|  | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/base.h> | 
|  |  | 
|  | #if !defined(OPENSSL_NO_ASM) && \ | 
|  | (defined(OPENSSL_X86) || defined(OPENSSL_X86_64)) | 
|  |  | 
|  | #include <inttypes.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #if defined(_MSC_VER) | 
|  | OPENSSL_MSVC_PRAGMA(warning(push, 3)) | 
|  | #include <immintrin.h> | 
|  | #include <intrin.h> | 
|  | OPENSSL_MSVC_PRAGMA(warning(pop)) | 
|  | #endif | 
|  |  | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | // OPENSSL_cpuid runs the cpuid instruction. |leaf| is passed in as EAX and ECX | 
|  | // is set to zero. It writes EAX, EBX, ECX, and EDX to |*out_eax| through | 
|  | // |*out_edx|. | 
|  | static void OPENSSL_cpuid(uint32_t *out_eax, uint32_t *out_ebx, | 
|  | uint32_t *out_ecx, uint32_t *out_edx, uint32_t leaf) { | 
|  | #if defined(_MSC_VER) | 
|  | int tmp[4]; | 
|  | __cpuid(tmp, (int)leaf); | 
|  | *out_eax = (uint32_t)tmp[0]; | 
|  | *out_ebx = (uint32_t)tmp[1]; | 
|  | *out_ecx = (uint32_t)tmp[2]; | 
|  | *out_edx = (uint32_t)tmp[3]; | 
|  | #elif defined(__pic__) && defined(OPENSSL_32_BIT) | 
|  | // Inline assembly may not clobber the PIC register. For 32-bit, this is EBX. | 
|  | // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=47602. | 
|  | __asm__ volatile( | 
|  | "xor %%ecx, %%ecx\n" | 
|  | "mov %%ebx, %%edi\n" | 
|  | "cpuid\n" | 
|  | "xchg %%edi, %%ebx\n" | 
|  | : "=a"(*out_eax), "=D"(*out_ebx), "=c"(*out_ecx), "=d"(*out_edx) | 
|  | : "a"(leaf)); | 
|  | #else | 
|  | __asm__ volatile( | 
|  | "xor %%ecx, %%ecx\n" | 
|  | "cpuid\n" | 
|  | : "=a"(*out_eax), "=b"(*out_ebx), "=c"(*out_ecx), "=d"(*out_edx) | 
|  | : "a"(leaf)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // OPENSSL_xgetbv returns the value of an Intel Extended Control Register (XCR). | 
|  | // Currently only XCR0 is defined by Intel so |xcr| should always be zero. | 
|  | static uint64_t OPENSSL_xgetbv(uint32_t xcr) { | 
|  | #if defined(_MSC_VER) | 
|  | return (uint64_t)_xgetbv(xcr); | 
|  | #else | 
|  | uint32_t eax, edx; | 
|  | __asm__ volatile("xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr)); | 
|  | return (((uint64_t)edx) << 32) | eax; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static bool os_supports_avx512(uint64_t xcr0) { | 
|  | #if defined(__APPLE__) | 
|  | // The Darwin kernel had a bug where it could corrupt the opmask registers. | 
|  | // See | 
|  | // https://community.intel.com/t5/Software-Tuning-Performance/MacOS-Darwin-kernel-bug-clobbers-AVX-512-opmask-register-state/m-p/1327259 | 
|  | // Darwin also does not initially set the XCR0 bits for AVX512, but they are | 
|  | // set if the thread tries to use AVX512 anyway.  Thus, to safely and | 
|  | // consistently use AVX512 on macOS we'd need to check the kernel version as | 
|  | // well as detect AVX512 support using a macOS-specific method.  We don't | 
|  | // bother with this, especially given Apple's transition to arm64. | 
|  | return false; | 
|  | #else | 
|  | return (xcr0 & 0xe6) == 0xe6; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // handle_cpu_env applies the value from |in| to the CPUID values in |out[0]| | 
|  | // and |out[1]|. See the comment in |OPENSSL_cpuid_setup| about this. | 
|  | static void handle_cpu_env(uint32_t *out, const char *in) { | 
|  | const int invert_op = in[0] == '~'; | 
|  | const int or_op = in[0] == '|'; | 
|  | const int skip_first_byte = invert_op || or_op; | 
|  | const int hex = in[skip_first_byte] == '0' && in[skip_first_byte + 1] == 'x'; | 
|  |  | 
|  | int sscanf_result; | 
|  | uint64_t v; | 
|  | if (hex) { | 
|  | sscanf_result = sscanf(in + invert_op + 2, "%" PRIx64, &v); | 
|  | } else { | 
|  | sscanf_result = sscanf(in + invert_op, "%" PRIu64, &v); | 
|  | } | 
|  |  | 
|  | if (!sscanf_result) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (invert_op) { | 
|  | out[0] &= ~v; | 
|  | out[1] &= ~(v >> 32); | 
|  | } else if (or_op) { | 
|  | out[0] |= v; | 
|  | out[1] |= (v >> 32); | 
|  | } else { | 
|  | out[0] = v; | 
|  | out[1] = v >> 32; | 
|  | } | 
|  | } | 
|  |  | 
|  | void OPENSSL_cpuid_setup(void) { | 
|  | // Determine the vendor and maximum input value. | 
|  | uint32_t eax, ebx, ecx, edx; | 
|  | OPENSSL_cpuid(&eax, &ebx, &ecx, &edx, 0); | 
|  |  | 
|  | uint32_t num_ids = eax; | 
|  |  | 
|  | int is_intel = ebx == 0x756e6547 /* Genu */ && // | 
|  | edx == 0x49656e69 /* ineI */ && // | 
|  | ecx == 0x6c65746e /* ntel */; | 
|  | int is_amd = ebx == 0x68747541 /* Auth */ && // | 
|  | edx == 0x69746e65 /* enti */ && // | 
|  | ecx == 0x444d4163 /* cAMD */; | 
|  |  | 
|  | uint32_t extended_features[2] = {0}; | 
|  | if (num_ids >= 7) { | 
|  | OPENSSL_cpuid(&eax, &ebx, &ecx, &edx, 7); | 
|  | extended_features[0] = ebx; | 
|  | extended_features[1] = ecx; | 
|  | } | 
|  |  | 
|  | OPENSSL_cpuid(&eax, &ebx, &ecx, &edx, 1); | 
|  |  | 
|  | const uint32_t base_family = (eax >> 8) & 15; | 
|  | const uint32_t base_model = (eax >> 4) & 15; | 
|  |  | 
|  | uint32_t family = base_family; | 
|  | uint32_t model = base_model; | 
|  | if (base_family == 15) { | 
|  | const uint32_t ext_family = (eax >> 20) & 255; | 
|  | family += ext_family; | 
|  | } | 
|  | if (base_family == 6 || base_family == 15) { | 
|  | const uint32_t ext_model = (eax >> 16) & 15; | 
|  | model |= ext_model << 4; | 
|  | } | 
|  |  | 
|  | if (is_amd) { | 
|  | if (family < 0x17 || (family == 0x17 && 0x70 <= model && model <= 0x7f)) { | 
|  | // Disable RDRAND on AMD families before 0x17 (Zen) due to reported | 
|  | // failures after suspend. | 
|  | // https://bugzilla.redhat.com/show_bug.cgi?id=1150286 | 
|  | // Also disable for family 0x17, models 0x70–0x7f, due to possible RDRAND | 
|  | // failures there too. | 
|  | ecx &= ~(1u << 30); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reserved bit #30 is repurposed to signal an Intel CPU. | 
|  | if (is_intel) { | 
|  | edx |= (1u << 30); | 
|  | } else { | 
|  | edx &= ~(1u << 30); | 
|  | } | 
|  |  | 
|  | uint64_t xcr0 = 0; | 
|  | if (ecx & (1u << 27)) { | 
|  | // XCR0 may only be queried if the OSXSAVE bit is set. | 
|  | xcr0 = OPENSSL_xgetbv(0); | 
|  | } | 
|  | // See Intel manual, volume 1, section 14.3. | 
|  | if ((xcr0 & 6) != 6) { | 
|  | // YMM registers cannot be used. | 
|  | ecx &= ~(1u << 28);                   // AVX | 
|  | ecx &= ~(1u << 12);                   // FMA | 
|  | ecx &= ~(1u << 11);                   // AMD XOP | 
|  | extended_features[0] &= ~(1u << 5);   // AVX2 | 
|  | extended_features[1] &= ~(1u << 9);   // VAES | 
|  | extended_features[1] &= ~(1u << 10);  // VPCLMULQDQ | 
|  | } | 
|  | // See Intel manual, volume 1, sections 15.2 ("Detection of AVX-512 Foundation | 
|  | // Instructions") through 15.4 ("Detection of Intel AVX-512 Instruction Groups | 
|  | // Operating at 256 and 128-bit Vector Lengths"). | 
|  | if (!os_supports_avx512(xcr0)) { | 
|  | // Without XCR0.111xx11x, no AVX512 feature can be used. This includes ZMM | 
|  | // registers, masking, SIMD registers 16-31 (even if accessed as YMM or | 
|  | // XMM), and EVEX-coded instructions (even on YMM or XMM). Even if only | 
|  | // XCR0.ZMM_Hi256 is missing, it isn't valid to use AVX512 features on | 
|  | // shorter vectors, since AVX512 ties everything to the availability of | 
|  | // 512-bit vectors. See the above-mentioned sections of the Intel manual, | 
|  | // which say that *all* these XCR0 bits must be checked even when just using | 
|  | // 128-bit or 256-bit vectors, and also volume 2a section 2.7.11 ("#UD | 
|  | // Equations for EVEX") which says that all EVEX-coded instructions raise an | 
|  | // undefined-instruction exception if any of these XCR0 bits is zero. | 
|  | // | 
|  | // AVX10 fixes this by reorganizing the features that used to be part of | 
|  | // "AVX512" and allowing them to be used independently of 512-bit support. | 
|  | // TODO: add AVX10 detection. | 
|  | extended_features[0] &= ~(1u << 16);  // AVX512F | 
|  | extended_features[0] &= ~(1u << 17);  // AVX512DQ | 
|  | extended_features[0] &= ~(1u << 21);  // AVX512IFMA | 
|  | extended_features[0] &= ~(1u << 26);  // AVX512PF | 
|  | extended_features[0] &= ~(1u << 27);  // AVX512ER | 
|  | extended_features[0] &= ~(1u << 28);  // AVX512CD | 
|  | extended_features[0] &= ~(1u << 30);  // AVX512BW | 
|  | extended_features[0] &= ~(1u << 31);  // AVX512VL | 
|  | extended_features[1] &= ~(1u << 1);   // AVX512VBMI | 
|  | extended_features[1] &= ~(1u << 6);   // AVX512VBMI2 | 
|  | extended_features[1] &= ~(1u << 11);  // AVX512VNNI | 
|  | extended_features[1] &= ~(1u << 12);  // AVX512BITALG | 
|  | extended_features[1] &= ~(1u << 14);  // AVX512VPOPCNTDQ | 
|  | } | 
|  |  | 
|  | // Repurpose the bit for the removed MPX feature to indicate when using zmm | 
|  | // registers should be avoided even when they are supported. (When set, AVX512 | 
|  | // features can still be used, but only using ymm or xmm registers.) Skylake | 
|  | // suffered from severe downclocking when zmm registers were used, which | 
|  | // affected unrelated code running on the system, making zmm registers not too | 
|  | // useful outside of benchmarks. The situation improved significantly by Ice | 
|  | // Lake, but a small amount of downclocking remained. (See | 
|  | // https://lore.kernel.org/linux-crypto/e8ce1146-3952-6977-1d0e-a22758e58914@intel.com/) | 
|  | // We take a conservative approach of not allowing zmm registers until after | 
|  | // Ice Lake and Tiger Lake, i.e. until Sapphire Rapids on the server side. | 
|  | // | 
|  | // AMD CPUs, which support AVX512 starting with Zen 4, have not been reported | 
|  | // to have any downclocking problem when zmm registers are used. | 
|  | if (is_intel && family == 6 && | 
|  | (model == 85 ||    // Skylake, Cascade Lake, Cooper Lake (server) | 
|  | model == 106 ||   // Ice Lake (server) | 
|  | model == 108 ||   // Ice Lake (micro server) | 
|  | model == 125 ||   // Ice Lake (client) | 
|  | model == 126 ||   // Ice Lake (mobile) | 
|  | model == 140 ||   // Tiger Lake (mobile) | 
|  | model == 141)) {  // Tiger Lake (client) | 
|  | extended_features[0] |= 1u << 14; | 
|  | } else { | 
|  | extended_features[0] &= ~(1u << 14); | 
|  | } | 
|  |  | 
|  | OPENSSL_ia32cap_P[0] = edx; | 
|  | OPENSSL_ia32cap_P[1] = ecx; | 
|  | OPENSSL_ia32cap_P[2] = extended_features[0]; | 
|  | OPENSSL_ia32cap_P[3] = extended_features[1]; | 
|  |  | 
|  | const char *env1, *env2; | 
|  | env1 = getenv("OPENSSL_ia32cap"); | 
|  | if (env1 == NULL) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // OPENSSL_ia32cap can contain zero, one or two values, separated with a ':'. | 
|  | // Each value is a 64-bit, unsigned value which may start with "0x" to | 
|  | // indicate a hex value. Prior to the 64-bit value, a '~' or '|' may be given. | 
|  | // | 
|  | // If the '~' prefix is present: | 
|  | //   the value is inverted and ANDed with the probed CPUID result | 
|  | // If the '|' prefix is present: | 
|  | //   the value is ORed with the probed CPUID result | 
|  | // Otherwise: | 
|  | //   the value is taken as the result of the CPUID | 
|  | // | 
|  | // The first value determines OPENSSL_ia32cap_P[0] and [1]. The second [2] | 
|  | // and [3]. | 
|  |  | 
|  | handle_cpu_env(&OPENSSL_ia32cap_P[0], env1); | 
|  | env2 = strchr(env1, ':'); | 
|  | if (env2 != NULL) { | 
|  | handle_cpu_env(&OPENSSL_ia32cap_P[2], env2 + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // !OPENSSL_NO_ASM && (OPENSSL_X86 || OPENSSL_X86_64) |