| /* |
| * DTLS implementation written by Nagendra Modadugu |
| * (nagendra@cs.stanford.edu) for the OpenSSL project 2005. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] */ |
| |
| #include <openssl/ssl.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/buf.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/mem.h> |
| #include <openssl/rand.h> |
| #include <openssl/x509.h> |
| |
| #include "../crypto/internal.h" |
| #include "internal.h" |
| |
| |
| /* TODO(davidben): 28 comes from the size of IP + UDP header. Is this reasonable |
| * for these values? Notably, why is kMinMTU a function of the transport |
| * protocol's overhead rather than, say, what's needed to hold a minimally-sized |
| * handshake fragment plus protocol overhead. */ |
| |
| /* kMinMTU is the minimum acceptable MTU value. */ |
| static const unsigned int kMinMTU = 256 - 28; |
| |
| /* kDefaultMTU is the default MTU value to use if neither the user nor |
| * the underlying BIO supplies one. */ |
| static const unsigned int kDefaultMTU = 1500 - 28; |
| |
| |
| /* Receiving handshake messages. */ |
| |
| static void dtls1_hm_fragment_free(hm_fragment *frag) { |
| if (frag == NULL) { |
| return; |
| } |
| OPENSSL_free(frag->data); |
| OPENSSL_free(frag->reassembly); |
| OPENSSL_free(frag); |
| } |
| |
| static hm_fragment *dtls1_hm_fragment_new(const struct hm_header_st *msg_hdr) { |
| hm_fragment *frag = OPENSSL_malloc(sizeof(hm_fragment)); |
| if (frag == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| OPENSSL_memset(frag, 0, sizeof(hm_fragment)); |
| frag->type = msg_hdr->type; |
| frag->seq = msg_hdr->seq; |
| frag->msg_len = msg_hdr->msg_len; |
| |
| /* Allocate space for the reassembled message and fill in the header. */ |
| frag->data = OPENSSL_malloc(DTLS1_HM_HEADER_LENGTH + msg_hdr->msg_len); |
| if (frag->data == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| CBB cbb; |
| if (!CBB_init_fixed(&cbb, frag->data, DTLS1_HM_HEADER_LENGTH) || |
| !CBB_add_u8(&cbb, msg_hdr->type) || |
| !CBB_add_u24(&cbb, msg_hdr->msg_len) || |
| !CBB_add_u16(&cbb, msg_hdr->seq) || |
| !CBB_add_u24(&cbb, 0 /* frag_off */) || |
| !CBB_add_u24(&cbb, msg_hdr->msg_len) || |
| !CBB_finish(&cbb, NULL, NULL)) { |
| CBB_cleanup(&cbb); |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* If the handshake message is empty, |frag->reassembly| is NULL. */ |
| if (msg_hdr->msg_len > 0) { |
| /* Initialize reassembly bitmask. */ |
| if (msg_hdr->msg_len + 7 < msg_hdr->msg_len) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); |
| goto err; |
| } |
| size_t bitmask_len = (msg_hdr->msg_len + 7) / 8; |
| frag->reassembly = OPENSSL_malloc(bitmask_len); |
| if (frag->reassembly == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| OPENSSL_memset(frag->reassembly, 0, bitmask_len); |
| } |
| |
| return frag; |
| |
| err: |
| dtls1_hm_fragment_free(frag); |
| return NULL; |
| } |
| |
| /* bit_range returns a |uint8_t| with bits |start|, inclusive, to |end|, |
| * exclusive, set. */ |
| static uint8_t bit_range(size_t start, size_t end) { |
| return (uint8_t)(~((1u << start) - 1) & ((1u << end) - 1)); |
| } |
| |
| /* dtls1_hm_fragment_mark marks bytes |start|, inclusive, to |end|, exclusive, |
| * as received in |frag|. If |frag| becomes complete, it clears |
| * |frag->reassembly|. The range must be within the bounds of |frag|'s message |
| * and |frag->reassembly| must not be NULL. */ |
| static void dtls1_hm_fragment_mark(hm_fragment *frag, size_t start, |
| size_t end) { |
| size_t msg_len = frag->msg_len; |
| |
| if (frag->reassembly == NULL || start > end || end > msg_len) { |
| assert(0); |
| return; |
| } |
| /* A zero-length message will never have a pending reassembly. */ |
| assert(msg_len > 0); |
| |
| if ((start >> 3) == (end >> 3)) { |
| frag->reassembly[start >> 3] |= bit_range(start & 7, end & 7); |
| } else { |
| frag->reassembly[start >> 3] |= bit_range(start & 7, 8); |
| for (size_t i = (start >> 3) + 1; i < (end >> 3); i++) { |
| frag->reassembly[i] = 0xff; |
| } |
| if ((end & 7) != 0) { |
| frag->reassembly[end >> 3] |= bit_range(0, end & 7); |
| } |
| } |
| |
| /* Check if the fragment is complete. */ |
| for (size_t i = 0; i < (msg_len >> 3); i++) { |
| if (frag->reassembly[i] != 0xff) { |
| return; |
| } |
| } |
| if ((msg_len & 7) != 0 && |
| frag->reassembly[msg_len >> 3] != bit_range(0, msg_len & 7)) { |
| return; |
| } |
| |
| OPENSSL_free(frag->reassembly); |
| frag->reassembly = NULL; |
| } |
| |
| /* dtls1_is_current_message_complete returns one if the current handshake |
| * message is complete and zero otherwise. */ |
| static int dtls1_is_current_message_complete(const SSL *ssl) { |
| hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq % |
| SSL_MAX_HANDSHAKE_FLIGHT]; |
| return frag != NULL && frag->reassembly == NULL; |
| } |
| |
| /* dtls1_get_incoming_message returns the incoming message corresponding to |
| * |msg_hdr|. If none exists, it creates a new one and inserts it in the |
| * queue. Otherwise, it checks |msg_hdr| is consistent with the existing one. It |
| * returns NULL on failure. The caller does not take ownership of the result. */ |
| static hm_fragment *dtls1_get_incoming_message( |
| SSL *ssl, const struct hm_header_st *msg_hdr) { |
| if (msg_hdr->seq < ssl->d1->handshake_read_seq || |
| msg_hdr->seq - ssl->d1->handshake_read_seq >= SSL_MAX_HANDSHAKE_FLIGHT) { |
| return NULL; |
| } |
| |
| size_t idx = msg_hdr->seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| hm_fragment *frag = ssl->d1->incoming_messages[idx]; |
| if (frag != NULL) { |
| assert(frag->seq == msg_hdr->seq); |
| /* The new fragment must be compatible with the previous fragments from this |
| * message. */ |
| if (frag->type != msg_hdr->type || |
| frag->msg_len != msg_hdr->msg_len) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_FRAGMENT_MISMATCH); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| return NULL; |
| } |
| return frag; |
| } |
| |
| /* This is the first fragment from this message. */ |
| frag = dtls1_hm_fragment_new(msg_hdr); |
| if (frag == NULL) { |
| return NULL; |
| } |
| ssl->d1->incoming_messages[idx] = frag; |
| return frag; |
| } |
| |
| /* dtls1_process_handshake_record reads a handshake record and processes it. It |
| * returns one if the record was successfully processed and 0 or -1 on error. */ |
| static int dtls1_process_handshake_record(SSL *ssl) { |
| SSL3_RECORD *rr = &ssl->s3->rrec; |
| |
| start: |
| if (rr->length == 0) { |
| int ret = dtls1_get_record(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| |
| /* Cross-epoch records are discarded, but we may receive out-of-order |
| * application data between ChangeCipherSpec and Finished or a ChangeCipherSpec |
| * before the appropriate point in the handshake. Those must be silently |
| * discarded. |
| * |
| * However, only allow the out-of-order records in the correct epoch. |
| * Application data must come in the encrypted epoch, and ChangeCipherSpec in |
| * the unencrypted epoch (we never renegotiate). Other cases fall through and |
| * fail with a fatal error. */ |
| if ((rr->type == SSL3_RT_APPLICATION_DATA && |
| ssl->s3->aead_read_ctx != NULL) || |
| (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC && |
| ssl->s3->aead_read_ctx == NULL)) { |
| rr->length = 0; |
| goto start; |
| } |
| |
| if (rr->type != SSL3_RT_HANDSHAKE) { |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| return -1; |
| } |
| |
| CBS cbs; |
| CBS_init(&cbs, rr->data, rr->length); |
| |
| while (CBS_len(&cbs) > 0) { |
| /* Read a handshake fragment. */ |
| struct hm_header_st msg_hdr; |
| CBS body; |
| if (!dtls1_parse_fragment(&cbs, &msg_hdr, &body)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_HANDSHAKE_RECORD); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); |
| return -1; |
| } |
| |
| const size_t frag_off = msg_hdr.frag_off; |
| const size_t frag_len = msg_hdr.frag_len; |
| const size_t msg_len = msg_hdr.msg_len; |
| if (frag_off > msg_len || frag_off + frag_len < frag_off || |
| frag_off + frag_len > msg_len || |
| msg_len > ssl_max_handshake_message_len(ssl)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESSIVE_MESSAGE_SIZE); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); |
| return -1; |
| } |
| |
| /* The encrypted epoch in DTLS has only one handshake message. */ |
| if (ssl->d1->r_epoch == 1 && msg_hdr.seq != ssl->d1->handshake_read_seq) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| return -1; |
| } |
| |
| if (msg_hdr.seq < ssl->d1->handshake_read_seq || |
| msg_hdr.seq > |
| (unsigned)ssl->d1->handshake_read_seq + SSL_MAX_HANDSHAKE_FLIGHT) { |
| /* Ignore fragments from the past, or ones too far in the future. */ |
| continue; |
| } |
| |
| hm_fragment *frag = dtls1_get_incoming_message(ssl, &msg_hdr); |
| if (frag == NULL) { |
| return -1; |
| } |
| assert(frag->msg_len == msg_len); |
| |
| if (frag->reassembly == NULL) { |
| /* The message is already assembled. */ |
| continue; |
| } |
| assert(msg_len > 0); |
| |
| /* Copy the body into the fragment. */ |
| OPENSSL_memcpy(frag->data + DTLS1_HM_HEADER_LENGTH + frag_off, CBS_data(&body), |
| CBS_len(&body)); |
| dtls1_hm_fragment_mark(frag, frag_off, frag_off + frag_len); |
| } |
| |
| rr->length = 0; |
| ssl_read_buffer_discard(ssl); |
| return 1; |
| } |
| |
| int dtls1_get_message(SSL *ssl, int msg_type, |
| enum ssl_hash_message_t hash_message) { |
| if (ssl->s3->tmp.reuse_message) { |
| /* A ssl_dont_hash_message call cannot be combined with reuse_message; the |
| * ssl_dont_hash_message would have to have been applied to the previous |
| * call. */ |
| assert(hash_message == ssl_hash_message); |
| assert(ssl->init_msg != NULL); |
| |
| ssl->s3->tmp.reuse_message = 0; |
| hash_message = ssl_dont_hash_message; |
| } else { |
| dtls1_release_current_message(ssl, 0 /* don't free buffer */); |
| } |
| |
| /* Process handshake records until the current message is ready. */ |
| while (!dtls1_is_current_message_complete(ssl)) { |
| int ret = dtls1_process_handshake_record(ssl); |
| if (ret <= 0) { |
| return ret; |
| } |
| } |
| |
| hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq % |
| SSL_MAX_HANDSHAKE_FLIGHT]; |
| assert(frag != NULL); |
| assert(frag->reassembly == NULL); |
| assert(ssl->d1->handshake_read_seq == frag->seq); |
| |
| /* TODO(davidben): This function has a lot of implicit outputs. Simplify the |
| * |ssl_get_message| API. */ |
| ssl->s3->tmp.message_type = frag->type; |
| ssl->init_msg = frag->data + DTLS1_HM_HEADER_LENGTH; |
| ssl->init_num = frag->msg_len; |
| |
| if (msg_type >= 0 && ssl->s3->tmp.message_type != msg_type) { |
| ssl3_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE); |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE); |
| return -1; |
| } |
| if (hash_message == ssl_hash_message && !ssl_hash_current_message(ssl)) { |
| return -1; |
| } |
| |
| ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HANDSHAKE, frag->data, |
| ssl->init_num + DTLS1_HM_HEADER_LENGTH); |
| return 1; |
| } |
| |
| void dtls1_get_current_message(const SSL *ssl, CBS *out) { |
| assert(dtls1_is_current_message_complete(ssl)); |
| |
| hm_fragment *frag = ssl->d1->incoming_messages[ssl->d1->handshake_read_seq % |
| SSL_MAX_HANDSHAKE_FLIGHT]; |
| CBS_init(out, frag->data, DTLS1_HM_HEADER_LENGTH + frag->msg_len); |
| } |
| |
| void dtls1_release_current_message(SSL *ssl, int free_buffer) { |
| if (ssl->init_msg == NULL) { |
| return; |
| } |
| |
| assert(dtls1_is_current_message_complete(ssl)); |
| size_t index = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| dtls1_hm_fragment_free(ssl->d1->incoming_messages[index]); |
| ssl->d1->incoming_messages[index] = NULL; |
| ssl->d1->handshake_read_seq++; |
| |
| ssl->init_msg = NULL; |
| ssl->init_num = 0; |
| } |
| |
| void dtls_clear_incoming_messages(SSL *ssl) { |
| for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) { |
| dtls1_hm_fragment_free(ssl->d1->incoming_messages[i]); |
| ssl->d1->incoming_messages[i] = NULL; |
| } |
| } |
| |
| int dtls_has_incoming_messages(const SSL *ssl) { |
| size_t current = ssl->d1->handshake_read_seq % SSL_MAX_HANDSHAKE_FLIGHT; |
| for (size_t i = 0; i < SSL_MAX_HANDSHAKE_FLIGHT; i++) { |
| /* Skip the current message. */ |
| if (ssl->init_msg != NULL && i == current) { |
| assert(dtls1_is_current_message_complete(ssl)); |
| continue; |
| } |
| if (ssl->d1->incoming_messages[i] != NULL) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| int dtls1_parse_fragment(CBS *cbs, struct hm_header_st *out_hdr, |
| CBS *out_body) { |
| OPENSSL_memset(out_hdr, 0x00, sizeof(struct hm_header_st)); |
| |
| if (!CBS_get_u8(cbs, &out_hdr->type) || |
| !CBS_get_u24(cbs, &out_hdr->msg_len) || |
| !CBS_get_u16(cbs, &out_hdr->seq) || |
| !CBS_get_u24(cbs, &out_hdr->frag_off) || |
| !CBS_get_u24(cbs, &out_hdr->frag_len) || |
| !CBS_get_bytes(cbs, out_body, out_hdr->frag_len)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| |
| /* Sending handshake messages. */ |
| |
| static void dtls1_update_mtu(SSL *ssl) { |
| /* TODO(davidben): What is this code doing and do we need it? */ |
| if (ssl->d1->mtu < dtls1_min_mtu() && |
| !(SSL_get_options(ssl) & SSL_OP_NO_QUERY_MTU)) { |
| long mtu = BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_QUERY_MTU, 0, NULL); |
| if (mtu >= 0 && mtu <= (1 << 30) && (unsigned)mtu >= dtls1_min_mtu()) { |
| ssl->d1->mtu = (unsigned)mtu; |
| } else { |
| ssl->d1->mtu = kDefaultMTU; |
| BIO_ctrl(ssl->wbio, BIO_CTRL_DGRAM_SET_MTU, ssl->d1->mtu, NULL); |
| } |
| } |
| |
| /* The MTU should be above the minimum now. */ |
| assert(ssl->d1->mtu >= dtls1_min_mtu()); |
| } |
| |
| /* dtls1_max_record_size returns the maximum record body length that may be |
| * written without exceeding the MTU. It accounts for any buffering installed on |
| * the write BIO. If no record may be written, it returns zero. */ |
| static size_t dtls1_max_record_size(const SSL *ssl) { |
| size_t ret = ssl->d1->mtu; |
| |
| size_t overhead = SSL_max_seal_overhead(ssl); |
| if (ret <= overhead) { |
| return 0; |
| } |
| ret -= overhead; |
| |
| size_t pending = BIO_wpending(ssl->wbio); |
| if (ret <= pending) { |
| return 0; |
| } |
| ret -= pending; |
| |
| return ret; |
| } |
| |
| static int dtls1_write_change_cipher_spec(SSL *ssl, |
| enum dtls1_use_epoch_t use_epoch) { |
| dtls1_update_mtu(ssl); |
| |
| /* During the handshake, wbio is buffered to pack messages together. Flush the |
| * buffer if the ChangeCipherSpec would not fit in a packet. */ |
| if (dtls1_max_record_size(ssl) == 0) { |
| int ret = BIO_flush(ssl->wbio); |
| if (ret <= 0) { |
| ssl->rwstate = SSL_WRITING; |
| return ret; |
| } |
| } |
| |
| static const uint8_t kChangeCipherSpec[1] = {SSL3_MT_CCS}; |
| int ret = |
| dtls1_write_record(ssl, SSL3_RT_CHANGE_CIPHER_SPEC, kChangeCipherSpec, |
| sizeof(kChangeCipherSpec), use_epoch); |
| if (ret <= 0) { |
| return ret; |
| } |
| |
| ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_CHANGE_CIPHER_SPEC, |
| kChangeCipherSpec, sizeof(kChangeCipherSpec)); |
| return 1; |
| } |
| |
| /* dtls1_do_handshake_write writes handshake message |in| using the given epoch, |
| * starting |offset| bytes into the message body. It returns one on success. On |
| * error, it returns <= 0 and sets |*out_offset| to the number of bytes of body |
| * that were successfully written. This may be used to retry the write |
| * later. |in| must be a reassembled handshake message with the full DTLS |
| * handshake header. */ |
| static int dtls1_do_handshake_write(SSL *ssl, size_t *out_offset, |
| const uint8_t *in, size_t offset, |
| size_t len, |
| enum dtls1_use_epoch_t use_epoch) { |
| dtls1_update_mtu(ssl); |
| |
| int ret = -1; |
| CBB cbb; |
| CBB_zero(&cbb); |
| /* Allocate a temporary buffer to hold the message fragments to avoid |
| * clobbering the message. */ |
| uint8_t *buf = OPENSSL_malloc(ssl->d1->mtu); |
| if (buf == NULL) { |
| goto err; |
| } |
| |
| /* Although it may be sent as multiple fragments, a DTLS message must be sent |
| * serialized as a single fragment for purposes of |ssl_do_msg_callback| and |
| * the handshake hash. */ |
| CBS cbs, body; |
| struct hm_header_st hdr; |
| CBS_init(&cbs, in, len); |
| if (!dtls1_parse_fragment(&cbs, &hdr, &body) || |
| hdr.frag_off != 0 || |
| hdr.frag_len != CBS_len(&body) || |
| hdr.msg_len != CBS_len(&body) || |
| !CBS_skip(&body, offset) || |
| CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| do { |
| /* During the handshake, wbio is buffered to pack messages together. Flush |
| * the buffer if there isn't enough room to make progress. */ |
| if (dtls1_max_record_size(ssl) < DTLS1_HM_HEADER_LENGTH + 1) { |
| int flush_ret = BIO_flush(ssl->wbio); |
| if (flush_ret <= 0) { |
| ssl->rwstate = SSL_WRITING; |
| ret = flush_ret; |
| goto err; |
| } |
| assert(BIO_wpending(ssl->wbio) == 0); |
| } |
| |
| size_t todo = dtls1_max_record_size(ssl); |
| if (todo < DTLS1_HM_HEADER_LENGTH + 1) { |
| /* To make forward progress, the MTU must, at minimum, fit the handshake |
| * header and one byte of handshake body. */ |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MTU_TOO_SMALL); |
| goto err; |
| } |
| todo -= DTLS1_HM_HEADER_LENGTH; |
| |
| if (todo > CBS_len(&body)) { |
| todo = CBS_len(&body); |
| } |
| if (todo >= (1u << 24)) { |
| todo = (1u << 24) - 1; |
| } |
| |
| size_t buf_len; |
| if (!CBB_init_fixed(&cbb, buf, ssl->d1->mtu) || |
| !CBB_add_u8(&cbb, hdr.type) || |
| !CBB_add_u24(&cbb, hdr.msg_len) || |
| !CBB_add_u16(&cbb, hdr.seq) || |
| !CBB_add_u24(&cbb, offset) || |
| !CBB_add_u24(&cbb, todo) || |
| !CBB_add_bytes(&cbb, CBS_data(&body), todo) || |
| !CBB_finish(&cbb, NULL, &buf_len)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| int write_ret = |
| dtls1_write_record(ssl, SSL3_RT_HANDSHAKE, buf, buf_len, use_epoch); |
| if (write_ret <= 0) { |
| ret = write_ret; |
| goto err; |
| } |
| |
| if (!CBS_skip(&body, todo)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| offset += todo; |
| } while (CBS_len(&body) != 0); |
| |
| ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HANDSHAKE, in, len); |
| |
| ret = 1; |
| |
| err: |
| *out_offset = offset; |
| CBB_cleanup(&cbb); |
| OPENSSL_free(buf); |
| return ret; |
| } |
| |
| void dtls_clear_outgoing_messages(SSL *ssl) { |
| for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) { |
| OPENSSL_free(ssl->d1->outgoing_messages[i].data); |
| ssl->d1->outgoing_messages[i].data = NULL; |
| } |
| ssl->d1->outgoing_messages_len = 0; |
| } |
| |
| /* dtls1_add_change_cipher_spec adds a ChangeCipherSpec to the current |
| * handshake flight. */ |
| static int dtls1_add_change_cipher_spec(SSL *ssl) { |
| if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| DTLS_OUTGOING_MESSAGE *msg = |
| &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len]; |
| msg->data = NULL; |
| msg->len = 0; |
| msg->epoch = ssl->d1->w_epoch; |
| msg->is_ccs = 1; |
| |
| ssl->d1->outgoing_messages_len++; |
| return 1; |
| } |
| |
| static int dtls1_add_message(SSL *ssl, uint8_t *data, size_t len) { |
| if (ssl->d1->outgoing_messages_len >= SSL_MAX_HANDSHAKE_FLIGHT) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| OPENSSL_free(data); |
| return 0; |
| } |
| |
| DTLS_OUTGOING_MESSAGE *msg = |
| &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len]; |
| msg->data = data; |
| msg->len = len; |
| msg->epoch = ssl->d1->w_epoch; |
| msg->is_ccs = 0; |
| |
| ssl->d1->outgoing_messages_len++; |
| return 1; |
| } |
| |
| int dtls1_init_message(SSL *ssl, CBB *cbb, CBB *body, uint8_t type) { |
| /* Pick a modest size hint to save most of the |realloc| calls. */ |
| if (!CBB_init(cbb, 64) || |
| !CBB_add_u8(cbb, type) || |
| !CBB_add_u24(cbb, 0 /* length (filled in later) */) || |
| !CBB_add_u16(cbb, ssl->d1->handshake_write_seq) || |
| !CBB_add_u24(cbb, 0 /* offset */) || |
| !CBB_add_u24_length_prefixed(cbb, body)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int dtls1_finish_message(SSL *ssl, CBB *cbb, uint8_t **out_msg, |
| size_t *out_len) { |
| *out_msg = NULL; |
| if (!CBB_finish(cbb, out_msg, out_len) || |
| *out_len < DTLS1_HM_HEADER_LENGTH) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| OPENSSL_free(*out_msg); |
| return 0; |
| } |
| |
| /* Fix up the header. Copy the fragment length into the total message |
| * length. */ |
| OPENSSL_memcpy(*out_msg + 1, *out_msg + DTLS1_HM_HEADER_LENGTH - 3, 3); |
| return 1; |
| } |
| |
| int dtls1_queue_message(SSL *ssl, uint8_t *msg, size_t len) { |
| ssl3_update_handshake_hash(ssl, msg, len); |
| |
| ssl->d1->handshake_write_seq++; |
| ssl->init_off = 0; |
| return dtls1_add_message(ssl, msg, len); |
| } |
| |
| int dtls1_write_message(SSL *ssl) { |
| if (ssl->d1->outgoing_messages_len == 0) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| |
| const DTLS_OUTGOING_MESSAGE *msg = |
| &ssl->d1->outgoing_messages[ssl->d1->outgoing_messages_len - 1]; |
| if (msg->is_ccs) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| |
| size_t offset = ssl->init_off; |
| int ret = dtls1_do_handshake_write(ssl, &offset, msg->data, offset, msg->len, |
| dtls1_use_current_epoch); |
| ssl->init_off = offset; |
| return ret; |
| } |
| |
| static int dtls1_retransmit_message(SSL *ssl, |
| const DTLS_OUTGOING_MESSAGE *msg) { |
| /* DTLS renegotiation is unsupported, so only epochs 0 (NULL cipher) and 1 |
| * (negotiated cipher) exist. */ |
| assert(ssl->d1->w_epoch == 0 || ssl->d1->w_epoch == 1); |
| assert(msg->epoch <= ssl->d1->w_epoch); |
| enum dtls1_use_epoch_t use_epoch = dtls1_use_current_epoch; |
| if (ssl->d1->w_epoch == 1 && msg->epoch == 0) { |
| use_epoch = dtls1_use_previous_epoch; |
| } |
| |
| /* TODO(davidben): This cannot handle non-blocking writes. */ |
| int ret; |
| if (msg->is_ccs) { |
| ret = dtls1_write_change_cipher_spec(ssl, use_epoch); |
| } else { |
| size_t offset = 0; |
| ret = dtls1_do_handshake_write(ssl, &offset, msg->data, offset, msg->len, |
| use_epoch); |
| } |
| |
| return ret; |
| } |
| |
| int dtls1_retransmit_outgoing_messages(SSL *ssl) { |
| /* Ensure we are packing handshake messages. */ |
| const int was_buffered = ssl_is_wbio_buffered(ssl); |
| assert(was_buffered == SSL_in_init(ssl)); |
| if (!was_buffered && !ssl_init_wbio_buffer(ssl)) { |
| return -1; |
| } |
| assert(ssl_is_wbio_buffered(ssl)); |
| |
| int ret = -1; |
| for (size_t i = 0; i < ssl->d1->outgoing_messages_len; i++) { |
| if (dtls1_retransmit_message(ssl, &ssl->d1->outgoing_messages[i]) <= 0) { |
| goto err; |
| } |
| } |
| |
| ret = BIO_flush(ssl->wbio); |
| if (ret <= 0) { |
| ssl->rwstate = SSL_WRITING; |
| goto err; |
| } |
| |
| err: |
| if (!was_buffered) { |
| ssl_free_wbio_buffer(ssl); |
| } |
| return ret; |
| } |
| |
| int dtls1_send_change_cipher_spec(SSL *ssl) { |
| int ret = dtls1_write_change_cipher_spec(ssl, dtls1_use_current_epoch); |
| if (ret <= 0) { |
| return ret; |
| } |
| dtls1_add_change_cipher_spec(ssl); |
| return 1; |
| } |
| |
| unsigned int dtls1_min_mtu(void) { |
| return kMinMTU; |
| } |