| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/cipher.h> |
| #include <openssl/err.h> |
| #include <openssl/hmac.h> |
| #include <openssl/mem.h> |
| #include <openssl/sha.h> |
| |
| #include "../crypto/internal.h" |
| #include "internal.h" |
| |
| |
| typedef struct { |
| EVP_CIPHER_CTX cipher_ctx; |
| HMAC_CTX hmac_ctx; |
| /* mac_key is the portion of the key used for the MAC. It is retained |
| * separately for the constant-time CBC code. */ |
| uint8_t mac_key[EVP_MAX_MD_SIZE]; |
| uint8_t mac_key_len; |
| /* enc_key is the portion of the key used for the stream or block |
| * cipher. It is retained separately to allow the EVP_CIPHER_CTX to be |
| * initialized once the direction is known. */ |
| uint8_t enc_key[EVP_MAX_KEY_LENGTH]; |
| uint8_t enc_key_len; |
| /* iv is the portion of the key used for the fixed IV. It is retained |
| * separately to allow the EVP_CIPHER_CTX to be initialized once the direction |
| * is known. */ |
| uint8_t iv[EVP_MAX_IV_LENGTH]; |
| uint8_t iv_len; |
| /* implicit_iv is one iff this is a pre-TLS-1.1 CBC cipher without an explicit |
| * IV. */ |
| char implicit_iv; |
| char initialized; |
| } AEAD_TLS_CTX; |
| |
| |
| static void aead_tls_cleanup(EVP_AEAD_CTX *ctx) { |
| AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state; |
| EVP_CIPHER_CTX_cleanup(&tls_ctx->cipher_ctx); |
| HMAC_CTX_cleanup(&tls_ctx->hmac_ctx); |
| OPENSSL_cleanse(&tls_ctx->mac_key, sizeof(tls_ctx->mac_key)); |
| OPENSSL_cleanse(&tls_ctx->enc_key, sizeof(tls_ctx->enc_key)); |
| OPENSSL_cleanse(&tls_ctx->iv, sizeof(tls_ctx->iv)); |
| OPENSSL_free(tls_ctx); |
| ctx->aead_state = NULL; |
| } |
| |
| static int aead_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, size_t key_len, |
| size_t tag_len, const EVP_CIPHER *cipher, |
| const EVP_MD *md, char implicit_iv) { |
| if (tag_len != EVP_AEAD_DEFAULT_TAG_LENGTH && |
| tag_len != EVP_MD_size(md)) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, CIPHER_R_UNSUPPORTED_TAG_SIZE); |
| return 0; |
| } |
| |
| if (key_len != EVP_AEAD_key_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, CIPHER_R_BAD_KEY_LENGTH); |
| return 0; |
| } |
| |
| size_t mac_key_len = EVP_MD_size(md); |
| size_t enc_key_len = EVP_CIPHER_key_length(cipher); |
| size_t iv_len = implicit_iv ? EVP_CIPHER_iv_length(cipher) : 0; |
| assert(mac_key_len + enc_key_len + iv_len == key_len); |
| assert(mac_key_len < 256); |
| assert(enc_key_len < 256); |
| assert(iv_len < 256); |
| /* Although EVP_rc4() is a variable-length cipher, the default key size is |
| * correct for TLS. */ |
| |
| AEAD_TLS_CTX *tls_ctx = OPENSSL_malloc(sizeof(AEAD_TLS_CTX)); |
| if (tls_ctx == NULL) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_init, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| EVP_CIPHER_CTX_init(&tls_ctx->cipher_ctx); |
| HMAC_CTX_init(&tls_ctx->hmac_ctx); |
| memcpy(tls_ctx->mac_key, key, mac_key_len); |
| tls_ctx->mac_key_len = (uint8_t)mac_key_len; |
| memcpy(tls_ctx->enc_key, &key[mac_key_len], enc_key_len); |
| tls_ctx->enc_key_len = (uint8_t)enc_key_len; |
| memcpy(tls_ctx->iv, &key[mac_key_len + enc_key_len], iv_len); |
| tls_ctx->iv_len = (uint8_t)iv_len; |
| tls_ctx->implicit_iv = implicit_iv; |
| tls_ctx->initialized = 0; |
| |
| ctx->aead_state = tls_ctx; |
| if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, cipher, NULL, NULL, NULL, 0) || |
| !HMAC_Init_ex(&tls_ctx->hmac_ctx, key, mac_key_len, md, NULL)) { |
| aead_tls_cleanup(ctx); |
| return 0; |
| } |
| EVP_CIPHER_CTX_set_padding(&tls_ctx->cipher_ctx, 0); |
| |
| return 1; |
| } |
| |
| /* aead_tls_ensure_cipher_init initializes |tls_ctx| for encryption (or |
| * decryption, if |encrypt| is zero). If it has already been initialized, it |
| * ensures the direction matches and fails otherwise. It returns one on success |
| * and zero on failure. |
| * |
| * Note that, unlike normal AEADs, legacy TLS AEADs may not be used concurrently |
| * due to this (and bulk-cipher-internal) statefulness. */ |
| static int aead_tls_ensure_cipher_init(AEAD_TLS_CTX *tls_ctx, int encrypt) { |
| if (!tls_ctx->initialized) { |
| /* Finish initializing the EVP_CIPHER_CTX now that the direction is |
| * known. */ |
| if (!EVP_CipherInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, tls_ctx->enc_key, |
| tls_ctx->implicit_iv ? tls_ctx->iv : NULL, |
| encrypt)) { |
| return 0; |
| } |
| tls_ctx->initialized = 1; |
| } else if (tls_ctx->cipher_ctx.encrypt != encrypt) { |
| /* Unlike a normal AEAD, using a TLS AEAD once freezes the direction. */ |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_ensure_cipher_init, |
| CIPHER_R_INVALID_OPERATION); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int aead_tls_seal(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| size_t *out_len, size_t max_out_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state; |
| size_t total = 0; |
| |
| if (in_len + EVP_AEAD_max_overhead(ctx->aead) < in_len || |
| in_len > INT_MAX) { |
| /* EVP_CIPHER takes int as input. */ |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| if (max_out_len < in_len + EVP_AEAD_max_overhead(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| if (ad_len != 13 - 2) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_seal, CIPHER_R_INVALID_AD_SIZE); |
| return 0; |
| } |
| |
| if (!aead_tls_ensure_cipher_init(tls_ctx, 1)) { |
| return 0; |
| } |
| |
| /* To allow for CBC mode which changes cipher length, |ad| doesn't include the |
| * length for legacy ciphers. */ |
| uint8_t ad_extra[2]; |
| ad_extra[0] = (uint8_t)(in_len >> 8); |
| ad_extra[1] = (uint8_t)(in_len & 0xff); |
| |
| /* Compute the MAC. This must be first in case the operation is being done |
| * in-place. */ |
| uint8_t mac[EVP_MAX_MD_SIZE]; |
| unsigned mac_len; |
| HMAC_CTX hmac_ctx; |
| HMAC_CTX_init(&hmac_ctx); |
| if (!HMAC_CTX_copy_ex(&hmac_ctx, &tls_ctx->hmac_ctx) || |
| !HMAC_Update(&hmac_ctx, ad, ad_len) || |
| !HMAC_Update(&hmac_ctx, ad_extra, sizeof(ad_extra)) || |
| !HMAC_Update(&hmac_ctx, in, in_len) || |
| !HMAC_Final(&hmac_ctx, mac, &mac_len)) { |
| HMAC_CTX_cleanup(&hmac_ctx); |
| return 0; |
| } |
| HMAC_CTX_cleanup(&hmac_ctx); |
| |
| /* Configure the explicit IV. */ |
| if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && |
| !tls_ctx->implicit_iv && |
| !EVP_EncryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { |
| return 0; |
| } |
| |
| /* Encrypt the input. */ |
| int len; |
| if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, |
| (int)in_len)) { |
| return 0; |
| } |
| total = len; |
| |
| /* Feed the MAC into the cipher. */ |
| if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, mac, |
| (int)mac_len)) { |
| return 0; |
| } |
| total += len; |
| |
| unsigned block_size = EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx); |
| if (block_size > 1) { |
| assert(block_size <= 256); |
| assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE); |
| |
| /* Compute padding and feed that into the cipher. */ |
| uint8_t padding[256]; |
| unsigned padding_len = block_size - ((in_len + mac_len) % block_size); |
| memset(padding, padding_len - 1, padding_len); |
| if (!EVP_EncryptUpdate(&tls_ctx->cipher_ctx, out + total, &len, padding, |
| (int)padding_len)) { |
| return 0; |
| } |
| total += len; |
| } |
| |
| if (!EVP_EncryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) { |
| return 0; |
| } |
| total += len; |
| |
| *out_len = total; |
| return 1; |
| } |
| |
| static int aead_tls_open(const EVP_AEAD_CTX *ctx, uint8_t *out, |
| size_t *out_len, size_t max_out_len, |
| const uint8_t *nonce, size_t nonce_len, |
| const uint8_t *in, size_t in_len, |
| const uint8_t *ad, size_t ad_len) { |
| AEAD_TLS_CTX *tls_ctx = (AEAD_TLS_CTX *)ctx->aead_state; |
| |
| if (in_len < HMAC_size(&tls_ctx->hmac_ctx)) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| if (max_out_len < in_len) { |
| /* This requires that the caller provide space for the MAC, even though it |
| * will always be removed on return. */ |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (nonce_len != EVP_AEAD_nonce_length(ctx->aead)) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_NONCE_SIZE); |
| return 0; |
| } |
| |
| if (ad_len != 13 - 2) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_INVALID_AD_SIZE); |
| return 0; |
| } |
| |
| if (in_len > INT_MAX) { |
| /* EVP_CIPHER takes int as input. */ |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_TOO_LARGE); |
| return 0; |
| } |
| |
| if (!aead_tls_ensure_cipher_init(tls_ctx, 0)) { |
| return 0; |
| } |
| |
| /* Configure the explicit IV. */ |
| if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && |
| !tls_ctx->implicit_iv && |
| !EVP_DecryptInit_ex(&tls_ctx->cipher_ctx, NULL, NULL, NULL, nonce)) { |
| return 0; |
| } |
| |
| /* Decrypt to get the plaintext + MAC + padding. */ |
| size_t total = 0; |
| int len; |
| if (!EVP_DecryptUpdate(&tls_ctx->cipher_ctx, out, &len, in, (int)in_len)) { |
| return 0; |
| } |
| total += len; |
| if (!EVP_DecryptFinal_ex(&tls_ctx->cipher_ctx, out + total, &len)) { |
| return 0; |
| } |
| total += len; |
| assert(total == in_len); |
| |
| /* Remove CBC padding. Code from here on is timing-sensitive with respect to |
| * |padding_ok| and |data_plus_mac_len| for CBC ciphers. */ |
| int padding_ok; |
| unsigned data_plus_mac_len, data_len; |
| if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE) { |
| padding_ok = EVP_tls_cbc_remove_padding( |
| &data_plus_mac_len, out, total, |
| EVP_CIPHER_CTX_block_size(&tls_ctx->cipher_ctx), |
| (unsigned)HMAC_size(&tls_ctx->hmac_ctx)); |
| /* Publicly invalid. This can be rejected in non-constant time. */ |
| if (padding_ok == 0) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| } else { |
| padding_ok = 1; |
| data_plus_mac_len = total; |
| /* |data_plus_mac_len| = |total| = |in_len| at this point. |in_len| has |
| * already been checked against the MAC size at the top of the function. */ |
| assert(data_plus_mac_len >= HMAC_size(&tls_ctx->hmac_ctx)); |
| } |
| data_len = data_plus_mac_len - HMAC_size(&tls_ctx->hmac_ctx); |
| |
| /* At this point, |padding_ok| is 1 or -1. If 1, the padding is valid and the |
| * first |data_plus_mac_size| bytes after |out| are the plaintext and |
| * MAC. Either way, |data_plus_mac_size| is large enough to extract a MAC. */ |
| |
| /* To allow for CBC mode which changes cipher length, |ad| doesn't include the |
| * length for legacy ciphers. */ |
| uint8_t ad_fixed[13]; |
| memcpy(ad_fixed, ad, 11); |
| ad_fixed[11] = (uint8_t)(data_len >> 8); |
| ad_fixed[12] = (uint8_t)(data_len & 0xff); |
| ad_len += 2; |
| |
| /* Compute the MAC and extract the one in the record. */ |
| uint8_t mac[EVP_MAX_MD_SIZE]; |
| size_t mac_len; |
| uint8_t record_mac_tmp[EVP_MAX_MD_SIZE]; |
| uint8_t *record_mac; |
| if (EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) == EVP_CIPH_CBC_MODE && |
| EVP_tls_cbc_record_digest_supported(tls_ctx->hmac_ctx.md)) { |
| if (!EVP_tls_cbc_digest_record(tls_ctx->hmac_ctx.md, mac, &mac_len, |
| ad_fixed, out, data_plus_mac_len, total, |
| tls_ctx->mac_key, tls_ctx->mac_key_len)) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); |
| |
| record_mac = record_mac_tmp; |
| EVP_tls_cbc_copy_mac(record_mac, mac_len, out, data_plus_mac_len, total); |
| } else { |
| /* We should support the constant-time path for all CBC-mode ciphers |
| * implemented. */ |
| assert(EVP_CIPHER_CTX_mode(&tls_ctx->cipher_ctx) != EVP_CIPH_CBC_MODE); |
| |
| HMAC_CTX hmac_ctx; |
| HMAC_CTX_init(&hmac_ctx); |
| unsigned mac_len_u; |
| if (!HMAC_CTX_copy_ex(&hmac_ctx, &tls_ctx->hmac_ctx) || |
| !HMAC_Update(&hmac_ctx, ad_fixed, ad_len) || |
| !HMAC_Update(&hmac_ctx, out, data_len) || |
| !HMAC_Final(&hmac_ctx, mac, &mac_len_u)) { |
| HMAC_CTX_cleanup(&hmac_ctx); |
| return 0; |
| } |
| mac_len = mac_len_u; |
| HMAC_CTX_cleanup(&hmac_ctx); |
| |
| assert(mac_len == HMAC_size(&tls_ctx->hmac_ctx)); |
| record_mac = &out[data_len]; |
| } |
| |
| /* Perform the MAC check and the padding check in constant-time. It should be |
| * safe to simply perform the padding check first, but it would not be under a |
| * different choice of MAC location on padding failure. See |
| * EVP_tls_cbc_remove_padding. */ |
| unsigned good = constant_time_eq_int(CRYPTO_memcmp(record_mac, mac, mac_len), |
| 0); |
| good &= constant_time_eq_int(padding_ok, 1); |
| if (!good) { |
| OPENSSL_PUT_ERROR(CIPHER, aead_tls_open, CIPHER_R_BAD_DECRYPT); |
| return 0; |
| } |
| |
| /* End of timing-sensitive code. */ |
| |
| *out_len = data_len; |
| return 1; |
| } |
| |
| static int aead_rc4_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| return aead_tls_init(ctx, key, key_len, tag_len, EVP_rc4(), EVP_sha1(), 0); |
| } |
| |
| static int aead_aes_128_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_128_cbc(), |
| EVP_sha1(), 0); |
| } |
| |
| static int aead_aes_128_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX *ctx, |
| const uint8_t *key, |
| size_t key_len, |
| size_t tag_len) { |
| return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_128_cbc(), |
| EVP_sha1(), 1); |
| } |
| |
| static int aead_aes_128_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx, |
| const uint8_t *key, size_t key_len, |
| size_t tag_len) { |
| return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_128_cbc(), |
| EVP_sha256(), 0); |
| } |
| |
| static int aead_aes_256_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, const uint8_t *key, |
| size_t key_len, size_t tag_len) { |
| return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(), |
| EVP_sha1(), 0); |
| } |
| |
| static int aead_aes_256_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX *ctx, |
| const uint8_t *key, |
| size_t key_len, |
| size_t tag_len) { |
| return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(), |
| EVP_sha1(), 1); |
| } |
| |
| static int aead_aes_256_cbc_sha256_tls_init(EVP_AEAD_CTX *ctx, |
| const uint8_t *key, size_t key_len, |
| size_t tag_len) { |
| return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(), |
| EVP_sha256(), 0); |
| } |
| |
| static int aead_aes_256_cbc_sha384_tls_init(EVP_AEAD_CTX *ctx, |
| const uint8_t *key, size_t key_len, |
| size_t tag_len) { |
| return aead_tls_init(ctx, key, key_len, tag_len, EVP_aes_256_cbc(), |
| EVP_sha384(), 0); |
| } |
| |
| static int aead_des_ede3_cbc_sha1_tls_init(EVP_AEAD_CTX *ctx, |
| const uint8_t *key, size_t key_len, |
| size_t tag_len) { |
| return aead_tls_init(ctx, key, key_len, tag_len, EVP_des_ede3_cbc(), |
| EVP_sha1(), 0); |
| } |
| |
| static int aead_des_ede3_cbc_sha1_tls_implicit_iv_init(EVP_AEAD_CTX *ctx, |
| const uint8_t *key, |
| size_t key_len, |
| size_t tag_len) { |
| return aead_tls_init(ctx, key, key_len, tag_len, EVP_des_ede3_cbc(), |
| EVP_sha1(), 1); |
| } |
| |
| static const EVP_AEAD aead_rc4_sha1_tls = { |
| SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + RC4) */ |
| 0, /* nonce len */ |
| SHA_DIGEST_LENGTH, /* overhead */ |
| SHA_DIGEST_LENGTH, /* max tag length */ |
| aead_rc4_sha1_tls_init, |
| aead_tls_cleanup, |
| aead_tls_seal, |
| aead_tls_open, |
| }; |
| |
| static const EVP_AEAD aead_aes_128_cbc_sha1_tls = { |
| SHA_DIGEST_LENGTH + 16, /* key len (SHA1 + AES128) */ |
| 16, /* nonce len (IV) */ |
| 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ |
| SHA_DIGEST_LENGTH, /* max tag length */ |
| aead_aes_128_cbc_sha1_tls_init, |
| aead_tls_cleanup, |
| aead_tls_seal, |
| aead_tls_open, |
| }; |
| |
| static const EVP_AEAD aead_aes_128_cbc_sha1_tls_implicit_iv = { |
| SHA_DIGEST_LENGTH + 16 + 16, /* key len (SHA1 + AES128 + IV) */ |
| 0, /* nonce len */ |
| 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ |
| SHA_DIGEST_LENGTH, /* max tag length */ |
| aead_aes_128_cbc_sha1_tls_implicit_iv_init, |
| aead_tls_cleanup, |
| aead_tls_seal, |
| aead_tls_open, |
| }; |
| |
| static const EVP_AEAD aead_aes_128_cbc_sha256_tls = { |
| SHA256_DIGEST_LENGTH + 16, /* key len (SHA256 + AES128) */ |
| 16, /* nonce len (IV) */ |
| 16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */ |
| SHA_DIGEST_LENGTH, /* max tag length */ |
| aead_aes_128_cbc_sha256_tls_init, |
| aead_tls_cleanup, |
| aead_tls_seal, |
| aead_tls_open, |
| }; |
| |
| static const EVP_AEAD aead_aes_256_cbc_sha1_tls = { |
| SHA_DIGEST_LENGTH + 32, /* key len (SHA1 + AES256) */ |
| 16, /* nonce len (IV) */ |
| 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ |
| SHA_DIGEST_LENGTH, /* max tag length */ |
| aead_aes_256_cbc_sha1_tls_init, |
| aead_tls_cleanup, |
| aead_tls_seal, |
| aead_tls_open, |
| }; |
| |
| static const EVP_AEAD aead_aes_256_cbc_sha1_tls_implicit_iv = { |
| SHA_DIGEST_LENGTH + 32 + 16, /* key len (SHA1 + AES256 + IV) */ |
| 0, /* nonce len */ |
| 16 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ |
| SHA_DIGEST_LENGTH, /* max tag length */ |
| aead_aes_256_cbc_sha1_tls_implicit_iv_init, |
| aead_tls_cleanup, |
| aead_tls_seal, |
| aead_tls_open, |
| }; |
| |
| static const EVP_AEAD aead_aes_256_cbc_sha256_tls = { |
| SHA256_DIGEST_LENGTH + 32, /* key len (SHA256 + AES256) */ |
| 16, /* nonce len (IV) */ |
| 16 + SHA256_DIGEST_LENGTH, /* overhead (padding + SHA256) */ |
| SHA_DIGEST_LENGTH, /* max tag length */ |
| aead_aes_256_cbc_sha256_tls_init, |
| aead_tls_cleanup, |
| aead_tls_seal, |
| aead_tls_open, |
| }; |
| |
| static const EVP_AEAD aead_aes_256_cbc_sha384_tls = { |
| SHA384_DIGEST_LENGTH + 32, /* key len (SHA384 + AES256) */ |
| 16, /* nonce len (IV) */ |
| 16 + SHA384_DIGEST_LENGTH, /* overhead (padding + SHA384) */ |
| SHA_DIGEST_LENGTH, /* max tag length */ |
| aead_aes_256_cbc_sha384_tls_init, |
| aead_tls_cleanup, |
| aead_tls_seal, |
| aead_tls_open, |
| }; |
| |
| static const EVP_AEAD aead_des_ede3_cbc_sha1_tls = { |
| SHA_DIGEST_LENGTH + 24, /* key len (SHA1 + 3DES) */ |
| 8, /* nonce len (IV) */ |
| 8 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ |
| SHA_DIGEST_LENGTH, /* max tag length */ |
| aead_des_ede3_cbc_sha1_tls_init, |
| aead_tls_cleanup, |
| aead_tls_seal, |
| aead_tls_open, |
| }; |
| |
| static const EVP_AEAD aead_des_ede3_cbc_sha1_tls_implicit_iv = { |
| SHA_DIGEST_LENGTH + 24 + 8, /* key len (SHA1 + 3DES + IV) */ |
| 0, /* nonce len */ |
| 8 + SHA_DIGEST_LENGTH, /* overhead (padding + SHA1) */ |
| SHA_DIGEST_LENGTH, /* max tag length */ |
| aead_des_ede3_cbc_sha1_tls_implicit_iv_init, |
| aead_tls_cleanup, |
| aead_tls_seal, |
| aead_tls_open, |
| }; |
| |
| const EVP_AEAD *EVP_aead_rc4_sha1_tls(void) { return &aead_rc4_sha1_tls; } |
| |
| const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void) { |
| return &aead_aes_128_cbc_sha1_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void) { |
| return &aead_aes_128_cbc_sha1_tls_implicit_iv; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void) { |
| return &aead_aes_128_cbc_sha256_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void) { |
| return &aead_aes_256_cbc_sha1_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void) { |
| return &aead_aes_256_cbc_sha1_tls_implicit_iv; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void) { |
| return &aead_aes_256_cbc_sha256_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void) { |
| return &aead_aes_256_cbc_sha384_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void) { |
| return &aead_des_ede3_cbc_sha1_tls; |
| } |
| |
| const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void) { |
| return &aead_des_ede3_cbc_sha1_tls_implicit_iv; |
| } |