blob: 3799b39bf0d37d1c5ea590aecf076510087db427 [file] [log] [blame]
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 1999-2004.
*/
/* ====================================================================
* Copyright (c) 1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <openssl/asn1t.h>
#include <openssl/cipher.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/pkcs8.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include "internal.h"
/* PKCS#5 v2.0 password based encryption structures */
ASN1_SEQUENCE(PBE2PARAM) = {
ASN1_SIMPLE(PBE2PARAM, keyfunc, X509_ALGOR),
ASN1_SIMPLE(PBE2PARAM, encryption, X509_ALGOR)
} ASN1_SEQUENCE_END(PBE2PARAM)
IMPLEMENT_ASN1_FUNCTIONS(PBE2PARAM)
ASN1_SEQUENCE(PBKDF2PARAM) = {
ASN1_SIMPLE(PBKDF2PARAM, salt, ASN1_ANY),
ASN1_SIMPLE(PBKDF2PARAM, iter, ASN1_INTEGER),
ASN1_OPT(PBKDF2PARAM, keylength, ASN1_INTEGER),
ASN1_OPT(PBKDF2PARAM, prf, X509_ALGOR)
} ASN1_SEQUENCE_END(PBKDF2PARAM)
IMPLEMENT_ASN1_FUNCTIONS(PBKDF2PARAM);
static int ASN1_TYPE_set_octetstring(ASN1_TYPE *a, unsigned char *data, int len)
{
ASN1_STRING *os;
if ((os=M_ASN1_OCTET_STRING_new()) == NULL) return(0);
if (!M_ASN1_OCTET_STRING_set(os,data,len))
{
M_ASN1_OCTET_STRING_free(os);
return 0;
}
ASN1_TYPE_set(a,V_ASN1_OCTET_STRING,os);
return(1);
}
static int param_to_asn1(EVP_CIPHER_CTX *c, ASN1_TYPE *type)
{
unsigned iv_len;
iv_len = EVP_CIPHER_CTX_iv_length(c);
return ASN1_TYPE_set_octetstring(type, c->oiv, iv_len);
}
/* Return an algorithm identifier for a PKCS#5 v2.0 PBE algorithm:
* yes I know this is horrible!
*
* Extended version to allow application supplied PRF NID and IV. */
X509_ALGOR *PKCS5_pbe2_set_iv(const EVP_CIPHER *cipher, int iter,
unsigned char *salt, int saltlen,
unsigned char *aiv, int prf_nid)
{
X509_ALGOR *scheme = NULL, *kalg = NULL, *ret = NULL;
int alg_nid, keylen;
EVP_CIPHER_CTX ctx;
unsigned char iv[EVP_MAX_IV_LENGTH];
PBE2PARAM *pbe2 = NULL;
const ASN1_OBJECT *obj;
alg_nid = EVP_CIPHER_nid(cipher);
if(alg_nid == NID_undef) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER);
goto err;
}
obj = OBJ_nid2obj(alg_nid);
if(!(pbe2 = PBE2PARAM_new())) goto merr;
/* Setup the AlgorithmIdentifier for the encryption scheme */
scheme = pbe2->encryption;
scheme->algorithm = (ASN1_OBJECT*) obj;
if(!(scheme->parameter = ASN1_TYPE_new())) goto merr;
/* Create random IV */
if (EVP_CIPHER_iv_length(cipher))
{
if (aiv)
memcpy(iv, aiv, EVP_CIPHER_iv_length(cipher));
else if (!RAND_bytes(iv, EVP_CIPHER_iv_length(cipher)))
goto err;
}
EVP_CIPHER_CTX_init(&ctx);
/* Dummy cipherinit to just setup the IV, and PRF */
if (!EVP_CipherInit_ex(&ctx, cipher, NULL, NULL, iv, 0))
goto err;
if(param_to_asn1(&ctx, scheme->parameter) < 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS);
EVP_CIPHER_CTX_cleanup(&ctx);
goto err;
}
/* If prf NID unspecified see if cipher has a preference.
* An error is OK here: just means use default PRF.
*/
if ((prf_nid == -1) &&
EVP_CIPHER_CTX_ctrl(&ctx, EVP_CTRL_PBE_PRF_NID, 0, &prf_nid) <= 0)
{
ERR_clear_error();
prf_nid = NID_hmacWithSHA1;
}
EVP_CIPHER_CTX_cleanup(&ctx);
/* If its RC2 then we'd better setup the key length */
if(alg_nid == NID_rc2_cbc)
keylen = EVP_CIPHER_key_length(cipher);
else
keylen = -1;
/* Setup keyfunc */
X509_ALGOR_free(pbe2->keyfunc);
pbe2->keyfunc = PKCS5_pbkdf2_set(iter, salt, saltlen, prf_nid, keylen);
if (!pbe2->keyfunc)
goto merr;
/* Now set up top level AlgorithmIdentifier */
if(!(ret = X509_ALGOR_new())) goto merr;
if(!(ret->parameter = ASN1_TYPE_new())) goto merr;
ret->algorithm = (ASN1_OBJECT*) OBJ_nid2obj(NID_pbes2);
/* Encode PBE2PARAM into parameter */
if(!ASN1_item_pack(pbe2, ASN1_ITEM_rptr(PBE2PARAM),
&ret->parameter->value.sequence)) goto merr;
ret->parameter->type = V_ASN1_SEQUENCE;
PBE2PARAM_free(pbe2);
pbe2 = NULL;
return ret;
merr:
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
err:
PBE2PARAM_free(pbe2);
/* Note 'scheme' is freed as part of pbe2 */
X509_ALGOR_free(kalg);
X509_ALGOR_free(ret);
return NULL;
}
X509_ALGOR *PKCS5_pbe2_set(const EVP_CIPHER *cipher, int iter,
unsigned char *salt, int saltlen)
{
return PKCS5_pbe2_set_iv(cipher, iter, salt, saltlen, NULL, -1);
}
X509_ALGOR *PKCS5_pbkdf2_set(int iter, unsigned char *salt, int saltlen,
int prf_nid, int keylen)
{
X509_ALGOR *keyfunc = NULL;
PBKDF2PARAM *kdf = NULL;
ASN1_OCTET_STRING *osalt = NULL;
if(!(kdf = PBKDF2PARAM_new()))
goto merr;
if(!(osalt = M_ASN1_OCTET_STRING_new()))
goto merr;
kdf->salt->value.octet_string = osalt;
kdf->salt->type = V_ASN1_OCTET_STRING;
if (!saltlen)
saltlen = PKCS5_SALT_LEN;
if (!(osalt->data = OPENSSL_malloc (saltlen)))
goto merr;
osalt->length = saltlen;
if (salt)
memcpy (osalt->data, salt, saltlen);
else if (!RAND_bytes(osalt->data, saltlen))
goto merr;
if(iter <= 0)
iter = PKCS5_DEFAULT_ITERATIONS;
if(!ASN1_INTEGER_set(kdf->iter, iter))
goto merr;
/* If have a key len set it up */
if(keylen > 0)
{
if(!(kdf->keylength = M_ASN1_INTEGER_new()))
goto merr;
if(!ASN1_INTEGER_set (kdf->keylength, keylen))
goto merr;
}
/* prf can stay NULL if we are using hmacWithSHA1 */
if (prf_nid > 0 && prf_nid != NID_hmacWithSHA1)
{
kdf->prf = X509_ALGOR_new();
if (!kdf->prf)
goto merr;
X509_ALGOR_set0(kdf->prf, OBJ_nid2obj(prf_nid),
V_ASN1_NULL, NULL);
}
/* Finally setup the keyfunc structure */
keyfunc = X509_ALGOR_new();
if (!keyfunc)
goto merr;
keyfunc->algorithm = (ASN1_OBJECT*) OBJ_nid2obj(NID_id_pbkdf2);
/* Encode PBKDF2PARAM into parameter of pbe2 */
if(!(keyfunc->parameter = ASN1_TYPE_new()))
goto merr;
if(!ASN1_item_pack(kdf, ASN1_ITEM_rptr(PBKDF2PARAM),
&keyfunc->parameter->value.sequence))
goto merr;
keyfunc->parameter->type = V_ASN1_SEQUENCE;
PBKDF2PARAM_free(kdf);
return keyfunc;
merr:
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
PBKDF2PARAM_free(kdf);
X509_ALGOR_free(keyfunc);
return NULL;
}
static int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx,
const uint8_t *pass_raw,
size_t pass_raw_len, const ASN1_TYPE *param,
const ASN1_TYPE *iv, int enc) {
int rv = 0;
PBKDF2PARAM *pbkdf2param = NULL;
if (EVP_CIPHER_CTX_cipher(ctx) == NULL) {
OPENSSL_PUT_ERROR(PKCS8, CIPHER_R_NO_CIPHER_SET);
goto err;
}
/* Decode parameters. */
if (param == NULL || param->type != V_ASN1_SEQUENCE) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
goto err;
}
const uint8_t *pbuf = param->value.sequence->data;
int plen = param->value.sequence->length;
pbkdf2param = d2i_PBKDF2PARAM(NULL, &pbuf, plen);
if (pbkdf2param == NULL || pbuf != param->value.sequence->data + plen) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
goto err;
}
/* Now check the parameters. */
uint8_t key[EVP_MAX_KEY_LENGTH];
const size_t key_len = EVP_CIPHER_CTX_key_length(ctx);
assert(key_len <= sizeof(key));
if (pbkdf2param->keylength != NULL &&
ASN1_INTEGER_get(pbkdf2param->keylength) != (int) key_len) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEYLENGTH);
goto err;
}
if (pbkdf2param->prf != NULL &&
OBJ_obj2nid(pbkdf2param->prf->algorithm) != NID_hmacWithSHA1) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF);
goto err;
}
if (pbkdf2param->salt->type != V_ASN1_OCTET_STRING) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_SALT_TYPE);
goto err;
}
if (pbkdf2param->iter->type != V_ASN1_INTEGER) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
goto err;
}
long iterations = ASN1_INTEGER_get(pbkdf2param->iter);
if (iterations <= 0 ||
(sizeof(long) > sizeof(unsigned) && iterations > (long)UINT_MAX)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
goto err;
}
if (iv->type != V_ASN1_OCTET_STRING || iv->value.octet_string == NULL) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS);
goto err;
}
const size_t iv_len = EVP_CIPHER_CTX_iv_length(ctx);
if ((size_t) iv->value.octet_string->length != iv_len) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS);
goto err;
}
if (!PKCS5_PBKDF2_HMAC_SHA1((const char *) pass_raw, pass_raw_len,
pbkdf2param->salt->value.octet_string->data,
pbkdf2param->salt->value.octet_string->length,
iterations, key_len, key)) {
goto err;
}
rv = EVP_CipherInit_ex(ctx, NULL /* cipher */, NULL /* engine */, key,
iv->value.octet_string->data, enc);
err:
PBKDF2PARAM_free(pbkdf2param);
return rv;
}
int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const uint8_t *pass_raw,
size_t pass_raw_len, ASN1_TYPE *param,
const EVP_CIPHER *unused, const EVP_MD *unused2,
int enc) {
PBE2PARAM *pbe2param = NULL;
int rv = 0;
if (param == NULL ||
param->type != V_ASN1_SEQUENCE ||
param->value.sequence == NULL) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
goto err;
}
const uint8_t *pbuf = param->value.sequence->data;
int plen = param->value.sequence->length;
pbe2param = d2i_PBE2PARAM(NULL, &pbuf, plen);
if (pbe2param == NULL || pbuf != param->value.sequence->data + plen) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
goto err;
}
/* Check that the key derivation function is PBKDF2. */
if (OBJ_obj2nid(pbe2param->keyfunc->algorithm) != NID_id_pbkdf2) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION);
goto err;
}
/* See if we recognise the encryption algorithm. */
const EVP_CIPHER *cipher =
EVP_get_cipherbynid(OBJ_obj2nid(pbe2param->encryption->algorithm));
if (cipher == NULL) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER);
goto err;
}
/* Fixup cipher based on AlgorithmIdentifier. */
if (!EVP_CipherInit_ex(ctx, cipher, NULL /* engine */, NULL /* key */,
NULL /* iv */, enc)) {
goto err;
}
rv = PKCS5_v2_PBKDF2_keyivgen(ctx, pass_raw, pass_raw_len,
pbe2param->keyfunc->parameter,
pbe2param->encryption->parameter, enc);
err:
PBE2PARAM_free(pbe2param);
return rv;
}