|  | // Copyright 2017 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #ifndef OPENSSL_HEADER_SSL_SPAN_H | 
|  | #define OPENSSL_HEADER_SSL_SPAN_H | 
|  |  | 
|  | #include <openssl/base.h> | 
|  |  | 
|  | #if !defined(BORINGSSL_NO_CXX) | 
|  |  | 
|  | extern "C++" { | 
|  |  | 
|  | #include <stdlib.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <string_view> | 
|  | #include <type_traits> | 
|  |  | 
|  | #if __has_include(<version>) | 
|  | #include <version> | 
|  | #endif | 
|  |  | 
|  | #if defined(__cpp_lib_ranges) && __cpp_lib_ranges >= 201911L | 
|  | #include <ranges> | 
|  | BSSL_NAMESPACE_BEGIN | 
|  | template <typename T> | 
|  | class Span; | 
|  | BSSL_NAMESPACE_END | 
|  |  | 
|  | // Mark `Span` as satisfying the `view` and `borrowed_range` concepts. This | 
|  | // should be done before the definition of `Span`, so that any inlined calls to | 
|  | // range functionality use the correct specializations. | 
|  | template <typename T> | 
|  | inline constexpr bool std::ranges::enable_view<bssl::Span<T>> = true; | 
|  | template <typename T> | 
|  | inline constexpr bool std::ranges::enable_borrowed_range<bssl::Span<T>> = true; | 
|  | #endif | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | template <typename T> | 
|  | class Span; | 
|  |  | 
|  | namespace internal { | 
|  | template <typename T> | 
|  | class SpanBase { | 
|  | // Put comparison operator implementations into a base class with const T, so | 
|  | // they can be used with any type that implicitly converts into a Span. | 
|  | static_assert(std::is_const<T>::value, | 
|  | "Span<T> must be derived from SpanBase<const T>"); | 
|  |  | 
|  | friend bool operator==(Span<T> lhs, Span<T> rhs) { | 
|  | return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); | 
|  | } | 
|  |  | 
|  | friend bool operator!=(Span<T> lhs, Span<T> rhs) { return !(lhs == rhs); } | 
|  | }; | 
|  |  | 
|  | // Heuristically test whether C is a container type that can be converted into | 
|  | // a Span<T> by checking for data() and size() member functions. | 
|  | template <typename C, typename T> | 
|  | using EnableIfContainer = std::enable_if_t< | 
|  | std::is_convertible_v<decltype(std::declval<C>().data()), T *> && | 
|  | std::is_integral_v<decltype(std::declval<C>().size())>>; | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | // A Span<T> is a non-owning reference to a contiguous array of objects of type | 
|  | // |T|. Conceptually, a Span is a simple a pointer to |T| and a count of | 
|  | // elements accessible via that pointer. The elements referenced by the Span can | 
|  | // be mutated if |T| is mutable. | 
|  | // | 
|  | // A Span can be constructed from container types implementing |data()| and | 
|  | // |size()| methods. If |T| is constant, construction from a container type is | 
|  | // implicit. This allows writing methods that accept data from some unspecified | 
|  | // container type: | 
|  | // | 
|  | // // Foo views data referenced by v. | 
|  | // void Foo(bssl::Span<const uint8_t> v) { ... } | 
|  | // | 
|  | // std::vector<uint8_t> vec; | 
|  | // Foo(vec); | 
|  | // | 
|  | // For mutable Spans, conversion is explicit: | 
|  | // | 
|  | // // FooMutate mutates data referenced by v. | 
|  | // void FooMutate(bssl::Span<uint8_t> v) { ... } | 
|  | // | 
|  | // FooMutate(bssl::Span<uint8_t>(vec)); | 
|  | // | 
|  | // You can also use C++17 class template argument deduction to construct Spans | 
|  | // in order to deduce the type of the Span automatically. | 
|  | // | 
|  | // FooMutate(bssl::Span(vec)); | 
|  | // | 
|  | // Note that Spans have value type sematics. They are cheap to construct and | 
|  | // copy, and should be passed by value whenever a method would otherwise accept | 
|  | // a reference or pointer to a container or array. | 
|  | template <typename T> | 
|  | class Span : private internal::SpanBase<const T> { | 
|  | public: | 
|  | static const size_t npos = static_cast<size_t>(-1); | 
|  |  | 
|  | using element_type = T; | 
|  | using value_type = std::remove_cv_t<T>; | 
|  | using size_type = size_t; | 
|  | using difference_type = ptrdiff_t; | 
|  | using pointer = T *; | 
|  | using const_pointer = const T *; | 
|  | using reference = T &; | 
|  | using const_reference = const T &; | 
|  | using iterator = T *; | 
|  | using const_iterator = const T *; | 
|  |  | 
|  | constexpr Span() : Span(nullptr, 0) {} | 
|  | constexpr Span(T *ptr, size_t len) : data_(ptr), size_(len) {} | 
|  |  | 
|  | template <size_t N> | 
|  | constexpr Span(T (&array)[N]) : Span(array, N) {} | 
|  |  | 
|  | template <typename C, typename = internal::EnableIfContainer<C, T>, | 
|  | typename = std::enable_if_t<std::is_const<T>::value, C>> | 
|  | constexpr Span(const C &container) | 
|  | : data_(container.data()), size_(container.size()) {} | 
|  |  | 
|  | template <typename C, typename = internal::EnableIfContainer<C, T>, | 
|  | typename = std::enable_if_t<!std::is_const<T>::value, C>> | 
|  | constexpr explicit Span(C &container) | 
|  | : data_(container.data()), size_(container.size()) {} | 
|  |  | 
|  | constexpr T *data() const { return data_; } | 
|  | constexpr size_t size() const { return size_; } | 
|  | constexpr bool empty() const { return size_ == 0; } | 
|  |  | 
|  | constexpr iterator begin() const { return data_; } | 
|  | constexpr const_iterator cbegin() const { return data_; } | 
|  | constexpr iterator end() const { return data_ + size_; } | 
|  | constexpr const_iterator cend() const { return end(); } | 
|  |  | 
|  | constexpr T &front() const { | 
|  | if (size_ == 0) { | 
|  | abort(); | 
|  | } | 
|  | return data_[0]; | 
|  | } | 
|  | constexpr T &back() const { | 
|  | if (size_ == 0) { | 
|  | abort(); | 
|  | } | 
|  | return data_[size_ - 1]; | 
|  | } | 
|  |  | 
|  | constexpr T &operator[](size_t i) const { | 
|  | if (i >= size_) { | 
|  | abort(); | 
|  | } | 
|  | return data_[i]; | 
|  | } | 
|  | T &at(size_t i) const { return (*this)[i]; } | 
|  |  | 
|  | constexpr Span subspan(size_t pos = 0, size_t len = npos) const { | 
|  | if (pos > size_) { | 
|  | // absl::Span throws an exception here. Note std::span and Chromium | 
|  | // base::span additionally forbid pos + len being out of range, with a | 
|  | // special case at npos/dynamic_extent, while absl::Span::subspan clips | 
|  | // the span. For now, we align with absl::Span in case we switch to it in | 
|  | // the future. | 
|  | abort(); | 
|  | } | 
|  | return Span(data_ + pos, std::min(size_ - pos, len)); | 
|  | } | 
|  |  | 
|  | constexpr Span first(size_t len) const { | 
|  | if (len > size_) { | 
|  | abort(); | 
|  | } | 
|  | return Span(data_, len); | 
|  | } | 
|  |  | 
|  | constexpr Span last(size_t len) const { | 
|  | if (len > size_) { | 
|  | abort(); | 
|  | } | 
|  | return Span(data_ + size_ - len, len); | 
|  | } | 
|  |  | 
|  | private: | 
|  | T *data_; | 
|  | size_t size_; | 
|  | }; | 
|  |  | 
|  | template <typename T> | 
|  | const size_t Span<T>::npos; | 
|  |  | 
|  | template <typename T> | 
|  | Span(T *, size_t) -> Span<T>; | 
|  | template <typename T, size_t size> | 
|  | Span(T (&array)[size]) -> Span<T>; | 
|  | template < | 
|  | typename C, | 
|  | typename T = std::remove_pointer_t<decltype(std::declval<C>().data())>, | 
|  | typename = internal::EnableIfContainer<C, T>> | 
|  | Span(C &) -> Span<T>; | 
|  |  | 
|  | template <typename T> | 
|  | constexpr Span<T> MakeSpan(T *ptr, size_t size) { | 
|  | return Span<T>(ptr, size); | 
|  | } | 
|  |  | 
|  | template <typename C> | 
|  | constexpr auto MakeSpan(C &c) -> decltype(MakeSpan(c.data(), c.size())) { | 
|  | return MakeSpan(c.data(), c.size()); | 
|  | } | 
|  |  | 
|  | template <typename T, size_t N> | 
|  | constexpr Span<T> MakeSpan(T (&array)[N]) { | 
|  | return Span<T>(array, N); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | constexpr Span<const T> MakeConstSpan(T *ptr, size_t size) { | 
|  | return Span<const T>(ptr, size); | 
|  | } | 
|  |  | 
|  | template <typename C> | 
|  | constexpr auto MakeConstSpan(const C &c) | 
|  | -> decltype(MakeConstSpan(c.data(), c.size())) { | 
|  | return MakeConstSpan(c.data(), c.size()); | 
|  | } | 
|  |  | 
|  | template <typename T, size_t size> | 
|  | constexpr Span<const T> MakeConstSpan(T (&array)[size]) { | 
|  | return array; | 
|  | } | 
|  |  | 
|  | inline Span<const uint8_t> StringAsBytes(std::string_view s) { | 
|  | return MakeConstSpan(reinterpret_cast<const uint8_t *>(s.data()), s.size()); | 
|  | } | 
|  |  | 
|  | inline std::string_view BytesAsStringView(bssl::Span<const uint8_t> b) { | 
|  | return std::string_view(reinterpret_cast<const char *>(b.data()), b.size()); | 
|  | } | 
|  |  | 
|  | BSSL_NAMESPACE_END | 
|  |  | 
|  | }  // extern C++ | 
|  |  | 
|  | #endif  // !defined(BORINGSSL_NO_CXX) | 
|  |  | 
|  | #endif  // OPENSSL_HEADER_SSL_SPAN_H |