| /* Copyright (c) 2018, Google Inc. | 
 |  * | 
 |  * Permission to use, copy, modify, and/or distribute this software for any | 
 |  * purpose with or without fee is hereby granted, provided that the above | 
 |  * copyright notice and this permission notice appear in all copies. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES | 
 |  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF | 
 |  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY | 
 |  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES | 
 |  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION | 
 |  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN | 
 |  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ | 
 |  | 
 | #include <openssl/ec.h> | 
 |  | 
 | #include <assert.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "../bn/internal.h" | 
 | #include "../../internal.h" | 
 |  | 
 |  | 
 | void ec_GFp_mont_mul(const EC_GROUP *group, EC_JACOBIAN *r, | 
 |                      const EC_JACOBIAN *p, const EC_SCALAR *scalar) { | 
 |   // This is a generic implementation for uncommon curves that not do not | 
 |   // warrant a tuned one. It uses unsigned digits so that the doubling case in | 
 |   // |ec_GFp_mont_add| is always unreachable, erring on safety and simplicity. | 
 |  | 
 |   // Compute a table of the first 32 multiples of |p| (including infinity). | 
 |   EC_JACOBIAN precomp[32]; | 
 |   ec_GFp_simple_point_set_to_infinity(group, &precomp[0]); | 
 |   ec_GFp_simple_point_copy(&precomp[1], p); | 
 |   for (size_t j = 2; j < OPENSSL_ARRAY_SIZE(precomp); j++) { | 
 |     if (j & 1) { | 
 |       ec_GFp_mont_add(group, &precomp[j], &precomp[1], &precomp[j - 1]); | 
 |     } else { | 
 |       ec_GFp_mont_dbl(group, &precomp[j], &precomp[j / 2]); | 
 |     } | 
 |   } | 
 |  | 
 |   // Divide bits in |scalar| into windows. | 
 |   unsigned bits =  EC_GROUP_order_bits(group); | 
 |   int r_is_at_infinity = 1; | 
 |   for (unsigned i = bits - 1; i < bits; i--) { | 
 |     if (!r_is_at_infinity) { | 
 |       ec_GFp_mont_dbl(group, r, r); | 
 |     } | 
 |     if (i % 5 == 0) { | 
 |       // Compute the next window value. | 
 |       const size_t width = group->order.N.width; | 
 |       uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 4; | 
 |       window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 3; | 
 |       window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 2; | 
 |       window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 1; | 
 |       window |= bn_is_bit_set_words(scalar->words, width, i); | 
 |  | 
 |       // Select the entry in constant-time. | 
 |       EC_JACOBIAN tmp; | 
 |       OPENSSL_memset(&tmp, 0, sizeof(EC_JACOBIAN)); | 
 |       for (size_t j = 0; j < OPENSSL_ARRAY_SIZE(precomp); j++) { | 
 |         BN_ULONG mask = constant_time_eq_w(j, window); | 
 |         ec_point_select(group, &tmp, mask, &precomp[j], &tmp); | 
 |       } | 
 |  | 
 |       if (r_is_at_infinity) { | 
 |         ec_GFp_simple_point_copy(r, &tmp); | 
 |         r_is_at_infinity = 0; | 
 |       } else { | 
 |         ec_GFp_mont_add(group, r, r, &tmp); | 
 |       } | 
 |     } | 
 |   } | 
 |   if (r_is_at_infinity) { | 
 |     ec_GFp_simple_point_set_to_infinity(group, r); | 
 |   } | 
 | } | 
 |  | 
 | void ec_GFp_mont_mul_base(const EC_GROUP *group, EC_JACOBIAN *r, | 
 |                           const EC_SCALAR *scalar) { | 
 |   ec_GFp_mont_mul(group, r, &group->generator.raw, scalar); | 
 | } | 
 |  | 
 | static void ec_GFp_mont_batch_precomp(const EC_GROUP *group, EC_JACOBIAN *out, | 
 |                                       size_t num, const EC_JACOBIAN *p) { | 
 |   assert(num > 1); | 
 |   ec_GFp_simple_point_set_to_infinity(group, &out[0]); | 
 |   ec_GFp_simple_point_copy(&out[1], p); | 
 |   for (size_t j = 2; j < num; j++) { | 
 |     if (j & 1) { | 
 |       ec_GFp_mont_add(group, &out[j], &out[1], &out[j - 1]); | 
 |     } else { | 
 |       ec_GFp_mont_dbl(group, &out[j], &out[j / 2]); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void ec_GFp_mont_batch_get_window(const EC_GROUP *group, | 
 |                                          EC_JACOBIAN *out, | 
 |                                          const EC_JACOBIAN precomp[17], | 
 |                                          const EC_SCALAR *scalar, unsigned i) { | 
 |   const size_t width = group->order.N.width; | 
 |   uint8_t window = bn_is_bit_set_words(scalar->words, width, i + 4) << 5; | 
 |   window |= bn_is_bit_set_words(scalar->words, width, i + 3) << 4; | 
 |   window |= bn_is_bit_set_words(scalar->words, width, i + 2) << 3; | 
 |   window |= bn_is_bit_set_words(scalar->words, width, i + 1) << 2; | 
 |   window |= bn_is_bit_set_words(scalar->words, width, i) << 1; | 
 |   if (i > 0) { | 
 |     window |= bn_is_bit_set_words(scalar->words, width, i - 1); | 
 |   } | 
 |   crypto_word_t sign, digit; | 
 |   ec_GFp_nistp_recode_scalar_bits(&sign, &digit, window); | 
 |  | 
 |   // Select the entry in constant-time. | 
 |   OPENSSL_memset(out, 0, sizeof(EC_JACOBIAN)); | 
 |   for (size_t j = 0; j < 17; j++) { | 
 |     BN_ULONG mask = constant_time_eq_w(j, digit); | 
 |     ec_point_select(group, out, mask, &precomp[j], out); | 
 |   } | 
 |  | 
 |   // Negate if necessary. | 
 |   EC_FELEM neg_Y; | 
 |   ec_felem_neg(group, &neg_Y, &out->Y); | 
 |   crypto_word_t sign_mask = sign; | 
 |   sign_mask = 0u - sign_mask; | 
 |   ec_felem_select(group, &out->Y, sign_mask, &neg_Y, &out->Y); | 
 | } | 
 |  | 
 | void ec_GFp_mont_mul_batch(const EC_GROUP *group, EC_JACOBIAN *r, | 
 |                            const EC_JACOBIAN *p0, const EC_SCALAR *scalar0, | 
 |                            const EC_JACOBIAN *p1, const EC_SCALAR *scalar1, | 
 |                            const EC_JACOBIAN *p2, const EC_SCALAR *scalar2) { | 
 |   EC_JACOBIAN precomp[3][17]; | 
 |   ec_GFp_mont_batch_precomp(group, precomp[0], 17, p0); | 
 |   ec_GFp_mont_batch_precomp(group, precomp[1], 17, p1); | 
 |   if (p2 != NULL) { | 
 |     ec_GFp_mont_batch_precomp(group, precomp[2], 17, p2); | 
 |   } | 
 |  | 
 |   // Divide bits in |scalar| into windows. | 
 |   unsigned bits = EC_GROUP_order_bits(group); | 
 |   int r_is_at_infinity = 1; | 
 |   for (unsigned i = bits; i <= bits; i--) { | 
 |     if (!r_is_at_infinity) { | 
 |       ec_GFp_mont_dbl(group, r, r); | 
 |     } | 
 |     if (i % 5 == 0) { | 
 |       EC_JACOBIAN tmp; | 
 |       ec_GFp_mont_batch_get_window(group, &tmp, precomp[0], scalar0, i); | 
 |       if (r_is_at_infinity) { | 
 |         ec_GFp_simple_point_copy(r, &tmp); | 
 |         r_is_at_infinity = 0; | 
 |       } else { | 
 |         ec_GFp_mont_add(group, r, r, &tmp); | 
 |       } | 
 |  | 
 |       ec_GFp_mont_batch_get_window(group, &tmp, precomp[1], scalar1, i); | 
 |       ec_GFp_mont_add(group, r, r, &tmp); | 
 |  | 
 |       if (p2 != NULL) { | 
 |         ec_GFp_mont_batch_get_window(group, &tmp, precomp[2], scalar2, i); | 
 |         ec_GFp_mont_add(group, r, r, &tmp); | 
 |       } | 
 |     } | 
 |   } | 
 |   if (r_is_at_infinity) { | 
 |     ec_GFp_simple_point_set_to_infinity(group, r); | 
 |   } | 
 | } | 
 |  | 
 | static unsigned ec_GFp_mont_comb_stride(const EC_GROUP *group) { | 
 |   return (EC_GROUP_get_degree(group) + EC_MONT_PRECOMP_COMB_SIZE - 1) / | 
 |          EC_MONT_PRECOMP_COMB_SIZE; | 
 | } | 
 |  | 
 | int ec_GFp_mont_init_precomp(const EC_GROUP *group, EC_PRECOMP *out, | 
 |                              const EC_JACOBIAN *p) { | 
 |   // comb[i - 1] stores the ith element of the comb. That is, if i is | 
 |   // b4 * 2^4 + b3 * 2^3 + ... + b0 * 2^0, it stores k * |p|, where k is | 
 |   // b4 * 2^(4*stride) + b3 * 2^(3*stride) + ... + b0 * 2^(0*stride). stride | 
 |   // here is |ec_GFp_mont_comb_stride|. We store at index i - 1 because the 0th | 
 |   // comb entry is always infinity. | 
 |   EC_JACOBIAN comb[(1 << EC_MONT_PRECOMP_COMB_SIZE) - 1]; | 
 |   unsigned stride = ec_GFp_mont_comb_stride(group); | 
 |  | 
 |   // We compute the comb sequentially by the highest set bit. Initially, all | 
 |   // entries up to 2^0 are filled. | 
 |   comb[(1 << 0) - 1] = *p; | 
 |   for (unsigned i = 1; i < EC_MONT_PRECOMP_COMB_SIZE; i++) { | 
 |     // Compute entry 2^i by doubling the entry for 2^(i-1) |stride| times. | 
 |     unsigned bit = 1 << i; | 
 |     ec_GFp_mont_dbl(group, &comb[bit - 1], &comb[bit / 2 - 1]); | 
 |     for (unsigned j = 1; j < stride; j++) { | 
 |       ec_GFp_mont_dbl(group, &comb[bit - 1], &comb[bit - 1]); | 
 |     } | 
 |     // Compute entries from 2^i + 1 to 2^i + (2^i - 1) by adding entry 2^i to | 
 |     // a previous entry. | 
 |     for (unsigned j = 1; j < bit; j++) { | 
 |       ec_GFp_mont_add(group, &comb[bit + j - 1], &comb[bit - 1], &comb[j - 1]); | 
 |     } | 
 |   } | 
 |  | 
 |   // Store the comb in affine coordinates to shrink the table. (This reduces | 
 |   // cache pressure and makes the constant-time selects faster.) | 
 |   static_assert(OPENSSL_ARRAY_SIZE(comb) == OPENSSL_ARRAY_SIZE(out->comb), | 
 |                 "comb sizes did not match"); | 
 |   return ec_jacobian_to_affine_batch(group, out->comb, comb, | 
 |                                      OPENSSL_ARRAY_SIZE(comb)); | 
 | } | 
 |  | 
 | static void ec_GFp_mont_get_comb_window(const EC_GROUP *group, | 
 |                                         EC_JACOBIAN *out, | 
 |                                         const EC_PRECOMP *precomp, | 
 |                                         const EC_SCALAR *scalar, unsigned i) { | 
 |   const size_t width = group->order.N.width; | 
 |   unsigned stride = ec_GFp_mont_comb_stride(group); | 
 |   // Select the bits corresponding to the comb shifted up by |i|. | 
 |   unsigned window = 0; | 
 |   for (unsigned j = 0; j < EC_MONT_PRECOMP_COMB_SIZE; j++) { | 
 |     window |= bn_is_bit_set_words(scalar->words, width, j * stride + i) | 
 |               << j; | 
 |   } | 
 |  | 
 |   // Select precomp->comb[window - 1]. If |window| is zero, |match| will always | 
 |   // be zero, which will leave |out| at infinity. | 
 |   OPENSSL_memset(out, 0, sizeof(EC_JACOBIAN)); | 
 |   for (unsigned j = 0; j < OPENSSL_ARRAY_SIZE(precomp->comb); j++) { | 
 |     BN_ULONG match = constant_time_eq_w(window, j + 1); | 
 |     ec_felem_select(group, &out->X, match, &precomp->comb[j].X, &out->X); | 
 |     ec_felem_select(group, &out->Y, match, &precomp->comb[j].Y, &out->Y); | 
 |   } | 
 |   BN_ULONG is_infinity = constant_time_is_zero_w(window); | 
 |   ec_felem_select(group, &out->Z, is_infinity, &out->Z, ec_felem_one(group)); | 
 | } | 
 |  | 
 | void ec_GFp_mont_mul_precomp(const EC_GROUP *group, EC_JACOBIAN *r, | 
 |                              const EC_PRECOMP *p0, const EC_SCALAR *scalar0, | 
 |                              const EC_PRECOMP *p1, const EC_SCALAR *scalar1, | 
 |                              const EC_PRECOMP *p2, const EC_SCALAR *scalar2) { | 
 |   unsigned stride = ec_GFp_mont_comb_stride(group); | 
 |   int r_is_at_infinity = 1; | 
 |   for (unsigned i = stride - 1; i < stride; i--) { | 
 |     if (!r_is_at_infinity) { | 
 |       ec_GFp_mont_dbl(group, r, r); | 
 |     } | 
 |  | 
 |     EC_JACOBIAN tmp; | 
 |     ec_GFp_mont_get_comb_window(group, &tmp, p0, scalar0, i); | 
 |     if (r_is_at_infinity) { | 
 |       ec_GFp_simple_point_copy(r, &tmp); | 
 |       r_is_at_infinity = 0; | 
 |     } else { | 
 |       ec_GFp_mont_add(group, r, r, &tmp); | 
 |     } | 
 |  | 
 |     if (p1 != NULL) { | 
 |       ec_GFp_mont_get_comb_window(group, &tmp, p1, scalar1, i); | 
 |       ec_GFp_mont_add(group, r, r, &tmp); | 
 |     } | 
 |  | 
 |     if (p2 != NULL) { | 
 |       ec_GFp_mont_get_comb_window(group, &tmp, p2, scalar2, i); | 
 |       ec_GFp_mont_add(group, r, r, &tmp); | 
 |     } | 
 |   } | 
 |   if (r_is_at_infinity) { | 
 |     ec_GFp_simple_point_set_to_infinity(group, r); | 
 |   } | 
 | } |