blob: cb5384effe6a90846615e277b1ad208f27cf8f93 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/dh.h>
#include <stdio.h>
#include <string.h>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/bn.h>
#include <openssl/bytestring.h>
#include <openssl/crypto.h>
#include <openssl/dh.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include "../fipsmodule/dh/internal.h"
#include "../test/test_util.h"
TEST(DHTest, Basic) {
bssl::UniquePtr<DH> a(DH_new());
ASSERT_TRUE(a);
ASSERT_TRUE(DH_generate_parameters_ex(a.get(), 64, DH_GENERATOR_5, nullptr));
int check_result;
ASSERT_TRUE(DH_check(a.get(), &check_result));
EXPECT_FALSE(check_result & DH_CHECK_P_NOT_PRIME);
EXPECT_FALSE(check_result & DH_CHECK_P_NOT_SAFE_PRIME);
EXPECT_FALSE(check_result & DH_CHECK_UNABLE_TO_CHECK_GENERATOR);
EXPECT_FALSE(check_result & DH_CHECK_NOT_SUITABLE_GENERATOR);
bssl::UniquePtr<DH> b(DHparams_dup(a.get()));
ASSERT_TRUE(b);
ASSERT_TRUE(DH_generate_key(a.get()));
ASSERT_TRUE(DH_generate_key(b.get()));
std::vector<uint8_t> key1(DH_size(a.get()));
int ret = DH_compute_key(key1.data(), DH_get0_pub_key(b.get()), a.get());
ASSERT_GE(ret, 0);
key1.resize(ret);
std::vector<uint8_t> key2(DH_size(b.get()));
ret = DH_compute_key(key2.data(), DH_get0_pub_key(a.get()), b.get());
ASSERT_GE(ret, 0);
key2.resize(ret);
EXPECT_EQ(Bytes(key1), Bytes(key2));
// |DH_compute_key|, unlike |DH_compute_key_padded|, removes leading zeros
// from the output, so the key will not have a fixed length. This test uses a
// small, 64-bit prime, so check for at least 32 bits of output after removing
// leading zeros.
EXPECT_GE(key1.size(), 4u);
}
// The following parameters are taken from RFC 5114, section 2.2. This is not a
// safe prime. Do not use these parameters.
static const uint8_t kRFC5114_2048_224P[] = {
0xad, 0x10, 0x7e, 0x1e, 0x91, 0x23, 0xa9, 0xd0, 0xd6, 0x60, 0xfa, 0xa7,
0x95, 0x59, 0xc5, 0x1f, 0xa2, 0x0d, 0x64, 0xe5, 0x68, 0x3b, 0x9f, 0xd1,
0xb5, 0x4b, 0x15, 0x97, 0xb6, 0x1d, 0x0a, 0x75, 0xe6, 0xfa, 0x14, 0x1d,
0xf9, 0x5a, 0x56, 0xdb, 0xaf, 0x9a, 0x3c, 0x40, 0x7b, 0xa1, 0xdf, 0x15,
0xeb, 0x3d, 0x68, 0x8a, 0x30, 0x9c, 0x18, 0x0e, 0x1d, 0xe6, 0xb8, 0x5a,
0x12, 0x74, 0xa0, 0xa6, 0x6d, 0x3f, 0x81, 0x52, 0xad, 0x6a, 0xc2, 0x12,
0x90, 0x37, 0xc9, 0xed, 0xef, 0xda, 0x4d, 0xf8, 0xd9, 0x1e, 0x8f, 0xef,
0x55, 0xb7, 0x39, 0x4b, 0x7a, 0xd5, 0xb7, 0xd0, 0xb6, 0xc1, 0x22, 0x07,
0xc9, 0xf9, 0x8d, 0x11, 0xed, 0x34, 0xdb, 0xf6, 0xc6, 0xba, 0x0b, 0x2c,
0x8b, 0xbc, 0x27, 0xbe, 0x6a, 0x00, 0xe0, 0xa0, 0xb9, 0xc4, 0x97, 0x08,
0xb3, 0xbf, 0x8a, 0x31, 0x70, 0x91, 0x88, 0x36, 0x81, 0x28, 0x61, 0x30,
0xbc, 0x89, 0x85, 0xdb, 0x16, 0x02, 0xe7, 0x14, 0x41, 0x5d, 0x93, 0x30,
0x27, 0x82, 0x73, 0xc7, 0xde, 0x31, 0xef, 0xdc, 0x73, 0x10, 0xf7, 0x12,
0x1f, 0xd5, 0xa0, 0x74, 0x15, 0x98, 0x7d, 0x9a, 0xdc, 0x0a, 0x48, 0x6d,
0xcd, 0xf9, 0x3a, 0xcc, 0x44, 0x32, 0x83, 0x87, 0x31, 0x5d, 0x75, 0xe1,
0x98, 0xc6, 0x41, 0xa4, 0x80, 0xcd, 0x86, 0xa1, 0xb9, 0xe5, 0x87, 0xe8,
0xbe, 0x60, 0xe6, 0x9c, 0xc9, 0x28, 0xb2, 0xb9, 0xc5, 0x21, 0x72, 0xe4,
0x13, 0x04, 0x2e, 0x9b, 0x23, 0xf1, 0x0b, 0x0e, 0x16, 0xe7, 0x97, 0x63,
0xc9, 0xb5, 0x3d, 0xcf, 0x4b, 0xa8, 0x0a, 0x29, 0xe3, 0xfb, 0x73, 0xc1,
0x6b, 0x8e, 0x75, 0xb9, 0x7e, 0xf3, 0x63, 0xe2, 0xff, 0xa3, 0x1f, 0x71,
0xcf, 0x9d, 0xe5, 0x38, 0x4e, 0x71, 0xb8, 0x1c, 0x0a, 0xc4, 0xdf, 0xfe,
0x0c, 0x10, 0xe6, 0x4f,
};
static const uint8_t kRFC5114_2048_224G[] = {
0xac, 0x40, 0x32, 0xef, 0x4f, 0x2d, 0x9a, 0xe3, 0x9d, 0xf3, 0x0b, 0x5c,
0x8f, 0xfd, 0xac, 0x50, 0x6c, 0xde, 0xbe, 0x7b, 0x89, 0x99, 0x8c, 0xaf,
0x74, 0x86, 0x6a, 0x08, 0xcf, 0xe4, 0xff, 0xe3, 0xa6, 0x82, 0x4a, 0x4e,
0x10, 0xb9, 0xa6, 0xf0, 0xdd, 0x92, 0x1f, 0x01, 0xa7, 0x0c, 0x4a, 0xfa,
0xab, 0x73, 0x9d, 0x77, 0x00, 0xc2, 0x9f, 0x52, 0xc5, 0x7d, 0xb1, 0x7c,
0x62, 0x0a, 0x86, 0x52, 0xbe, 0x5e, 0x90, 0x01, 0xa8, 0xd6, 0x6a, 0xd7,
0xc1, 0x76, 0x69, 0x10, 0x19, 0x99, 0x02, 0x4a, 0xf4, 0xd0, 0x27, 0x27,
0x5a, 0xc1, 0x34, 0x8b, 0xb8, 0xa7, 0x62, 0xd0, 0x52, 0x1b, 0xc9, 0x8a,
0xe2, 0x47, 0x15, 0x04, 0x22, 0xea, 0x1e, 0xd4, 0x09, 0x93, 0x9d, 0x54,
0xda, 0x74, 0x60, 0xcd, 0xb5, 0xf6, 0xc6, 0xb2, 0x50, 0x71, 0x7c, 0xbe,
0xf1, 0x80, 0xeb, 0x34, 0x11, 0x8e, 0x98, 0xd1, 0x19, 0x52, 0x9a, 0x45,
0xd6, 0xf8, 0x34, 0x56, 0x6e, 0x30, 0x25, 0xe3, 0x16, 0xa3, 0x30, 0xef,
0xbb, 0x77, 0xa8, 0x6f, 0x0c, 0x1a, 0xb1, 0x5b, 0x05, 0x1a, 0xe3, 0xd4,
0x28, 0xc8, 0xf8, 0xac, 0xb7, 0x0a, 0x81, 0x37, 0x15, 0x0b, 0x8e, 0xeb,
0x10, 0xe1, 0x83, 0xed, 0xd1, 0x99, 0x63, 0xdd, 0xd9, 0xe2, 0x63, 0xe4,
0x77, 0x05, 0x89, 0xef, 0x6a, 0xa2, 0x1e, 0x7f, 0x5f, 0x2f, 0xf3, 0x81,
0xb5, 0x39, 0xcc, 0xe3, 0x40, 0x9d, 0x13, 0xcd, 0x56, 0x6a, 0xfb, 0xb4,
0x8d, 0x6c, 0x01, 0x91, 0x81, 0xe1, 0xbc, 0xfe, 0x94, 0xb3, 0x02, 0x69,
0xed, 0xfe, 0x72, 0xfe, 0x9b, 0x6a, 0xa4, 0xbd, 0x7b, 0x5a, 0x0f, 0x1c,
0x71, 0xcf, 0xff, 0x4c, 0x19, 0xc4, 0x18, 0xe1, 0xf6, 0xec, 0x01, 0x79,
0x81, 0xbc, 0x08, 0x7f, 0x2a, 0x70, 0x65, 0xb3, 0x84, 0xb8, 0x90, 0xd3,
0x19, 0x1f, 0x2b, 0xfa,
};
static const uint8_t kRFC5114_2048_224Q[] = {
0x80, 0x1c, 0x0d, 0x34, 0xc5, 0x8d, 0x93, 0xfe, 0x99, 0x71,
0x77, 0x10, 0x1f, 0x80, 0x53, 0x5a, 0x47, 0x38, 0xce, 0xbc,
0xbf, 0x38, 0x9a, 0x99, 0xb3, 0x63, 0x71, 0xeb,
};
// kRFC5114_2048_224BadY is a bad y-coordinate for RFC 5114's 2048-bit MODP
// Group with 224-bit Prime Order Subgroup (section 2.2).
static const uint8_t kRFC5114_2048_224BadY[] = {
0x45, 0x32, 0x5f, 0x51, 0x07, 0xe5, 0xdf, 0x1c, 0xd6, 0x02, 0x82, 0xb3,
0x32, 0x8f, 0xa4, 0x0f, 0x87, 0xb8, 0x41, 0xfe, 0xb9, 0x35, 0xde, 0xad,
0xc6, 0x26, 0x85, 0xb4, 0xff, 0x94, 0x8c, 0x12, 0x4c, 0xbf, 0x5b, 0x20,
0xc4, 0x46, 0xa3, 0x26, 0xeb, 0xa4, 0x25, 0xb7, 0x68, 0x8e, 0xcc, 0x67,
0xba, 0xea, 0x58, 0xd0, 0xf2, 0xe9, 0xd2, 0x24, 0x72, 0x60, 0xda, 0x88,
0x18, 0x9c, 0xe0, 0x31, 0x6a, 0xad, 0x50, 0x6d, 0x94, 0x35, 0x8b, 0x83,
0x4a, 0x6e, 0xfa, 0x48, 0x73, 0x0f, 0x83, 0x87, 0xff, 0x6b, 0x66, 0x1f,
0xa8, 0x82, 0xc6, 0x01, 0xe5, 0x80, 0xb5, 0xb0, 0x52, 0xd0, 0xe9, 0xd8,
0x72, 0xf9, 0x7d, 0x5b, 0x8b, 0xa5, 0x4c, 0xa5, 0x25, 0x95, 0x74, 0xe2,
0x7a, 0x61, 0x4e, 0xa7, 0x8f, 0x12, 0xe2, 0xd2, 0x9d, 0x8c, 0x02, 0x70,
0x34, 0x44, 0x32, 0xc7, 0xb2, 0xf3, 0xb9, 0xfe, 0x17, 0x2b, 0xd6, 0x1f,
0x8b, 0x7e, 0x4a, 0xfa, 0xa3, 0xb5, 0x3e, 0x7a, 0x81, 0x9a, 0x33, 0x66,
0x62, 0xa4, 0x50, 0x18, 0x3e, 0xa2, 0x5f, 0x00, 0x07, 0xd8, 0x9b, 0x22,
0xe4, 0xec, 0x84, 0xd5, 0xeb, 0x5a, 0xf3, 0x2a, 0x31, 0x23, 0xd8, 0x44,
0x22, 0x2a, 0x8b, 0x37, 0x44, 0xcc, 0xc6, 0x87, 0x4b, 0xbe, 0x50, 0x9d,
0x4a, 0xc4, 0x8e, 0x45, 0xcf, 0x72, 0x4d, 0xc0, 0x89, 0xb3, 0x72, 0xed,
0x33, 0x2c, 0xbc, 0x7f, 0x16, 0x39, 0x3b, 0xeb, 0xd2, 0xdd, 0xa8, 0x01,
0x73, 0x84, 0x62, 0xb9, 0x29, 0xd2, 0xc9, 0x51, 0x32, 0x9e, 0x7a, 0x6a,
0xcf, 0xc1, 0x0a, 0xdb, 0x0e, 0xe0, 0x62, 0x77, 0x6f, 0x59, 0x62, 0x72,
0x5a, 0x69, 0xa6, 0x5b, 0x70, 0xca, 0x65, 0xc4, 0x95, 0x6f, 0x9a, 0xc2,
0xdf, 0x72, 0x6d, 0xb1, 0x1e, 0x54, 0x7b, 0x51, 0xb4, 0xef, 0x7f, 0x89,
0x93, 0x74, 0x89, 0x59,
};
static bssl::UniquePtr<DH> NewDHGroup(const BIGNUM *p, const BIGNUM *q,
const BIGNUM *g) {
bssl::UniquePtr<BIGNUM> p_copy(BN_dup(p));
bssl::UniquePtr<BIGNUM> q_copy(q != nullptr ? BN_dup(q) : nullptr);
bssl::UniquePtr<BIGNUM> g_copy(BN_dup(g));
bssl::UniquePtr<DH> dh(DH_new());
if (p_copy == nullptr || (q != nullptr && q_copy == nullptr) ||
g_copy == nullptr || dh == nullptr ||
!DH_set0_pqg(dh.get(), p_copy.get(), q_copy.get(), g_copy.get())) {
return nullptr;
}
p_copy.release();
q_copy.release();
g_copy.release();
return dh;
}
TEST(DHTest, BadY) {
bssl::UniquePtr<BIGNUM> p(
BN_bin2bn(kRFC5114_2048_224P, sizeof(kRFC5114_2048_224P), nullptr));
bssl::UniquePtr<BIGNUM> q(
BN_bin2bn(kRFC5114_2048_224Q, sizeof(kRFC5114_2048_224Q), nullptr));
bssl::UniquePtr<BIGNUM> g(
BN_bin2bn(kRFC5114_2048_224G, sizeof(kRFC5114_2048_224G), nullptr));
ASSERT_TRUE(p);
ASSERT_TRUE(q);
ASSERT_TRUE(g);
bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), q.get(), g.get());
ASSERT_TRUE(dh);
bssl::UniquePtr<BIGNUM> pub_key(
BN_bin2bn(kRFC5114_2048_224BadY, sizeof(kRFC5114_2048_224BadY), nullptr));
ASSERT_TRUE(pub_key);
ASSERT_TRUE(DH_generate_key(dh.get()));
int flags;
ASSERT_TRUE(DH_check_pub_key(dh.get(), pub_key.get(), &flags));
EXPECT_TRUE(flags & DH_CHECK_PUBKEY_INVALID)
<< "DH_check_pub_key did not reject the key";
std::vector<uint8_t> result(DH_size(dh.get()));
EXPECT_LT(DH_compute_key(result.data(), pub_key.get(), dh.get()), 0)
<< "DH_compute_key unexpectedly succeeded";
ERR_clear_error();
}
static bool BIGNUMEqualsHex(const BIGNUM *bn, const char *hex) {
BIGNUM *hex_bn = NULL;
if (!BN_hex2bn(&hex_bn, hex)) {
return false;
}
bssl::UniquePtr<BIGNUM> free_hex_bn(hex_bn);
return BN_cmp(bn, hex_bn) == 0;
}
TEST(DHTest, ASN1) {
// kParams are a set of Diffie-Hellman parameters generated with
// openssl dhparam 256
static const uint8_t kParams[] = {
0x30, 0x26, 0x02, 0x21, 0x00, 0xd7, 0x20, 0x34, 0xa3, 0x27,
0x4f, 0xdf, 0xbf, 0x04, 0xfd, 0x24, 0x68, 0x25, 0xb6, 0x56,
0xd8, 0xab, 0x2a, 0x41, 0x2d, 0x74, 0x0a, 0x52, 0x08, 0x7c,
0x40, 0x71, 0x4e, 0xd2, 0x57, 0x93, 0x13, 0x02, 0x01, 0x02,
};
CBS cbs;
CBS_init(&cbs, kParams, sizeof(kParams));
bssl::UniquePtr<DH> dh(DH_parse_parameters(&cbs));
ASSERT_TRUE(dh);
EXPECT_EQ(CBS_len(&cbs), 0u);
EXPECT_TRUE(BIGNUMEqualsHex(
DH_get0_p(dh.get()),
"d72034a3274fdfbf04fd246825b656d8ab2a412d740a52087c40714ed2579313"));
EXPECT_TRUE(BIGNUMEqualsHex(DH_get0_g(dh.get()), "2"));
EXPECT_EQ(dh->priv_length, 0u);
bssl::ScopedCBB cbb;
uint8_t *der;
size_t der_len;
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(DH_marshal_parameters(cbb.get(), dh.get()));
ASSERT_TRUE(CBB_finish(cbb.get(), &der, &der_len));
bssl::UniquePtr<uint8_t> free_der(der);
EXPECT_EQ(Bytes(kParams), Bytes(der, der_len));
// kParamsDSA are a set of Diffie-Hellman parameters generated with
// openssl dhparam 256 -dsaparam
static const uint8_t kParamsDSA[] = {
0x30, 0x81, 0x89, 0x02, 0x41, 0x00, 0x93, 0xf3, 0xc1, 0x18, 0x01, 0xe6,
0x62, 0xb6, 0xd1, 0x46, 0x9a, 0x2c, 0x72, 0xea, 0x31, 0xd9, 0x18, 0x10,
0x30, 0x28, 0x63, 0xe2, 0x34, 0x7d, 0x80, 0xca, 0xee, 0x82, 0x2b, 0x19,
0x3c, 0x19, 0xbb, 0x42, 0x83, 0x02, 0x70, 0xdd, 0xdb, 0x8c, 0x03, 0xab,
0xe9, 0x9c, 0xc4, 0x00, 0x4d, 0x70, 0x5f, 0x52, 0x03, 0x31, 0x2c, 0xa4,
0x67, 0x34, 0x51, 0x95, 0x2a, 0xac, 0x11, 0xe2, 0x6a, 0x55, 0x02, 0x40,
0x44, 0xc8, 0x10, 0x53, 0x44, 0x32, 0x31, 0x63, 0xd8, 0xd1, 0x8c, 0x75,
0xc8, 0x98, 0x53, 0x3b, 0x5b, 0x4a, 0x2a, 0x0a, 0x09, 0xe7, 0xd0, 0x3c,
0x53, 0x72, 0xa8, 0x6b, 0x70, 0x41, 0x9c, 0x26, 0x71, 0x44, 0xfc, 0x7f,
0x08, 0x75, 0xe1, 0x02, 0xab, 0x74, 0x41, 0xe8, 0x2a, 0x3d, 0x3c, 0x26,
0x33, 0x09, 0xe4, 0x8b, 0xb4, 0x41, 0xec, 0xa6, 0xa8, 0xba, 0x1a, 0x07,
0x8a, 0x77, 0xf5, 0x5f, 0x02, 0x02, 0x00, 0xa0,
};
CBS_init(&cbs, kParamsDSA, sizeof(kParamsDSA));
dh.reset(DH_parse_parameters(&cbs));
ASSERT_TRUE(dh);
EXPECT_EQ(CBS_len(&cbs), 0u);
EXPECT_TRUE(
BIGNUMEqualsHex(DH_get0_p(dh.get()),
"93f3c11801e662b6d1469a2c72ea31d91810302863e2347d80caee8"
"22b193c19bb42830270dddb8c03abe99cc4004d705f5203312ca467"
"3451952aac11e26a55"));
EXPECT_TRUE(
BIGNUMEqualsHex(DH_get0_g(dh.get()),
"44c8105344323163d8d18c75c898533b5b4a2a0a09e7d03c5372a86"
"b70419c267144fc7f0875e102ab7441e82a3d3c263309e48bb441ec"
"a6a8ba1a078a77f55f"));
EXPECT_EQ(dh->priv_length, 160u);
ASSERT_TRUE(CBB_init(cbb.get(), 0));
ASSERT_TRUE(DH_marshal_parameters(cbb.get(), dh.get()));
ASSERT_TRUE(CBB_finish(cbb.get(), &der, &der_len));
bssl::UniquePtr<uint8_t> free_der2(der);
EXPECT_EQ(Bytes(kParamsDSA), Bytes(der, der_len));
}
TEST(DHTest, RFC3526) {
bssl::UniquePtr<BIGNUM> bn(BN_get_rfc3526_prime_1536(nullptr));
ASSERT_TRUE(bn);
static const uint8_t kPrime1536[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f, 0xda, 0xa2,
0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b, 0x80, 0xdc, 0x1c, 0xd1,
0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67, 0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6,
0x3b, 0x13, 0x9b, 0x22, 0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd,
0xef, 0x95, 0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d,
0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51, 0xc2, 0x45,
0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6, 0xf4, 0x4c, 0x42, 0xe9,
0xa6, 0x37, 0xed, 0x6b, 0x0b, 0xff, 0x5c, 0xb6, 0xf4, 0x06, 0xb7, 0xed,
0xee, 0x38, 0x6b, 0xfb, 0x5a, 0x89, 0x9f, 0xa5, 0xae, 0x9f, 0x24, 0x11,
0x7c, 0x4b, 0x1f, 0xe6, 0x49, 0x28, 0x66, 0x51, 0xec, 0xe4, 0x5b, 0x3d,
0xc2, 0x00, 0x7c, 0xb8, 0xa1, 0x63, 0xbf, 0x05, 0x98, 0xda, 0x48, 0x36,
0x1c, 0x55, 0xd3, 0x9a, 0x69, 0x16, 0x3f, 0xa8, 0xfd, 0x24, 0xcf, 0x5f,
0x83, 0x65, 0x5d, 0x23, 0xdc, 0xa3, 0xad, 0x96, 0x1c, 0x62, 0xf3, 0x56,
0x20, 0x85, 0x52, 0xbb, 0x9e, 0xd5, 0x29, 0x07, 0x70, 0x96, 0x96, 0x6d,
0x67, 0x0c, 0x35, 0x4e, 0x4a, 0xbc, 0x98, 0x04, 0xf1, 0x74, 0x6c, 0x08,
0xca, 0x23, 0x73, 0x27, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
};
uint8_t buffer[sizeof(kPrime1536)];
ASSERT_EQ(BN_num_bytes(bn.get()), sizeof(kPrime1536));
ASSERT_EQ(BN_bn2bin(bn.get(), buffer), sizeof(kPrime1536));
EXPECT_EQ(Bytes(buffer), Bytes(kPrime1536));
}
TEST(DHTest, LeadingZeros) {
bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_1536(nullptr));
ASSERT_TRUE(p);
bssl::UniquePtr<BIGNUM> g(BN_new());
ASSERT_TRUE(g);
ASSERT_TRUE(BN_set_word(g.get(), 2));
bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(dh);
// These values are far too small to be reasonable Diffie-Hellman keys, but
// they are an easy way to get a shared secret with leading zeros.
bssl::UniquePtr<BIGNUM> priv_key(BN_new()), peer_key(BN_new());
ASSERT_TRUE(priv_key);
ASSERT_TRUE(BN_set_word(priv_key.get(), 2));
ASSERT_TRUE(peer_key);
ASSERT_TRUE(BN_set_word(peer_key.get(), 3));
ASSERT_TRUE(DH_set0_key(dh.get(), /*pub_key=*/nullptr, priv_key.get()));
priv_key.release();
uint8_t padded[192] = {0};
padded[191] = 9;
static const uint8_t kTruncated[] = {9};
EXPECT_EQ(int(sizeof(padded)), DH_size(dh.get()));
std::vector<uint8_t> buf(DH_size(dh.get()));
int len = DH_compute_key(buf.data(), peer_key.get(), dh.get());
ASSERT_GT(len, 0);
EXPECT_EQ(Bytes(buf.data(), len), Bytes(kTruncated));
len = DH_compute_key_padded(buf.data(), peer_key.get(), dh.get());
ASSERT_GT(len, 0);
EXPECT_EQ(Bytes(buf.data(), len), Bytes(padded));
}
TEST(DHTest, Overwrite) {
// Generate a DH key with the 1536-bit MODP group.
bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_1536(nullptr));
ASSERT_TRUE(p);
bssl::UniquePtr<BIGNUM> g(BN_new());
ASSERT_TRUE(g);
ASSERT_TRUE(BN_set_word(g.get(), 2));
bssl::UniquePtr<DH> key1 = NewDHGroup(p.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(key1);
ASSERT_TRUE(DH_generate_key(key1.get()));
bssl::UniquePtr<BIGNUM> peer_key(BN_new());
ASSERT_TRUE(peer_key);
ASSERT_TRUE(BN_set_word(peer_key.get(), 42));
// Use the key to fill in cached values.
std::vector<uint8_t> buf1(DH_size(key1.get()));
ASSERT_GT(DH_compute_key_padded(buf1.data(), peer_key.get(), key1.get()), 0);
// Generate a different key with a different group.
p.reset(BN_get_rfc3526_prime_2048(nullptr));
ASSERT_TRUE(p);
bssl::UniquePtr<DH> key2 = NewDHGroup(p.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(key2);
ASSERT_TRUE(DH_generate_key(key2.get()));
// Overwrite |key1|'s contents with |key2|.
p.reset(BN_dup(DH_get0_p(key2.get())));
ASSERT_TRUE(p);
g.reset(BN_dup(DH_get0_g(key2.get())));
ASSERT_TRUE(g);
bssl::UniquePtr<BIGNUM> pub(BN_dup(DH_get0_pub_key(key2.get())));
ASSERT_TRUE(pub);
bssl::UniquePtr<BIGNUM> priv(BN_dup(DH_get0_priv_key(key2.get())));
ASSERT_TRUE(priv);
ASSERT_TRUE(DH_set0_pqg(key1.get(), p.get(), /*q=*/nullptr, g.get()));
p.release();
g.release();
ASSERT_TRUE(DH_set0_key(key1.get(), pub.get(), priv.get()));
pub.release();
priv.release();
// Verify that |key1| and |key2| behave equivalently.
buf1.resize(DH_size(key1.get()));
ASSERT_GT(DH_compute_key_padded(buf1.data(), peer_key.get(), key1.get()), 0);
std::vector<uint8_t> buf2(DH_size(key2.get()));
ASSERT_GT(DH_compute_key_padded(buf2.data(), peer_key.get(), key2.get()), 0);
EXPECT_EQ(Bytes(buf1), Bytes(buf2));
}
TEST(DHTest, GenerateKeyTwice) {
bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_2048(nullptr));
ASSERT_TRUE(p);
bssl::UniquePtr<BIGNUM> g(BN_new());
ASSERT_TRUE(g);
ASSERT_TRUE(BN_set_word(g.get(), 2));
bssl::UniquePtr<DH> key1 = NewDHGroup(p.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(key1);
ASSERT_TRUE(DH_generate_key(key1.get()));
// Copy the parameters and private key to a new DH object.
bssl::UniquePtr<DH> key2(DHparams_dup(key1.get()));
ASSERT_TRUE(key2);
bssl::UniquePtr<BIGNUM> priv_key(BN_dup(DH_get0_priv_key(key1.get())));
ASSERT_TRUE(DH_set0_key(key2.get(), /*pub_key=*/NULL, priv_key.get()));
priv_key.release();
// This time, calling |DH_generate_key| preserves the old key and recomputes
// the public key.
ASSERT_TRUE(DH_generate_key(key2.get()));
EXPECT_EQ(BN_cmp(DH_get0_priv_key(key1.get()), DH_get0_priv_key(key2.get())),
0);
EXPECT_EQ(BN_cmp(DH_get0_pub_key(key1.get()), DH_get0_pub_key(key2.get())),
0);
}
// Bad parameters should be rejected, rather than cause a DoS risk in the
// event that an application uses Diffie-Hellman incorrectly, with untrusted
// domain parameters.
TEST(DHTest, InvalidParameters) {
auto check_invalid_group = [](DH *dh) {
// All operations on egregiously invalid groups should fail.
EXPECT_FALSE(DH_generate_key(dh));
int check_result;
EXPECT_FALSE(DH_check(dh, &check_result));
bssl::UniquePtr<BIGNUM> pub_key(BN_new());
ASSERT_TRUE(pub_key);
ASSERT_TRUE(BN_set_u64(pub_key.get(), 42));
EXPECT_FALSE(DH_check_pub_key(dh, pub_key.get(), &check_result));
uint8_t buf[1024];
EXPECT_EQ(DH_compute_key(buf, pub_key.get(), dh), -1);
EXPECT_EQ(DH_compute_key_padded(buf, pub_key.get(), dh), -1);
};
bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_2048(nullptr));
ASSERT_TRUE(p);
bssl::UniquePtr<BIGNUM> g(BN_new());
ASSERT_TRUE(g);
ASSERT_TRUE(BN_set_word(g.get(), 2));
// p is negative.
BN_set_negative(p.get(), 1);
bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(dh);
BN_set_negative(p.get(), 0);
check_invalid_group(dh.get());
// g is negative.
BN_set_negative(g.get(), 1);
dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(dh);
BN_set_negative(g.get(), 0);
check_invalid_group(dh.get());
// g is not reduced mod p.
dh = NewDHGroup(p.get(), /*q=*/nullptr, p.get());
ASSERT_TRUE(dh);
BN_set_negative(g.get(), 0);
check_invalid_group(dh.get());
// p is too large.
bssl::UniquePtr<BIGNUM> large(BN_new());
ASSERT_TRUE(BN_set_bit(large.get(), 0));
ASSERT_TRUE(BN_set_bit(large.get(), 10000000));
dh = NewDHGroup(large.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(dh);
check_invalid_group(dh.get());
// q is too large.
dh = NewDHGroup(p.get(), large.get(), g.get());
ASSERT_TRUE(dh);
check_invalid_group(dh.get());
// Attempting to generate too large of a Diffie-Hellman group should fail.
EXPECT_FALSE(
DH_generate_parameters_ex(dh.get(), 20000, DH_GENERATOR_5, nullptr));
}
TEST(DHTest, PrivateKeyLength) {
// Use a custom P, rather than one of the MODP primes, to pick one which does
// not begin with all ones. Otherwise some of the tests for boundary
// conditions below will not notice mistakes.
static const uint8_t kP[] = {
0xb6, 0xfa, 0x00, 0x07, 0x0a, 0x1f, 0xfb, 0x28, 0x7e, 0x6e, 0x6a, 0x97,
0xca, 0xa4, 0x6d, 0xf5, 0x25, 0x84, 0x76, 0xc6, 0xc4, 0xa5, 0x47, 0xb6,
0xb2, 0x7d, 0x76, 0x46, 0xf2, 0xb5, 0x7c, 0xc6, 0xc6, 0xb4, 0xb4, 0x82,
0xc5, 0xed, 0x7b, 0xd9, 0x30, 0x6e, 0x41, 0xdb, 0x7f, 0x93, 0x2f, 0xb5,
0x85, 0xa7, 0x38, 0x9e, 0x08, 0xc4, 0x25, 0x92, 0x7d, 0x5d, 0x2b, 0x77,
0x09, 0xe0, 0x2f, 0x4e, 0x14, 0x36, 0x8a, 0x08, 0x0b, 0xfd, 0x89, 0x22,
0x47, 0xb4, 0xbd, 0xff, 0x79, 0x4e, 0x78, 0x66, 0x2a, 0x77, 0x74, 0xbd,
0x85, 0xb6, 0xce, 0x5a, 0x89, 0xb7, 0x60, 0xc3, 0x8d, 0x2a, 0x1f, 0xb7,
0x30, 0x33, 0x1a, 0xc4, 0x51, 0xa8, 0x18, 0x62, 0x40, 0xb6, 0x5a, 0xb5,
0x6c, 0xf5, 0xf9, 0xbc, 0x94, 0x50, 0xba, 0xeb, 0xa2, 0xe9, 0xb3, 0x99,
0xde, 0xf8, 0x55, 0xfd, 0xed, 0x46, 0x1b, 0x69, 0xa5, 0x6a, 0x04, 0xe3,
0xa9, 0x2c, 0x0c, 0x89, 0x41, 0xfe, 0xe4, 0xa0, 0x85, 0x85, 0x2c, 0x45,
0xf1, 0xcb, 0x96, 0x04, 0x23, 0x4a, 0x7d, 0x56, 0x38, 0xd8, 0x86, 0x9d,
0xfc, 0xe0, 0x33, 0x65, 0x1a, 0xff, 0x07, 0xf0, 0xfb, 0xc6, 0x5d, 0x26,
0xa2, 0x96, 0xd4, 0xb5, 0xe8, 0xcd, 0x48, 0xd7, 0x8e, 0x53, 0xfe, 0xcb,
0x4b, 0xf2, 0x3a, 0x8b, 0x35, 0x87, 0x0a, 0x79, 0xbe, 0x8d, 0x36, 0x45,
0x12, 0x6e, 0x1b, 0xd4, 0xa5, 0x57, 0xe0, 0x98, 0xb7, 0x59, 0xba, 0xc2,
0xd8, 0x2e, 0x05, 0x0f, 0xe1, 0x70, 0x39, 0x5b, 0xe6, 0x4e, 0xdb, 0xb0,
0xdd, 0x7e, 0xe6, 0x66, 0x13, 0x85, 0x26, 0x32, 0x27, 0xa1, 0x00, 0x7f,
0x6a, 0xa9, 0xda, 0x2e, 0x50, 0x25, 0x87, 0x73, 0xab, 0x71, 0xfb, 0xa0,
0x92, 0xba, 0x8e, 0x9c, 0x4e, 0xea, 0x18, 0x32, 0xc4, 0x02, 0x8f, 0xe8,
0x95, 0x9e, 0xcb, 0x9f};
bssl::UniquePtr<BIGNUM> p(BN_bin2bn(kP, sizeof(kP), nullptr));
ASSERT_TRUE(p);
bssl::UniquePtr<BIGNUM> g(BN_new());
ASSERT_TRUE(g);
ASSERT_TRUE(BN_set_word(g.get(), 2));
bssl::UniquePtr<BIGNUM> q(BN_new());
ASSERT_TRUE(q);
ASSERT_TRUE(BN_rshift1(q.get(), p.get())); // (p-1)/2
EXPECT_EQ(BN_num_bits(p.get()), 2048u);
EXPECT_EQ(BN_num_bits(q.get()), 2047u);
// This test will only probabilistically notice some kinds of failures, so we
// repeat it for several iterations.
constexpr unsigned kIterations = 100;
// If the private key was chosen from the range [1, M), num_bits(priv_key)
// should be very close to num_bits(M), but may be a few bits short. Allow 128
// leading zeros, which should fail with negligible probability.
constexpr unsigned kMaxLeadingZeros = 128;
for (unsigned i = 0; i < kIterations; i++) {
// If unspecified, the private key is bounded by q = (p-1)/2.
bssl::UniquePtr<DH> dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(dh);
ASSERT_TRUE(DH_generate_key(dh.get()));
EXPECT_LT(BN_cmp(DH_get0_priv_key(dh.get()), q.get()), 0);
EXPECT_LE(BN_num_bits(q.get()) - kMaxLeadingZeros,
BN_num_bits(DH_get0_priv_key(dh.get())));
// Setting too large of a private key length should not be a DoS vector. The
// key is clamped to q = (p-1)/2.
dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(dh);
DH_set_length(dh.get(), 10000000);
ASSERT_TRUE(DH_generate_key(dh.get()));
EXPECT_LT(BN_cmp(DH_get0_priv_key(dh.get()), q.get()), 0);
EXPECT_LE(BN_num_bits(q.get()) - kMaxLeadingZeros,
BN_num_bits(DH_get0_priv_key(dh.get())));
// A small private key size should bound the private key.
dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(dh);
unsigned bits = 1024;
DH_set_length(dh.get(), bits);
ASSERT_TRUE(DH_generate_key(dh.get()));
EXPECT_LE(BN_num_bits(DH_get0_priv_key(dh.get())), bits);
EXPECT_LE(bits - kMaxLeadingZeros, BN_num_bits(DH_get0_priv_key(dh.get())));
// If the private key length is num_bits(q) - 1, the length should be the
// limiting factor.
dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(dh);
bits = BN_num_bits(q.get()) - 1;
DH_set_length(dh.get(), bits);
ASSERT_TRUE(DH_generate_key(dh.get()));
EXPECT_LE(BN_num_bits(DH_get0_priv_key(dh.get())), bits);
EXPECT_LE(bits - kMaxLeadingZeros, BN_num_bits(DH_get0_priv_key(dh.get())));
// If the private key length is num_bits(q), q should be the limiting
// factor.
dh = NewDHGroup(p.get(), /*q=*/nullptr, g.get());
ASSERT_TRUE(dh);
DH_set_length(dh.get(), BN_num_bits(q.get()));
ASSERT_TRUE(DH_generate_key(dh.get()));
EXPECT_LT(BN_cmp(DH_get0_priv_key(dh.get()), q.get()), 0);
EXPECT_LE(BN_num_bits(q.get()) - kMaxLeadingZeros,
BN_num_bits(DH_get0_priv_key(dh.get())));
}
}