| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <limits.h> |
| |
| #include <openssl/ec.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/mem.h> |
| #include <openssl/type_check.h> |
| #include <openssl/x509.h> |
| #include <openssl/x509v3.h> |
| |
| #include "internal.h" |
| |
| |
| static int ssl_set_cert(CERT *c, X509 *x509); |
| static int ssl_set_pkey(CERT *c, EVP_PKEY *pkey); |
| |
| static int is_key_type_supported(int key_type) { |
| return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC; |
| } |
| |
| int SSL_use_certificate(SSL *ssl, X509 *x) { |
| if (x == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| return ssl_set_cert(ssl->cert, x); |
| } |
| |
| int SSL_use_certificate_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) { |
| if (der_len > LONG_MAX) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| const uint8_t *p = der; |
| X509 *x509 = d2i_X509(NULL, &p, (long)der_len); |
| if (x509 == NULL || p != der + der_len) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
| X509_free(x509); |
| return 0; |
| } |
| |
| int ret = SSL_use_certificate(ssl, x509); |
| X509_free(x509); |
| return ret; |
| } |
| |
| int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) { |
| EVP_PKEY *pkey; |
| int ret; |
| |
| if (rsa == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| pkey = EVP_PKEY_new(); |
| if (pkey == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); |
| return 0; |
| } |
| |
| RSA_up_ref(rsa); |
| EVP_PKEY_assign_RSA(pkey, rsa); |
| |
| ret = ssl_set_pkey(ssl->cert, pkey); |
| EVP_PKEY_free(pkey); |
| |
| return ret; |
| } |
| |
| static int ssl_set_pkey(CERT *c, EVP_PKEY *pkey) { |
| if (!is_key_type_supported(pkey->type)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); |
| return 0; |
| } |
| |
| X509 *x509_leaf = c->x509_leaf; |
| if (x509_leaf != NULL) { |
| /* Sanity-check that the private key and the certificate match, unless the |
| * key is opaque (in case of, say, a smartcard). */ |
| if (!EVP_PKEY_is_opaque(pkey) && |
| !X509_check_private_key(x509_leaf, pkey)) { |
| X509_free(c->x509_leaf); |
| c->x509_leaf = NULL; |
| return 0; |
| } |
| } |
| |
| EVP_PKEY_free(c->privatekey); |
| EVP_PKEY_up_ref(pkey); |
| c->privatekey = pkey; |
| |
| return 1; |
| } |
| |
| int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) { |
| int ret; |
| |
| if (pkey == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| ret = ssl_set_pkey(ssl->cert, pkey); |
| return ret; |
| } |
| |
| int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der, |
| size_t der_len) { |
| if (der_len > LONG_MAX) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| const uint8_t *p = der; |
| EVP_PKEY *pkey = d2i_PrivateKey(type, NULL, &p, (long)der_len); |
| if (pkey == NULL || p != der + der_len) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
| EVP_PKEY_free(pkey); |
| return 0; |
| } |
| |
| int ret = SSL_use_PrivateKey(ssl, pkey); |
| EVP_PKEY_free(pkey); |
| return ret; |
| } |
| |
| int SSL_CTX_use_certificate(SSL_CTX *ctx, X509 *x) { |
| if (x == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| return ssl_set_cert(ctx->cert, x); |
| } |
| |
| static int ssl_set_cert(CERT *c, X509 *x) { |
| EVP_PKEY *pkey = X509_get_pubkey(x); |
| if (pkey == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_X509_LIB); |
| return 0; |
| } |
| |
| if (!is_key_type_supported(pkey->type)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); |
| EVP_PKEY_free(pkey); |
| return 0; |
| } |
| |
| /* An ECC certificate may be usable for ECDH or ECDSA. We only support ECDSA |
| * certificates, so sanity-check the key usage extension. */ |
| if (pkey->type == EVP_PKEY_EC) { |
| /* This call populates extension flags (ex_flags). */ |
| X509_check_purpose(x, -1, 0); |
| if ((x->ex_flags & EXFLAG_KUSAGE) && |
| !(x->ex_kusage & X509v3_KU_DIGITAL_SIGNATURE)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE); |
| EVP_PKEY_free(pkey); |
| return 0; |
| } |
| } |
| |
| if (c->privatekey != NULL) { |
| /* Sanity-check that the private key and the certificate match, unless the |
| * key is opaque (in case of, say, a smartcard). */ |
| if (!EVP_PKEY_is_opaque(c->privatekey) && |
| !X509_check_private_key(x, c->privatekey)) { |
| /* don't fail for a cert/key mismatch, just free current private key |
| * (when switching to a different cert & key, first this function should |
| * be used, then ssl_set_pkey */ |
| EVP_PKEY_free(c->privatekey); |
| c->privatekey = NULL; |
| /* clear error queue */ |
| ERR_clear_error(); |
| } |
| } |
| |
| EVP_PKEY_free(pkey); |
| |
| X509_free(c->x509_leaf); |
| X509_up_ref(x); |
| c->x509_leaf = x; |
| |
| return 1; |
| } |
| |
| int SSL_CTX_use_certificate_ASN1(SSL_CTX *ctx, size_t der_len, |
| const uint8_t *der) { |
| if (der_len > LONG_MAX) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| const uint8_t *p = der; |
| X509 *x509 = d2i_X509(NULL, &p, (long)der_len); |
| if (x509 == NULL || p != der + der_len) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
| X509_free(x509); |
| return 0; |
| } |
| |
| int ret = SSL_CTX_use_certificate(ctx, x509); |
| X509_free(x509); |
| return ret; |
| } |
| |
| int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) { |
| int ret; |
| EVP_PKEY *pkey; |
| |
| if (rsa == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| pkey = EVP_PKEY_new(); |
| if (pkey == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB); |
| return 0; |
| } |
| |
| RSA_up_ref(rsa); |
| EVP_PKEY_assign_RSA(pkey, rsa); |
| |
| ret = ssl_set_pkey(ctx->cert, pkey); |
| EVP_PKEY_free(pkey); |
| return ret; |
| } |
| |
| int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der, |
| size_t der_len) { |
| RSA *rsa = RSA_private_key_from_bytes(der, der_len); |
| if (rsa == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
| return 0; |
| } |
| |
| int ret = SSL_CTX_use_RSAPrivateKey(ctx, rsa); |
| RSA_free(rsa); |
| return ret; |
| } |
| |
| int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) { |
| if (pkey == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| return ssl_set_pkey(ctx->cert, pkey); |
| } |
| |
| int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der, |
| size_t der_len) { |
| if (der_len > LONG_MAX) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| return 0; |
| } |
| |
| const uint8_t *p = der; |
| EVP_PKEY *pkey = d2i_PrivateKey(type, NULL, &p, (long)der_len); |
| if (pkey == NULL || p != der + der_len) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
| EVP_PKEY_free(pkey); |
| return 0; |
| } |
| |
| int ret = SSL_CTX_use_PrivateKey(ctx, pkey); |
| EVP_PKEY_free(pkey); |
| return ret; |
| } |
| |
| void SSL_set_private_key_method(SSL *ssl, |
| const SSL_PRIVATE_KEY_METHOD *key_method) { |
| ssl->cert->key_method = key_method; |
| } |
| |
| void SSL_CTX_set_private_key_method(SSL_CTX *ctx, |
| const SSL_PRIVATE_KEY_METHOD *key_method) { |
| ctx->cert->key_method = key_method; |
| } |
| |
| static int set_signing_algorithm_prefs(CERT *cert, const uint16_t *prefs, |
| size_t num_prefs) { |
| OPENSSL_free(cert->sigalgs); |
| |
| cert->num_sigalgs = 0; |
| cert->sigalgs = BUF_memdup(prefs, num_prefs * sizeof(prefs[0])); |
| if (cert->sigalgs == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| cert->num_sigalgs = num_prefs; |
| |
| return 1; |
| } |
| |
| int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs, |
| size_t num_prefs) { |
| return set_signing_algorithm_prefs(ctx->cert, prefs, num_prefs); |
| } |
| |
| |
| int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs, |
| size_t num_prefs) { |
| return set_signing_algorithm_prefs(ssl->cert, prefs, num_prefs); |
| } |
| |
| OPENSSL_COMPILE_ASSERT(sizeof(int) >= 2 * sizeof(uint16_t), |
| digest_list_conversion_cannot_overflow); |
| |
| int SSL_set_private_key_digest_prefs(SSL *ssl, const int *digest_nids, |
| size_t num_digests) { |
| OPENSSL_free(ssl->cert->sigalgs); |
| |
| ssl->cert->num_sigalgs = 0; |
| ssl->cert->sigalgs = OPENSSL_malloc(sizeof(uint16_t) * 2 * num_digests); |
| if (ssl->cert->sigalgs == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| /* Convert the digest list to a signature algorithms list. |
| * |
| * TODO(davidben): Replace this API with one that can express RSA-PSS, etc. */ |
| for (size_t i = 0; i < num_digests; i++) { |
| switch (digest_nids[i]) { |
| case NID_sha1: |
| ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA1; |
| ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] = SSL_SIGN_ECDSA_SHA1; |
| ssl->cert->num_sigalgs += 2; |
| break; |
| case NID_sha256: |
| ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA256; |
| ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] = |
| SSL_SIGN_ECDSA_SECP256R1_SHA256; |
| ssl->cert->num_sigalgs += 2; |
| break; |
| case NID_sha384: |
| ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA384; |
| ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] = |
| SSL_SIGN_ECDSA_SECP384R1_SHA384; |
| ssl->cert->num_sigalgs += 2; |
| break; |
| case NID_sha512: |
| ssl->cert->sigalgs[ssl->cert->num_sigalgs] = SSL_SIGN_RSA_PKCS1_SHA512; |
| ssl->cert->sigalgs[ssl->cert->num_sigalgs + 1] = |
| SSL_SIGN_ECDSA_SECP521R1_SHA512; |
| ssl->cert->num_sigalgs += 2; |
| break; |
| } |
| } |
| |
| return 1; |
| } |
| |
| int ssl_has_private_key(const SSL *ssl) { |
| return ssl->cert->privatekey != NULL || ssl->cert->key_method != NULL; |
| } |
| |
| int ssl_is_ecdsa_key_type(int type) { |
| switch (type) { |
| /* TODO(davidben): Remove support for |EVP_PKEY_EC| key types. */ |
| case EVP_PKEY_EC: |
| case NID_X9_62_prime256v1: |
| case NID_secp384r1: |
| case NID_secp521r1: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| int ssl_private_key_type(SSL *ssl) { |
| if (ssl->cert->key_method != NULL) { |
| return ssl->cert->key_method->type(ssl); |
| } |
| switch (EVP_PKEY_id(ssl->cert->privatekey)) { |
| case EVP_PKEY_RSA: |
| return NID_rsaEncryption; |
| case EVP_PKEY_EC: |
| return EC_GROUP_get_curve_name( |
| EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(ssl->cert->privatekey))); |
| default: |
| return NID_undef; |
| } |
| } |
| |
| size_t ssl_private_key_max_signature_len(SSL *ssl) { |
| if (ssl->cert->key_method != NULL) { |
| return ssl->cert->key_method->max_signature_len(ssl); |
| } |
| return EVP_PKEY_size(ssl->cert->privatekey); |
| } |
| |
| /* TODO(davidben): Forbid RSA-PKCS1 in TLS 1.3. For now we allow it because NSS |
| * has yet to start doing RSA-PSS, so enforcing it would complicate interop |
| * testing. */ |
| static int is_rsa_pkcs1(const EVP_MD **out_md, uint16_t sigalg) { |
| switch (sigalg) { |
| case SSL_SIGN_RSA_PKCS1_MD5_SHA1: |
| *out_md = EVP_md5_sha1(); |
| return 1; |
| case SSL_SIGN_RSA_PKCS1_SHA1: |
| *out_md = EVP_sha1(); |
| return 1; |
| case SSL_SIGN_RSA_PKCS1_SHA256: |
| *out_md = EVP_sha256(); |
| return 1; |
| case SSL_SIGN_RSA_PKCS1_SHA384: |
| *out_md = EVP_sha384(); |
| return 1; |
| case SSL_SIGN_RSA_PKCS1_SHA512: |
| *out_md = EVP_sha512(); |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static int ssl_sign_rsa_pkcs1(SSL *ssl, uint8_t *out, size_t *out_len, |
| size_t max_out, const EVP_MD *md, |
| const uint8_t *in, size_t in_len) { |
| EVP_MD_CTX ctx; |
| EVP_MD_CTX_init(&ctx); |
| *out_len = max_out; |
| int ret = EVP_DigestSignInit(&ctx, NULL, md, NULL, ssl->cert->privatekey) && |
| EVP_DigestSignUpdate(&ctx, in, in_len) && |
| EVP_DigestSignFinal(&ctx, out, out_len); |
| EVP_MD_CTX_cleanup(&ctx); |
| return ret; |
| } |
| |
| static int ssl_verify_rsa_pkcs1(SSL *ssl, const uint8_t *signature, |
| size_t signature_len, const EVP_MD *md, |
| EVP_PKEY *pkey, const uint8_t *in, |
| size_t in_len) { |
| if (pkey->type != EVP_PKEY_RSA) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| |
| EVP_MD_CTX md_ctx; |
| EVP_MD_CTX_init(&md_ctx); |
| int ret = EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, pkey) && |
| EVP_DigestVerifyUpdate(&md_ctx, in, in_len) && |
| EVP_DigestVerifyFinal(&md_ctx, signature, signature_len); |
| EVP_MD_CTX_cleanup(&md_ctx); |
| return ret; |
| } |
| |
| static int is_ecdsa(int *out_curve, const EVP_MD **out_md, uint16_t sigalg) { |
| switch (sigalg) { |
| case SSL_SIGN_ECDSA_SHA1: |
| *out_curve = NID_undef; |
| *out_md = EVP_sha1(); |
| return 1; |
| case SSL_SIGN_ECDSA_SECP256R1_SHA256: |
| *out_curve = NID_X9_62_prime256v1; |
| *out_md = EVP_sha256(); |
| return 1; |
| case SSL_SIGN_ECDSA_SECP384R1_SHA384: |
| *out_curve = NID_secp384r1; |
| *out_md = EVP_sha384(); |
| return 1; |
| case SSL_SIGN_ECDSA_SECP521R1_SHA512: |
| *out_curve = NID_secp521r1; |
| *out_md = EVP_sha512(); |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static int ssl_sign_ecdsa(SSL *ssl, uint8_t *out, size_t *out_len, |
| size_t max_out, int curve, const EVP_MD *md, |
| const uint8_t *in, size_t in_len) { |
| EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(ssl->cert->privatekey); |
| if (ec_key == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| |
| /* In TLS 1.3, the curve is also specified by the signature algorithm. */ |
| if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION && |
| (curve == NID_undef || |
| EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) != curve)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| |
| EVP_MD_CTX ctx; |
| EVP_MD_CTX_init(&ctx); |
| *out_len = max_out; |
| int ret = EVP_DigestSignInit(&ctx, NULL, md, NULL, ssl->cert->privatekey) && |
| EVP_DigestSignUpdate(&ctx, in, in_len) && |
| EVP_DigestSignFinal(&ctx, out, out_len); |
| EVP_MD_CTX_cleanup(&ctx); |
| return ret; |
| } |
| |
| static int ssl_verify_ecdsa(SSL *ssl, const uint8_t *signature, |
| size_t signature_len, int curve, const EVP_MD *md, |
| EVP_PKEY *pkey, const uint8_t *in, size_t in_len) { |
| EC_KEY *ec_key = EVP_PKEY_get0_EC_KEY(pkey); |
| if (ec_key == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| |
| /* In TLS 1.3, the curve is also specified by the signature algorithm. */ |
| if (ssl3_protocol_version(ssl) >= TLS1_3_VERSION && |
| (curve == NID_undef || |
| EC_GROUP_get_curve_name(EC_KEY_get0_group(ec_key)) != curve)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| |
| EVP_MD_CTX md_ctx; |
| EVP_MD_CTX_init(&md_ctx); |
| int ret = EVP_DigestVerifyInit(&md_ctx, NULL, md, NULL, pkey) && |
| EVP_DigestVerifyUpdate(&md_ctx, in, in_len) && |
| EVP_DigestVerifyFinal(&md_ctx, signature, signature_len); |
| EVP_MD_CTX_cleanup(&md_ctx); |
| return ret; |
| } |
| |
| static int is_rsa_pss(const EVP_MD **out_md, uint16_t sigalg) { |
| switch (sigalg) { |
| case SSL_SIGN_RSA_PSS_SHA256: |
| *out_md = EVP_sha256(); |
| return 1; |
| case SSL_SIGN_RSA_PSS_SHA384: |
| *out_md = EVP_sha384(); |
| return 1; |
| case SSL_SIGN_RSA_PSS_SHA512: |
| *out_md = EVP_sha512(); |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static int ssl_sign_rsa_pss(SSL *ssl, uint8_t *out, size_t *out_len, |
| size_t max_out, const EVP_MD *md, |
| const uint8_t *in, size_t in_len) { |
| EVP_MD_CTX ctx; |
| EVP_MD_CTX_init(&ctx); |
| *out_len = max_out; |
| EVP_PKEY_CTX *pctx; |
| int ret = |
| EVP_DigestSignInit(&ctx, &pctx, md, NULL, ssl->cert->privatekey) && |
| EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) && |
| EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */) && |
| EVP_DigestSignUpdate(&ctx, in, in_len) && |
| EVP_DigestSignFinal(&ctx, out, out_len); |
| EVP_MD_CTX_cleanup(&ctx); |
| return ret; |
| } |
| |
| static int ssl_verify_rsa_pss(SSL *ssl, const uint8_t *signature, |
| size_t signature_len, const EVP_MD *md, |
| EVP_PKEY *pkey, const uint8_t *in, |
| size_t in_len) { |
| if (pkey->type != EVP_PKEY_RSA) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| |
| EVP_MD_CTX md_ctx; |
| EVP_MD_CTX_init(&md_ctx); |
| EVP_PKEY_CTX *pctx; |
| int ret = |
| EVP_DigestVerifyInit(&md_ctx, &pctx, md, NULL, pkey) && |
| EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) && |
| EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */) && |
| EVP_DigestVerifyUpdate(&md_ctx, in, in_len) && |
| EVP_DigestVerifyFinal(&md_ctx, signature, signature_len); |
| EVP_MD_CTX_cleanup(&md_ctx); |
| return ret; |
| } |
| |
| enum ssl_private_key_result_t ssl_private_key_sign( |
| SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, |
| uint16_t signature_algorithm, const uint8_t *in, size_t in_len) { |
| if (ssl->cert->key_method != NULL) { |
| if (ssl->cert->key_method->sign != NULL) { |
| return ssl->cert->key_method->sign(ssl, out, out_len, max_out, |
| signature_algorithm, in, in_len); |
| } |
| |
| /* TODO(davidben): Remove support for |sign_digest|-only |
| * |SSL_PRIVATE_KEY_METHOD|s. */ |
| const EVP_MD *md; |
| int curve; |
| if (!is_rsa_pkcs1(&md, signature_algorithm) && |
| !is_ecdsa(&curve, &md, signature_algorithm)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL_FOR_CUSTOM_KEY); |
| return ssl_private_key_failure; |
| } |
| |
| uint8_t hash[EVP_MAX_MD_SIZE]; |
| unsigned hash_len; |
| if (!EVP_Digest(in, in_len, hash, &hash_len, md, NULL)) { |
| return ssl_private_key_failure; |
| } |
| |
| return ssl->cert->key_method->sign_digest(ssl, out, out_len, max_out, md, |
| hash, hash_len); |
| } |
| |
| const EVP_MD *md; |
| if (is_rsa_pkcs1(&md, signature_algorithm) && |
| ssl3_protocol_version(ssl) < TLS1_3_VERSION) { |
| return ssl_sign_rsa_pkcs1(ssl, out, out_len, max_out, md, in, in_len) |
| ? ssl_private_key_success |
| : ssl_private_key_failure; |
| } |
| |
| int curve; |
| if (is_ecdsa(&curve, &md, signature_algorithm)) { |
| return ssl_sign_ecdsa(ssl, out, out_len, max_out, curve, md, in, in_len) |
| ? ssl_private_key_success |
| : ssl_private_key_failure; |
| } |
| |
| if (is_rsa_pss(&md, signature_algorithm)) { |
| return ssl_sign_rsa_pss(ssl, out, out_len, max_out, md, in, in_len) |
| ? ssl_private_key_success |
| : ssl_private_key_failure; |
| } |
| |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); |
| return ssl_private_key_failure; |
| } |
| |
| int ssl_public_key_verify(SSL *ssl, const uint8_t *signature, |
| size_t signature_len, uint16_t signature_algorithm, |
| EVP_PKEY *pkey, const uint8_t *in, size_t in_len) { |
| const EVP_MD *md; |
| if (is_rsa_pkcs1(&md, signature_algorithm) && |
| ssl3_protocol_version(ssl) < TLS1_3_VERSION) { |
| return ssl_verify_rsa_pkcs1(ssl, signature, signature_len, md, pkey, in, |
| in_len); |
| } |
| |
| int curve; |
| if (is_ecdsa(&curve, &md, signature_algorithm)) { |
| return ssl_verify_ecdsa(ssl, signature, signature_len, curve, md, pkey, in, |
| in_len); |
| } |
| |
| if (is_rsa_pss(&md, signature_algorithm)) { |
| return ssl_verify_rsa_pss(ssl, signature, signature_len, md, pkey, in, |
| in_len); |
| } |
| |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE); |
| return 0; |
| } |
| |
| enum ssl_private_key_result_t ssl_private_key_decrypt( |
| SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out, |
| const uint8_t *in, size_t in_len) { |
| if (ssl->cert->key_method != NULL) { |
| return ssl->cert->key_method->decrypt(ssl, out, out_len, max_out, in, |
| in_len); |
| } |
| |
| RSA *rsa = EVP_PKEY_get0_RSA(ssl->cert->privatekey); |
| if (rsa == NULL) { |
| /* Decrypt operations are only supported for RSA keys. */ |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return ssl_private_key_failure; |
| } |
| |
| /* Decrypt with no padding. PKCS#1 padding will be removed as part |
| * of the timing-sensitive code by the caller. */ |
| if (!RSA_decrypt(rsa, out_len, out, max_out, in, in_len, RSA_NO_PADDING)) { |
| return ssl_private_key_failure; |
| } |
| return ssl_private_key_success; |
| } |
| |
| enum ssl_private_key_result_t ssl_private_key_complete(SSL *ssl, uint8_t *out, |
| size_t *out_len, |
| size_t max_out) { |
| /* Only custom keys may be asynchronous. */ |
| return ssl->cert->key_method->complete(ssl, out, out_len, max_out); |
| } |
| |
| int ssl_private_key_supports_signature_algorithm(SSL *ssl, |
| uint16_t signature_algorithm) { |
| const EVP_MD *md; |
| if (is_rsa_pkcs1(&md, signature_algorithm) && |
| ssl3_protocol_version(ssl) < TLS1_3_VERSION) { |
| return ssl_private_key_type(ssl) == NID_rsaEncryption; |
| } |
| |
| int curve; |
| if (is_ecdsa(&curve, &md, signature_algorithm)) { |
| int type = ssl_private_key_type(ssl); |
| if (!ssl_is_ecdsa_key_type(type)) { |
| return 0; |
| } |
| |
| /* Prior to TLS 1.3, ECDSA curves did not match the signature algorithm. */ |
| if (ssl3_protocol_version(ssl) < TLS1_3_VERSION) { |
| return 1; |
| } |
| |
| return curve != NID_undef && type == curve; |
| } |
| |
| if (is_rsa_pss(&md, signature_algorithm)) { |
| if (ssl_private_key_type(ssl) != NID_rsaEncryption) { |
| return 0; |
| } |
| |
| /* Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that |
| * emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the |
| * hash in TLS. Reasonable RSA key sizes are large enough for the largest |
| * defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too large for |
| * SHA-512. 1024-bit RSA is sometimes used for test credentials, so check |
| * the size to fall back to another algorithm. */ |
| if (ssl_private_key_max_signature_len(ssl) < 2 * EVP_MD_size(md) + 2) { |
| return 0; |
| } |
| |
| /* RSA-PSS is only supported by message-based private keys. */ |
| if (ssl->cert->key_method != NULL && ssl->cert->key_method->sign == NULL) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| return 0; |
| } |