| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| * |
| * The DSS routines are based on patches supplied by |
| * Steven Schoch <schoch@sheba.arc.nasa.gov>. */ |
| |
| #include <openssl/dsa.h> |
| |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <vector> |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/crypto.h> |
| #include <openssl/err.h> |
| #include <openssl/pem.h> |
| #include <openssl/span.h> |
| |
| #include "../test/test_util.h" |
| |
| |
| // The following values are taken from the updated Appendix 5 to FIPS PUB 186 |
| // and also appear in Appendix 5 to FIPS PUB 186-1. |
| |
| static const uint8_t seed[20] = { |
| 0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 0xb6, 0x21, 0x1b, |
| 0x40, 0x62, 0xba, 0x32, 0x24, 0xe0, 0x42, 0x7d, 0xd3, |
| }; |
| |
| static const uint8_t fips_p[] = { |
| 0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76, 0xaa, 0x3d, 0x25, 0x75, |
| 0x9b, 0xb0, 0x68, 0x69, 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d, |
| 0x0c, 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82, 0xe5, 0xd0, |
| 0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e, 0xaf, 0xc2, 0xe9, 0xad, 0xac, |
| 0x32, 0xab, 0x7a, 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24, |
| 0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02, 0x91, |
| }; |
| |
| static const uint8_t fips_q[] = { |
| 0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8, 0xee, 0x99, 0x3b, 0x4f, |
| 0x2d, 0xed, 0x30, 0xf4, 0x8e, 0xda, 0xce, 0x91, 0x5f, |
| }; |
| |
| static const uint8_t fips_g[] = { |
| 0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a, 0x13, 0x41, 0x31, 0x63, |
| 0xa5, 0x5b, 0x4c, 0xb5, 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c, |
| 0xef, 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c, 0x2e, 0x71, |
| 0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba, 0xbf, 0x58, 0xe5, 0xb7, 0x95, |
| 0x21, 0x92, 0x5c, 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08, |
| 0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88, 0x02, |
| }; |
| |
| static const uint8_t fips_x[] = { |
| 0x20, 0x70, 0xb3, 0x22, 0x3d, 0xba, 0x37, 0x2f, 0xde, 0x1c, 0x0f, |
| 0xfc, 0x7b, 0x2e, 0x3b, 0x49, 0x8b, 0x26, 0x06, 0x14, |
| }; |
| |
| static const uint8_t fips_y[] = { |
| 0x19, 0x13, 0x18, 0x71, 0xd7, 0x5b, 0x16, 0x12, 0xa8, 0x19, 0xf2, |
| 0x9d, 0x78, 0xd1, 0xb0, 0xd7, 0x34, 0x6f, 0x7a, 0xa7, 0x7b, 0xb6, |
| 0x2a, 0x85, 0x9b, 0xfd, 0x6c, 0x56, 0x75, 0xda, 0x9d, 0x21, 0x2d, |
| 0x3a, 0x36, 0xef, 0x16, 0x72, 0xef, 0x66, 0x0b, 0x8c, 0x7c, 0x25, |
| 0x5c, 0xc0, 0xec, 0x74, 0x85, 0x8f, 0xba, 0x33, 0xf4, 0x4c, 0x06, |
| 0x69, 0x96, 0x30, 0xa7, 0x6b, 0x03, 0x0e, 0xe3, 0x33, |
| }; |
| |
| static const uint8_t fips_digest[] = { |
| 0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25, |
| 0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d, |
| }; |
| |
| // fips_sig is a DER-encoded version of the r and s values in FIPS PUB 186-1. |
| static const uint8_t fips_sig[] = { |
| 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, |
| 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, |
| 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, |
| 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, |
| 0xdc, 0xd8, 0xc8, |
| }; |
| |
| // fips_sig_negative is fips_sig with r encoded as a negative number. |
| static const uint8_t fips_sig_negative[] = { |
| 0x30, 0x2c, 0x02, 0x14, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43, |
| 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3, |
| 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf, |
| 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc, |
| 0xd8, 0xc8, |
| }; |
| |
| // fip_sig_extra is fips_sig with trailing data. |
| static const uint8_t fips_sig_extra[] = { |
| 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, |
| 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, |
| 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, |
| 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, |
| 0xdc, 0xd8, 0xc8, 0x00, |
| }; |
| |
| // fips_sig_lengths is fips_sig with a non-minimally encoded length. |
| static const uint8_t fips_sig_bad_length[] = { |
| 0x30, 0x81, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, |
| 0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, |
| 0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, |
| 0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, |
| 0xb6, 0xdc, 0xd8, 0xc8, 0x00, |
| }; |
| |
| // fips_sig_bad_r is fips_sig with a bad r value. |
| static const uint8_t fips_sig_bad_r[] = { |
| 0x30, 0x2d, 0x02, 0x15, 0x00, 0x8c, 0xac, 0x1a, 0xb6, 0x64, 0x10, |
| 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, |
| 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, |
| 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, |
| 0xdc, 0xd8, 0xc8, |
| }; |
| |
| static bssl::UniquePtr<DSA> GetFIPSDSAGroup(void) { |
| bssl::UniquePtr<DSA> dsa(DSA_new()); |
| if (!dsa) { |
| return nullptr; |
| } |
| bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr)); |
| bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr)); |
| bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr)); |
| if (!p || !q || !g || !DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get())) { |
| return nullptr; |
| } |
| // |DSA_set0_pqg| takes ownership. |
| p.release(); |
| q.release(); |
| g.release(); |
| return dsa; |
| } |
| |
| static bssl::UniquePtr<DSA> GetFIPSDSA(void) { |
| bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup(); |
| if (!dsa) { |
| return nullptr; |
| } |
| bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr)); |
| bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr)); |
| if (!pub_key || !priv_key || |
| !DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get())) { |
| return nullptr; |
| } |
| // |DSA_set0_key| takes ownership. |
| pub_key.release(); |
| priv_key.release(); |
| return dsa; |
| } |
| |
| TEST(DSATest, Generate) { |
| bssl::UniquePtr<DSA> dsa(DSA_new()); |
| ASSERT_TRUE(dsa); |
| int counter; |
| unsigned long h; |
| ASSERT_TRUE(DSA_generate_parameters_ex(dsa.get(), 512, seed, 20, &counter, &h, |
| nullptr)); |
| EXPECT_EQ(counter, 105); |
| EXPECT_EQ(h, 2u); |
| |
| auto expect_bn_bytes = [](const char *msg, const BIGNUM *bn, |
| bssl::Span<const uint8_t> bytes) { |
| std::vector<uint8_t> buf(BN_num_bytes(bn)); |
| BN_bn2bin(bn, buf.data()); |
| EXPECT_EQ(Bytes(buf), Bytes(bytes)) << msg; |
| }; |
| expect_bn_bytes("q value is wrong", DSA_get0_q(dsa.get()), fips_q); |
| expect_bn_bytes("p value is wrong", DSA_get0_p(dsa.get()), fips_p); |
| expect_bn_bytes("g value is wrong", DSA_get0_g(dsa.get()), fips_g); |
| |
| ASSERT_TRUE(DSA_generate_key(dsa.get())); |
| |
| std::vector<uint8_t> sig(DSA_size(dsa.get())); |
| unsigned sig_len; |
| ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), |
| &sig_len, dsa.get())); |
| |
| EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(), |
| sig_len, dsa.get())); |
| } |
| |
| TEST(DSATest, Verify) { |
| bssl::UniquePtr<DSA> dsa = GetFIPSDSA(); |
| ASSERT_TRUE(dsa); |
| |
| EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig, |
| sizeof(fips_sig), dsa.get())); |
| EXPECT_EQ(-1, |
| DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_negative, |
| sizeof(fips_sig_negative), dsa.get())); |
| EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_extra, |
| sizeof(fips_sig_extra), dsa.get())); |
| EXPECT_EQ(-1, |
| DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_length, |
| sizeof(fips_sig_bad_length), dsa.get())); |
| EXPECT_EQ(0, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig_bad_r, |
| sizeof(fips_sig_bad_r), dsa.get())); |
| } |
| |
| TEST(DSATest, InvalidGroup) { |
| bssl::UniquePtr<DSA> dsa = GetFIPSDSA(); |
| ASSERT_TRUE(dsa); |
| BN_zero(dsa->g); |
| |
| std::vector<uint8_t> sig(DSA_size(dsa.get())); |
| unsigned sig_len; |
| static const uint8_t kDigest[32] = {0}; |
| EXPECT_FALSE( |
| DSA_sign(0, kDigest, sizeof(kDigest), sig.data(), &sig_len, dsa.get())); |
| uint32_t err = ERR_get_error(); |
| EXPECT_EQ(ERR_LIB_DSA, ERR_GET_LIB(err)); |
| EXPECT_EQ(DSA_R_INVALID_PARAMETERS, ERR_GET_REASON(err)); |
| } |
| |
| // Signing and verifying should cleanly fail when the DSA object is empty. |
| TEST(DSATest, MissingParameters) { |
| bssl::UniquePtr<DSA> dsa(DSA_new()); |
| ASSERT_TRUE(dsa); |
| EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig, |
| sizeof(fips_sig), dsa.get())); |
| |
| std::vector<uint8_t> sig(DSA_size(dsa.get())); |
| unsigned sig_len; |
| EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), |
| &sig_len, dsa.get())); |
| } |
| |
| // Verifying should cleanly fail when the public key is missing. |
| TEST(DSATest, MissingPublic) { |
| bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup(); |
| ASSERT_TRUE(dsa); |
| EXPECT_EQ(-1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig, |
| sizeof(fips_sig), dsa.get())); |
| } |
| |
| // Signing should cleanly fail when the private key is missing. |
| TEST(DSATest, MissingPrivate) { |
| bssl::UniquePtr<DSA> dsa = GetFIPSDSAGroup(); |
| ASSERT_TRUE(dsa); |
| |
| std::vector<uint8_t> sig(DSA_size(dsa.get())); |
| unsigned sig_len; |
| EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), |
| &sig_len, dsa.get())); |
| } |
| |
| // A zero private key is invalid and can cause signing to loop forever. |
| TEST(DSATest, ZeroPrivateKey) { |
| bssl::UniquePtr<DSA> dsa = GetFIPSDSA(); |
| ASSERT_TRUE(dsa); |
| BN_zero(dsa->priv_key); |
| |
| static const uint8_t kZeroDigest[32] = {0}; |
| std::vector<uint8_t> sig(DSA_size(dsa.get())); |
| unsigned sig_len; |
| EXPECT_FALSE(DSA_sign(0, kZeroDigest, sizeof(kZeroDigest), sig.data(), |
| &sig_len, dsa.get())); |
| } |
| |
| // If the "field" is actually a ring and the "generator" of the multiplicative |
| // subgroup is actually nilpotent with low degree, DSA signing never completes. |
| // Test that we give up in the infinite loop. |
| TEST(DSATest, NilpotentGenerator) { |
| static const char kPEM[] = R"( |
| -----BEGIN DSA PRIVATE KEY----- |
| MGECAQACFQHH+MnFXh4NNlZiV/zUVb5a5ib3kwIVAOP8ZOKvDwabKzEr/moq3y1z |
| E3vJAhUAl/2Ylx9fWbzHdh1URsc/c6IM/TECAQECFCsjU4AZRcuks45g1NMOUeCB |
| Epvg |
| -----END DSA PRIVATE KEY----- |
| )"; |
| bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM))); |
| ASSERT_TRUE(bio); |
| bssl::UniquePtr<DSA> dsa( |
| PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr)); |
| ASSERT_TRUE(dsa); |
| |
| std::vector<uint8_t> sig(DSA_size(dsa.get())); |
| unsigned sig_len; |
| EXPECT_FALSE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), |
| &sig_len, dsa.get())); |
| } |
| |
| TEST(DSATest, Overwrite) { |
| // Load an arbitrary DSA private key and use it. |
| static const char kPEM[] = R"( |
| -----BEGIN DSA PRIVATE KEY----- |
| MIIDTgIBAAKCAQEAyH68EuravtF+7PTFBtWJkwjmp0YJmh8e2Cdpu8ci3dZf87rk |
| GwXzfqYkAEkW5H4Hp0cxdICKFiqfxjSaiEauOrNV+nXWZS634hZ9H47I8HnAVS0p |
| 5MmSmPJ7NNUowymMpyB6M6hfqHl/1pZd7avbTmnzb2SZ0kw0WLWJo6vMekepYWv9 |
| 3o1Xove4ci00hnkr7Qo9Bh/+z84jgeT2/MTdsCVtbuMv/mbcYLhCKVWPBozDZr/D |
| qwhGTlomsTRvP3WIbem3b5eYhQaPuMsKiAzntcinoxQXWrIoZB+xJyF/sI013uBI |
| i9ePSxY3704U4QGxVM0aR/6fzORz5kh8ZjhhywIdAI9YBUR6eoGevUaLq++qXiYW |
| TgXBXlyqE32ESbkCggEBAL/c5GerO5g25D0QsfgVIJtlZHQOwYauuWoUudaQiyf6 |
| VhWLBNNTAGldkFGdtxsA42uqqZSXCki25LvN6PscGGvFy8oPWaa9TGt+l9Z5ZZiV |
| ShNpg71V9YuImsPB3BrQ4L6nZLfhBt6InzJ6KqjDNdg7u6lgnFKue7l6khzqNxbM |
| RgxHWMq7PkhMcl+RzpqbiGcxSHqraxldutqCWsnZzhKh4d4GdunuRY8GiFo0Axkb |
| Kn0Il3zm81ewv08F/ocu+IZQEzxTyR8YRQ99MLVbnwhVxndEdLjjetCX82l+/uEY |
| 5fdUy0thR8odcDsvUc/tT57I+yhnno80HbpUUNw2+/sCggEAdh1wp/9CifYIp6T8 |
| P/rIus6KberZ2Pv/n0bl+Gv8AoToA0zhZXIfY2l0TtanKmdLqPIvjqkN0v6zGSs+ |
| +ahR1QzMQnK718mcsQmB4X6iP5LKgJ/t0g8LrDOxc/cNycmHq76MmF9RN5NEBz4+ |
| PAnRIftm/b0UQflP6uy3gRQP2X7P8ZebCytOPKTZC4oLyCtvPevSkCiiauq/RGjL |
| k6xqRgLxMtmuyhT+dcVbtllV1p1xd9Bppnk17/kR5VCefo/e/7DHu163izRDW8tx |
| SrEmiVyVkRijY3bVZii7LPfMz5eEAWEDJRuFwyNv3i6j7CKeZw2d/hzu370Ua28F |
| s2lmkAIcLIFUDFrbC2nViaB5ATM9ARKk6F2QwnCfGCyZ6A== |
| -----END DSA PRIVATE KEY----- |
| )"; |
| bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kPEM, sizeof(kPEM))); |
| ASSERT_TRUE(bio); |
| bssl::UniquePtr<DSA> dsa( |
| PEM_read_bio_DSAPrivateKey(bio.get(), nullptr, nullptr, nullptr)); |
| ASSERT_TRUE(dsa); |
| |
| std::vector<uint8_t> sig(DSA_size(dsa.get())); |
| unsigned sig_len; |
| ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), |
| &sig_len, dsa.get())); |
| sig.resize(sig_len); |
| EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(), |
| sig.size(), dsa.get())); |
| |
| // Overwrite it with the sample key. |
| bssl::UniquePtr<BIGNUM> p(BN_bin2bn(fips_p, sizeof(fips_p), nullptr)); |
| ASSERT_TRUE(p); |
| bssl::UniquePtr<BIGNUM> q(BN_bin2bn(fips_q, sizeof(fips_q), nullptr)); |
| ASSERT_TRUE(q); |
| bssl::UniquePtr<BIGNUM> g(BN_bin2bn(fips_g, sizeof(fips_g), nullptr)); |
| ASSERT_TRUE(g); |
| ASSERT_TRUE(DSA_set0_pqg(dsa.get(), p.get(), q.get(), g.get())); |
| // |DSA_set0_pqg| takes ownership on success. |
| p.release(); |
| q.release(); |
| g.release(); |
| bssl::UniquePtr<BIGNUM> pub_key(BN_bin2bn(fips_y, sizeof(fips_y), nullptr)); |
| ASSERT_TRUE(pub_key); |
| bssl::UniquePtr<BIGNUM> priv_key(BN_bin2bn(fips_x, sizeof(fips_x), nullptr)); |
| ASSERT_TRUE(priv_key); |
| ASSERT_TRUE(DSA_set0_key(dsa.get(), pub_key.get(), priv_key.get())); |
| // |DSA_set0_key| takes ownership on success. |
| pub_key.release(); |
| priv_key.release(); |
| |
| // The key should now work correctly for the new parameters. |
| EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), fips_sig, |
| sizeof(fips_sig), dsa.get())); |
| |
| // Test signing by verifying it round-trips through the real key. |
| sig.resize(DSA_size(dsa.get())); |
| ASSERT_TRUE(DSA_sign(0, fips_digest, sizeof(fips_digest), sig.data(), |
| &sig_len, dsa.get())); |
| sig.resize(sig_len); |
| dsa = GetFIPSDSA(); |
| ASSERT_TRUE(dsa); |
| EXPECT_EQ(1, DSA_verify(0, fips_digest, sizeof(fips_digest), sig.data(), |
| sig.size(), dsa.get())); |
| } |