc, enc_len) || | 
|  | !hpke_key_schedule(ctx, HPKE_MODE_BASE, shared_secret, shared_secret_len, | 
|  | info, info_len)) { | 
|  | EVP_HPKE_CTX_cleanup(ctx); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | int EVP_HPKE_CTX_setup_auth_sender( | 
|  | EVP_HPKE_CTX *ctx, uint8_t *out_enc, size_t *out_enc_len, size_t max_enc, | 
|  | const EVP_HPKE_KEY *key, const EVP_HPKE_KDF *kdf, const EVP_HPKE_AEAD *aead, | 
|  | const uint8_t *peer_public_key, size_t peer_public_key_len, | 
|  | const uint8_t *info, size_t info_len) { | 
|  | uint8_t seed[MAX_SEED_LEN]; | 
|  | RAND_bytes(seed, key->kem->seed_len); | 
|  | return EVP_HPKE_CTX_setup_auth_sender_with_seed_for_testing( | 
|  | ctx, out_enc, out_enc_len, max_enc, key, kdf, aead, peer_public_key, | 
|  | peer_public_key_len, info, info_len, seed, key->kem->seed_len); | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_CTX_setup_auth_sender_with_seed_for_testing( | 
|  | EVP_HPKE_CTX *ctx, uint8_t *out_enc, size_t *out_enc_len, size_t max_enc, | 
|  | const EVP_HPKE_KEY *key, const EVP_HPKE_KDF *kdf, const EVP_HPKE_AEAD *aead, | 
|  | const uint8_t *peer_public_key, size_t peer_public_key_len, | 
|  | const uint8_t *info, size_t info_len, const uint8_t *seed, | 
|  | size_t seed_len) { | 
|  | if (key->kem->auth_encap_with_seed == NULL) { | 
|  | // Not all HPKE KEMs support AuthEncap. | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EVP_HPKE_CTX_zero(ctx); | 
|  | ctx->is_sender = 1; | 
|  | ctx->kem = key->kem; | 
|  | ctx->kdf = kdf; | 
|  | ctx->aead = aead; | 
|  | uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; | 
|  | size_t shared_secret_len; | 
|  | if (!key->kem->auth_encap_with_seed( | 
|  | key, shared_secret, &shared_secret_len, out_enc, out_enc_len, max_enc, | 
|  | peer_public_key, peer_public_key_len, seed, seed_len) || | 
|  | !hpke_key_schedule(ctx, HPKE_MODE_AUTH, shared_secret, shared_secret_len, | 
|  | info, info_len)) { | 
|  | EVP_HPKE_CTX_cleanup(ctx); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_CTX_setup_auth_recipient( | 
|  | EVP_HPKE_CTX *ctx, const EVP_HPKE_KEY *key, const EVP_HPKE_KDF *kdf, | 
|  | const EVP_HPKE_AEAD *aead, const uint8_t *enc, size_t enc_len, | 
|  | const uint8_t *info, size_t info_len, const uint8_t *peer_public_key, | 
|  | size_t peer_public_key_len) { | 
|  | if (key->kem->auth_decap == NULL) { | 
|  | // Not all HPKE KEMs support AuthDecap. | 
|  | OPENSSL_PUT_ERROR(EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EVP_HPKE_CTX_zero(ctx); | 
|  | ctx->is_sender = 0; | 
|  | ctx->kem = key->kem; | 
|  | ctx->kdf = kdf; | 
|  | ctx->aead = aead; | 
|  | uint8_t shared_secret[MAX_SHARED_SECRET_LEN]; | 
|  | size_t shared_secret_len; | 
|  | if (!key->kem->auth_decap(key, shared_secret, &shared_secret_len, enc, | 
|  | enc_len, peer_public_key, peer_public_key_len) || | 
|  | !hpke_key_schedule(ctx, HPKE_MODE_AUTH, shared_secret, shared_secret_len, | 
|  | info, info_len)) { | 
|  | EVP_HPKE_CTX_cleanup(ctx); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void hpke_nonce(const EVP_HPKE_CTX *ctx, uint8_t *out_nonce, | 
|  | size_t nonce_len) { | 
|  | assert(nonce_len >= 8); | 
|  |  | 
|  | // Write padded big-endian bytes of |ctx->seq| to |out_nonce|. | 
|  | OPENSSL_memset(out_nonce, 0, nonce_len); | 
|  | uint64_t seq_copy = ctx->seq; | 
|  | for (size_t i = 0; i < 8; i++) { | 
|  | out_nonce[nonce_len - i - 1] = seq_copy & 0xff; | 
|  | seq_copy >>= 8; | 
|  | } | 
|  |  | 
|  | // XOR the encoded sequence with the |ctx->base_nonce|. | 
|  | for (size_t i = 0; i < nonce_len; i++) { | 
|  | out_nonce[i] ^= ctx->base_nonce[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_CTX_open(EVP_HPKE_CTX *ctx, uint8_t *out, size_t *out_len, | 
|  | size_t max_out_len, const uint8_t *in, size_t in_len, | 
|  | const uint8_t *ad, size_t ad_len) { | 
|  | if (ctx->is_sender) { | 
|  | OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  | if (ctx->seq == UINT64_MAX) { | 
|  | OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; | 
|  | const size_t nonce_len = EVP_AEAD_nonce_length(ctx->aead_ctx.aead); | 
|  | hpke_nonce(ctx, nonce, nonce_len); | 
|  |  | 
|  | if (!EVP_AEAD_CTX_open(&ctx->aead_ctx, out, out_len, max_out_len, nonce, | 
|  | nonce_len, in, in_len, ad, ad_len)) { | 
|  | return 0; | 
|  | } | 
|  | ctx->seq++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_CTX_seal(EVP_HPKE_CTX *ctx, uint8_t *out, size_t *out_len, | 
|  | size_t max_out_len, const uint8_t *in, size_t in_len, | 
|  | const uint8_t *ad, size_t ad_len) { | 
|  | if (!ctx->is_sender) { | 
|  | OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); | 
|  | return 0; | 
|  | } | 
|  | if (ctx->seq == UINT64_MAX) { | 
|  | OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH]; | 
|  | const size_t nonce_len = EVP_AEAD_nonce_length(ctx->aead_ctx.aead); | 
|  | hpke_nonce(ctx, nonce, nonce_len); | 
|  |  | 
|  | if (!EVP_AEAD_CTX_seal(&ctx->aead_ctx, out, out_len, max_out_len, nonce, | 
|  | nonce_len, in, in_len, ad, ad_len)) { | 
|  | return 0; | 
|  | } | 
|  | ctx->seq++; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int EVP_HPKE_CTX_export(const EVP_HPKE_CTX *ctx, uint8_t *out, | 
|  | size_t secret_len, const uint8_t *context, | 
|  | size_t context_len) { | 
|  | uint8_t suite_id[HPKE_SUITE_ID_LEN]; | 
|  | if (!hpke_build_suite_id(ctx, suite_id)) { | 
|  | return 0; | 
|  | } | 
|  | const EVP_MD *hkdf_md = ctx->kdf->hkdf_md_func(); | 
|  | if (!hpke_labeled_expand(hkdf_md, out, secret_len, ctx->exporter_secret, | 
|  | EVP_MD_size(hkdf_md), suite_id, sizeof(suite_id), | 
|  | "sec", context, context_len)) { | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | size_t EVP_HPKE_CTX_max_overhead(const EVP_HPKE_CTX *ctx) { | 
|  | assert(ctx->is_sender); | 
|  | return EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(&ctx->aead_ctx)); | 
|  | } | 
|  |  | 
|  | const EVP_HPKE_KEM *EVP_HPKE_CTX_kem(const EVP_HPKE_CTX *ctx) { | 
|  | return ctx->kem; | 
|  | } | 
|  |  | 
|  | const EVP_HPKE_AEAD *EVP_HPKE_CTX_aead(const EVP_HPKE_CTX *ctx) { | 
|  | return ctx->aead; | 
|  | } | 
|  |  | 
|  | const EVP_HPKE_KDF *EVP_HPKE_CTX_kdf(const EVP_HPKE_CTX *ctx) { | 
|  | return ctx->kdf; | 
|  | } |