|  | // Copyright 2005-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/ssl.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/err.h> | 
|  |  | 
|  | #include "../crypto/internal.h" | 
|  | #include "internal.h" | 
|  |  | 
|  |  | 
|  | BSSL_NAMESPACE_BEGIN | 
|  |  | 
|  | bool DTLSReplayBitmap::ShouldDiscard(uint64_t seq_num) const { | 
|  | const size_t kWindowSize = map_.size(); | 
|  |  | 
|  | if (seq_num > max_seq_num_) { | 
|  | return false; | 
|  | } | 
|  | uint64_t idx = max_seq_num_ - seq_num; | 
|  | return idx >= kWindowSize || map_[idx]; | 
|  | } | 
|  |  | 
|  | void DTLSReplayBitmap::Record(uint64_t seq_num) { | 
|  | const size_t kWindowSize = map_.size(); | 
|  |  | 
|  | // Shift the window if necessary. | 
|  | if (seq_num > max_seq_num_) { | 
|  | uint64_t shift = seq_num - max_seq_num_; | 
|  | if (shift >= kWindowSize) { | 
|  | map_.reset(); | 
|  | } else { | 
|  | map_ <<= shift; | 
|  | } | 
|  | max_seq_num_ = seq_num; | 
|  | } | 
|  |  | 
|  | uint64_t idx = max_seq_num_ - seq_num; | 
|  | if (idx < kWindowSize) { | 
|  | map_[idx] = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static uint16_t dtls_record_version(const SSL *ssl) { | 
|  | if (ssl->s3->version == 0) { | 
|  | // Before the version is determined, outgoing records use dTLS 1.0 for | 
|  | // historical compatibility requirements. | 
|  | return DTLS1_VERSION; | 
|  | } | 
|  | // DTLS 1.3 freezes the record version at DTLS 1.2. Previous ones use the | 
|  | // version itself. | 
|  | return ssl_protocol_version(ssl) >= TLS1_3_VERSION ? DTLS1_2_VERSION | 
|  | : ssl->s3->version; | 
|  | } | 
|  |  | 
|  | static uint64_t dtls_aead_sequence(const SSL *ssl, DTLSRecordNumber num) { | 
|  | // DTLS 1.3 uses the sequence number with the AEAD, while DTLS 1.2 uses the | 
|  | // combined value. If the version is not known, the epoch is unencrypted and | 
|  | // the value is ignored. | 
|  | return (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION) | 
|  | ? num.sequence() | 
|  | : num.combined(); | 
|  | } | 
|  |  | 
|  | // reconstruct_epoch finds the largest epoch that ends with the epoch bits from | 
|  | // |wire_epoch| that is less than or equal to |current_epoch|, to match the | 
|  | // epoch reconstruction algorithm described in RFC 9147 section 4.2.2. | 
|  | static uint16_t reconstruct_epoch(uint8_t wire_epoch, uint16_t current_epoch) { | 
|  | uint16_t current_epoch_high = current_epoch & 0xfffc; | 
|  | uint16_t epoch = (wire_epoch & 0x3) | current_epoch_high; | 
|  | if (epoch > current_epoch && current_epoch_high > 0) { | 
|  | epoch -= 0x4; | 
|  | } | 
|  | return epoch; | 
|  | } | 
|  |  | 
|  | uint64_t reconstruct_seqnum(uint16_t wire_seq, uint64_t seq_mask, | 
|  | uint64_t max_valid_seqnum) { | 
|  | // Although DTLS 1.3 can support sequence numbers up to 2^64-1, we continue to | 
|  | // enforce the DTLS 1.2 2^48-1 limit. With a minimal DTLS 1.3 record header (2 | 
|  | // bytes), no payload, and 16 byte AEAD overhead, sending 2^48 records would | 
|  | // require 5 petabytes. This allows us to continue to pack a DTLS record | 
|  | // number into an 8-byte structure. | 
|  | assert(max_valid_seqnum <= DTLSRecordNumber::kMaxSequence); | 
|  | assert(seq_mask == 0xff || seq_mask == 0xffff); | 
|  |  | 
|  | uint64_t max_seqnum_plus_one = max_valid_seqnum + 1; | 
|  | uint64_t diff = (wire_seq - max_seqnum_plus_one) & seq_mask; | 
|  | uint64_t step = seq_mask + 1; | 
|  | // This addition cannot overflow. It is at most 2^48 + seq_mask. It, however, | 
|  | // may exceed 2^48-1. | 
|  | uint64_t seqnum = max_seqnum_plus_one + diff; | 
|  | bool too_large = seqnum > DTLSRecordNumber::kMaxSequence; | 
|  | // If the diff is larger than half the step size, then the closest seqnum | 
|  | // to max_seqnum_plus_one (in Z_{2^64}) is seqnum minus step instead of | 
|  | // seqnum. | 
|  | bool closer_is_less = diff > step / 2; | 
|  | // Subtracting step from seqnum will cause underflow if seqnum is too small. | 
|  | bool would_underflow = seqnum < step; | 
|  | if (too_large || (closer_is_less && !would_underflow)) { | 
|  | seqnum -= step; | 
|  | } | 
|  | assert(seqnum <= DTLSRecordNumber::kMaxSequence); | 
|  | return seqnum; | 
|  | } | 
|  |  | 
|  | static Span<uint8_t> cbs_to_writable_bytes(CBS cbs) { | 
|  | return Span(const_cast<uint8_t *>(CBS_data(&cbs)), CBS_len(&cbs)); | 
|  | } | 
|  |  | 
|  | struct ParsedDTLSRecord { | 
|  | // read_epoch will be null if the record is for an unrecognized epoch. In that | 
|  | // case, |number| may be unset. | 
|  | DTLSReadEpoch *read_epoch = nullptr; | 
|  | DTLSRecordNumber number; | 
|  | CBS header, body; | 
|  | uint8_t type = 0; | 
|  | uint16_t version = 0; | 
|  | }; | 
|  |  | 
|  | static bool use_dtls13_record_header(const SSL *ssl, uint16_t epoch) { | 
|  | // Plaintext records in DTLS 1.3 also use the DTLSPlaintext structure for | 
|  | // backwards compatibility. | 
|  | return ssl->s3->version != 0 && ssl_protocol_version(ssl) > TLS1_2_VERSION && | 
|  | epoch > 0; | 
|  | } | 
|  |  | 
|  | static bool parse_dtls13_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) { | 
|  | if (out->type & 0x10) { | 
|  | // Connection ID bit set, which we didn't negotiate. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint16_t max_epoch = ssl->d1->read_epoch.epoch; | 
|  | if (ssl->d1->next_read_epoch != nullptr) { | 
|  | max_epoch = std::max(max_epoch, ssl->d1->next_read_epoch->epoch); | 
|  | } | 
|  | uint16_t epoch = reconstruct_epoch(out->type, max_epoch); | 
|  | size_t seq_len = (out->type & 0x08) ? 2 : 1; | 
|  | CBS seq_bytes; | 
|  | if (!CBS_get_bytes(in, &seq_bytes, seq_len)) { | 
|  | return false; | 
|  | } | 
|  | if (out->type & 0x04) { | 
|  | // 16-bit length present | 
|  | if (!CBS_get_u16_length_prefixed(in, &out->body)) { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | // No length present - the remaining contents are the whole packet. | 
|  | // CBS_get_bytes is used here to advance |in| to the end so that future | 
|  | // code that computes the number of consumed bytes functions correctly. | 
|  | BSSL_CHECK(CBS_get_bytes(in, &out->body, CBS_len(in))); | 
|  | } | 
|  |  | 
|  | // Drop the previous read epoch if expired. | 
|  | if (ssl->d1->prev_read_epoch != nullptr && | 
|  | ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec > | 
|  | ssl->d1->prev_read_epoch->expire) { | 
|  | ssl->d1->prev_read_epoch = nullptr; | 
|  | } | 
|  |  | 
|  | // Look up the corresponding epoch. This header form only matches encrypted | 
|  | // DTLS 1.3 epochs. | 
|  | DTLSReadEpoch *read_epoch = nullptr; | 
|  | if (epoch == ssl->d1->read_epoch.epoch) { | 
|  | read_epoch = &ssl->d1->read_epoch; | 
|  | } else if (ssl->d1->next_read_epoch != nullptr && | 
|  | epoch == ssl->d1->next_read_epoch->epoch) { | 
|  | read_epoch = ssl->d1->next_read_epoch.get(); | 
|  | } else if (ssl->d1->prev_read_epoch != nullptr && | 
|  | epoch == ssl->d1->prev_read_epoch->epoch.epoch) { | 
|  | read_epoch = &ssl->d1->prev_read_epoch->epoch; | 
|  | } | 
|  | if (read_epoch != nullptr && use_dtls13_record_header(ssl, epoch)) { | 
|  | out->read_epoch = read_epoch; | 
|  |  | 
|  | // Decrypt and reconstruct the sequence number: | 
|  | uint8_t mask[2]; | 
|  | if (!read_epoch->rn_encrypter->GenerateMask(mask, out->body)) { | 
|  | // GenerateMask most likely failed because the record body was not long | 
|  | // enough. | 
|  | return false; | 
|  | } | 
|  | // Apply the mask to the sequence number in-place. The header (with the | 
|  | // decrypted sequence number bytes) is used as the additional data for the | 
|  | // AEAD function. | 
|  | auto writable_seq = cbs_to_writable_bytes(seq_bytes); | 
|  | uint64_t seq = 0; | 
|  | for (size_t i = 0; i < writable_seq.size(); i++) { | 
|  | writable_seq[i] ^= mask[i]; | 
|  | seq = (seq << 8) | writable_seq[i]; | 
|  | } | 
|  | uint64_t full_seq = reconstruct_seqnum(seq, (1 << (seq_len * 8)) - 1, | 
|  | read_epoch->bitmap.max_seq_num()); | 
|  | out->number = DTLSRecordNumber(epoch, full_seq); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool parse_dtls12_record(SSL *ssl, CBS *in, ParsedDTLSRecord *out) { | 
|  | uint64_t epoch_and_seq; | 
|  | if (!CBS_get_u16(in, &out->version) ||  // | 
|  | !CBS_get_u64(in, &epoch_and_seq) || | 
|  | !CBS_get_u16_length_prefixed(in, &out->body)) { | 
|  | return false; | 
|  | } | 
|  | out->number = DTLSRecordNumber::FromCombined(epoch_and_seq); | 
|  |  | 
|  | uint16_t epoch = out->number.epoch(); | 
|  | bool version_ok; | 
|  | if (epoch == 0) { | 
|  | // Only check the first byte. Enforcing beyond that can prevent decoding | 
|  | // version negotiation failure alerts. | 
|  | version_ok = (out->version >> 8) == DTLS1_VERSION_MAJOR; | 
|  | } else { | 
|  | version_ok = out->version == dtls_record_version(ssl); | 
|  | } | 
|  | if (!version_ok) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Look up the corresponding epoch. In DTLS 1.2, we only need to consider one | 
|  | // epoch. | 
|  | if (epoch == ssl->d1->read_epoch.epoch && | 
|  | !use_dtls13_record_header(ssl, epoch)) { | 
|  | out->read_epoch = &ssl->d1->read_epoch; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool parse_dtls_record(SSL *ssl, CBS *cbs, ParsedDTLSRecord *out) { | 
|  | CBS copy = *cbs; | 
|  | if (!CBS_get_u8(cbs, &out->type)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool ok; | 
|  | if ((out->type & 0xe0) == 0x20) { | 
|  | ok = parse_dtls13_record(ssl, cbs, out); | 
|  | } else { | 
|  | ok = parse_dtls12_record(ssl, cbs, out); | 
|  | } | 
|  | if (!ok) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (CBS_len(&out->body) > SSL3_RT_MAX_ENCRYPTED_LENGTH) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | size_t header_len = CBS_data(&out->body) - CBS_data(©); | 
|  | BSSL_CHECK(CBS_get_bytes(©, &out->header, header_len)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | enum ssl_open_record_t dtls_open_record(SSL *ssl, uint8_t *out_type, | 
|  | DTLSRecordNumber *out_number, | 
|  | Span<uint8_t> *out, | 
|  | size_t *out_consumed, | 
|  | uint8_t *out_alert, Span<uint8_t> in) { | 
|  | *out_consumed = 0; | 
|  | if (ssl->s3->read_shutdown == ssl_shutdown_close_notify) { | 
|  | return ssl_open_record_close_notify; | 
|  | } | 
|  |  | 
|  | if (in.empty()) { | 
|  | return ssl_open_record_partial; | 
|  | } | 
|  |  | 
|  | CBS cbs(in); | 
|  | ParsedDTLSRecord record; | 
|  | if (!parse_dtls_record(ssl, &cbs, &record)) { | 
|  | // The record header was incomplete or malformed. Drop the entire packet. | 
|  | *out_consumed = in.size(); | 
|  | return ssl_open_record_discard; | 
|  | } | 
|  |  | 
|  | ssl_do_msg_callback(ssl, 0 /* read */, SSL3_RT_HEADER, record.header); | 
|  |  | 
|  | if (record.read_epoch == nullptr || | 
|  | record.read_epoch->bitmap.ShouldDiscard(record.number.sequence())) { | 
|  | // Drop this record. It's from an unknown epoch or is a replay. Note that if | 
|  | // the record is from next epoch, it could be buffered for later. For | 
|  | // simplicity, drop it and expect retransmit to handle it later; DTLS must | 
|  | // handle packet loss anyway. | 
|  | *out_consumed = in.size() - CBS_len(&cbs); | 
|  | return ssl_open_record_discard; | 
|  | } | 
|  |  | 
|  | // Decrypt the body in-place. | 
|  | if (!record.read_epoch->aead->Open(out, record.type, record.version, | 
|  | dtls_aead_sequence(ssl, record.number), | 
|  | record.header, | 
|  | cbs_to_writable_bytes(record.body))) { | 
|  | // Bad packets are silently dropped in DTLS. See section 4.2.1 of RFC 6347. | 
|  | // Clear the error queue of any errors decryption may have added. Drop the | 
|  | // entire packet as it must not have come from the peer. | 
|  | // | 
|  | // TODO(davidben): This doesn't distinguish malloc failures from encryption | 
|  | // failures. | 
|  | ERR_clear_error(); | 
|  | *out_consumed = in.size() - CBS_len(&cbs); | 
|  | return ssl_open_record_discard; | 
|  | } | 
|  | *out_consumed = in.size() - CBS_len(&cbs); | 
|  |  | 
|  | // DTLS 1.3 hides the record type inside the encrypted data. | 
|  | bool has_padding = !record.read_epoch->aead->is_null_cipher() && | 
|  | ssl_protocol_version(ssl) >= TLS1_3_VERSION; | 
|  | // Check the plaintext length. | 
|  | size_t plaintext_limit = SSL3_RT_MAX_PLAIN_LENGTH + (has_padding ? 1 : 0); | 
|  | if (out->size() > plaintext_limit) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); | 
|  | *out_alert = SSL_AD_RECORD_OVERFLOW; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | if (has_padding) { | 
|  | do { | 
|  | if (out->empty()) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED_OR_BAD_RECORD_MAC); | 
|  | *out_alert = SSL_AD_DECRYPT_ERROR; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  | record.type = out->back(); | 
|  | *out = out->subspan(0, out->size() - 1); | 
|  | } while (record.type == 0); | 
|  | } | 
|  |  | 
|  | record.read_epoch->bitmap.Record(record.number.sequence()); | 
|  |  | 
|  | // Once we receive a record from the next epoch in DTLS 1.3, it becomes the | 
|  | // current epoch. Also save the previous epoch. This allows us to handle | 
|  | // packet reordering on KeyUpdate, as well as ACK retransmissions of the | 
|  | // Finished flight. | 
|  | if (record.read_epoch == ssl->d1->next_read_epoch.get()) { | 
|  | assert(ssl_protocol_version(ssl) >= TLS1_3_VERSION); | 
|  | auto prev = MakeUnique<DTLSPrevReadEpoch>(); | 
|  | if (prev == nullptr) { | 
|  | *out_alert = SSL_AD_INTERNAL_ERROR; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  |  | 
|  | // Release the epoch after a timeout. | 
|  | prev->expire = ssl_ctx_get_current_time(ssl->ctx.get()).tv_sec; | 
|  | if (prev->expire >= UINT64_MAX - DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS) { | 
|  | prev->expire = UINT64_MAX;  // Saturate on overflow. | 
|  | } else { | 
|  | prev->expire += DTLS_PREV_READ_EPOCH_EXPIRE_SECONDS; | 
|  | } | 
|  |  | 
|  | prev->epoch = std::move(ssl->d1->read_epoch); | 
|  | ssl->d1->prev_read_epoch = std::move(prev); | 
|  | ssl->d1->read_epoch = std::move(*ssl->d1->next_read_epoch); | 
|  | ssl->d1->next_read_epoch = nullptr; | 
|  | } | 
|  |  | 
|  | // TODO(davidben): Limit the number of empty records as in TLS? This is only | 
|  | // useful if we also limit discarded packets. | 
|  |  | 
|  | if (record.type == SSL3_RT_ALERT) { | 
|  | return ssl_process_alert(ssl, out_alert, *out); | 
|  | } | 
|  |  | 
|  | // Reject application data in epochs that do not allow it. | 
|  | if (record.type == SSL3_RT_APPLICATION_DATA) { | 
|  | bool app_data_allowed; | 
|  | if (ssl->s3->version != 0 && ssl_protocol_version(ssl) >= TLS1_3_VERSION) { | 
|  | // Application data is allowed in 0-RTT (epoch 1) and after the handshake | 
|  | // (3 and up). | 
|  | app_data_allowed = | 
|  | record.number.epoch() == 1 || record.number.epoch() >= 3; | 
|  | } else { | 
|  | // Application data is allowed starting epoch 1. | 
|  | app_data_allowed = record.number.epoch() >= 1; | 
|  | } | 
|  | if (!app_data_allowed) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_RECORD); | 
|  | *out_alert = SSL_AD_UNEXPECTED_MESSAGE; | 
|  | return ssl_open_record_error; | 
|  | } | 
|  | } | 
|  |  | 
|  | ssl->s3->warning_alert_count = 0; | 
|  |  | 
|  | *out_type = record.type; | 
|  | *out_number = record.number; | 
|  | return ssl_open_record_success; | 
|  | } | 
|  |  | 
|  | static DTLSWriteEpoch *get_write_epoch(const SSL *ssl, uint16_t epoch) { | 
|  | if (ssl->d1->write_epoch.epoch() == epoch) { | 
|  | return &ssl->d1->write_epoch; | 
|  | } | 
|  | for (const auto &e : ssl->d1->extra_write_epochs) { | 
|  | if (e->epoch() == epoch) { | 
|  | return e.get(); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | size_t dtls_record_header_write_len(const SSL *ssl, uint16_t epoch) { | 
|  | if (!use_dtls13_record_header(ssl, epoch)) { | 
|  | return DTLS_PLAINTEXT_RECORD_HEADER_LENGTH; | 
|  | } | 
|  | // The DTLS 1.3 has a variable length record header. We never send Connection | 
|  | // ID, we always send 16-bit sequence numbers, and we send a length. (Length | 
|  | // can be omitted, but only for the last record of a packet. Since we send | 
|  | // multiple records in one packet, it's easier to implement always sending the | 
|  | // length.) | 
|  | return DTLS1_3_RECORD_HEADER_WRITE_LENGTH; | 
|  | } | 
|  |  | 
|  | size_t dtls_max_seal_overhead(const SSL *ssl, uint16_t epoch) { | 
|  | DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch); | 
|  | if (write_epoch == nullptr) { | 
|  | return 0; | 
|  | } | 
|  | size_t ret = dtls_record_header_write_len(ssl, epoch) + | 
|  | write_epoch->aead->MaxOverhead(); | 
|  | if (use_dtls13_record_header(ssl, epoch)) { | 
|  | // Add 1 byte for the encrypted record type. | 
|  | ret++; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | size_t dtls_seal_prefix_len(const SSL *ssl, uint16_t epoch) { | 
|  | DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch); | 
|  | if (write_epoch == nullptr) { | 
|  | return 0; | 
|  | } | 
|  | return dtls_record_header_write_len(ssl, epoch) + | 
|  | write_epoch->aead->ExplicitNonceLen(); | 
|  | } | 
|  |  | 
|  | size_t dtls_seal_max_input_len(const SSL *ssl, uint16_t epoch, size_t max_out) { | 
|  | DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch); | 
|  | if (write_epoch == nullptr) { | 
|  | return 0; | 
|  | } | 
|  | size_t header_len = dtls_record_header_write_len(ssl, epoch); | 
|  | if (max_out <= header_len) { | 
|  | return 0; | 
|  | } | 
|  | max_out -= header_len; | 
|  | max_out = write_epoch->aead->MaxSealInputLen(max_out); | 
|  | if (max_out > 0 && use_dtls13_record_header(ssl, epoch)) { | 
|  | // Remove 1 byte for the encrypted record type. | 
|  | max_out--; | 
|  | } | 
|  | return max_out; | 
|  | } | 
|  |  | 
|  | bool dtls_seal_record(SSL *ssl, DTLSRecordNumber *out_number, uint8_t *out, | 
|  | size_t *out_len, size_t max_out, uint8_t type, | 
|  | const uint8_t *in, size_t in_len, uint16_t epoch) { | 
|  | const size_t prefix = dtls_seal_prefix_len(ssl, epoch); | 
|  | if (buffers_alias(in, in_len, out, max_out) && | 
|  | (max_out < prefix || out + prefix != in)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_OUTPUT_ALIASES_INPUT); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Determine the parameters for the current epoch. | 
|  | DTLSWriteEpoch *write_epoch = get_write_epoch(ssl, epoch); | 
|  | if (write_epoch == nullptr) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const size_t record_header_len = dtls_record_header_write_len(ssl, epoch); | 
|  |  | 
|  | // Ensure the sequence number update does not overflow. | 
|  | DTLSRecordNumber record_number = write_epoch->next_record; | 
|  | if (!record_number.HasNext()) { | 
|  | OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool dtls13_header = use_dtls13_record_header(ssl, epoch); | 
|  | uint8_t *extra_in = NULL; | 
|  | size_t extra_in_len = 0; | 
|  | if (dtls13_header) { | 
|  | extra_in = &type; | 
|  | extra_in_len = 1; | 
|  | } | 
|  |  | 
|  | size_t ciphertext_len; | 
|  | if (!write_epoch->aead->CiphertextLen(&ciphertext_len, in_len, | 
|  | extra_in_len)) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); | 
|  | return false; | 
|  | } | 
|  | if (max_out < record_header_len + ciphertext_len) { | 
|  | OPENSSL_PUT_ERROR(SSL, SSL_R_BUFFER_TOO_SMALL); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint16_t record_version = dtls_record_version(ssl); | 
|  | if (dtls13_header) { | 
|  | // The first byte of the DTLS 1.3 record header has the following format: | 
|  | // 0 1 2 3 4 5 6 7 | 
|  | // +-+-+-+-+-+-+-+-+ | 
|  | // |0|0|1|C|S|L|E E| | 
|  | // +-+-+-+-+-+-+-+-+ | 
|  | // | 
|  | // We set C=0 (no Connection ID), S=1 (16-bit sequence number), L=1 (length | 
|  | // is present), which is a mask of 0x2c. The E E bits are the low-order two | 
|  | // bits of the epoch. | 
|  | // | 
|  | // +-+-+-+-+-+-+-+-+ | 
|  | // |0|0|1|0|1|1|E E| | 
|  | // +-+-+-+-+-+-+-+-+ | 
|  | out[0] = 0x2c | (epoch & 0x3); | 
|  | // We always use a two-byte sequence number. A one-byte sequence number | 
|  | // would require coordinating with the application on ACK feedback to know | 
|  | // that the peer is not too far behind. | 
|  | CRYPTO_store_u16_be(out + 1, write_epoch->next_record.sequence()); | 
|  | // TODO(crbug.com/42290594): When we know the record is last in the packet, | 
|  | // omit the length. | 
|  | CRYPTO_store_u16_be(out + 3, ciphertext_len); | 
|  | } else { | 
|  | out[0] = type; | 
|  | CRYPTO_store_u16_be(out + 1, record_version); | 
|  | CRYPTO_store_u64_be(out + 3, record_number.combined()); | 
|  | CRYPTO_store_u16_be(out + 11, ciphertext_len); | 
|  | } | 
|  | Span<const uint8_t> header(out, record_header_len); | 
|  |  | 
|  | if (!write_epoch->aead->SealScatter( | 
|  | out + record_header_len, out + prefix, out + prefix + in_len, type, | 
|  | record_version, dtls_aead_sequence(ssl, record_number), header, in, | 
|  | in_len, extra_in, extra_in_len)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Perform record number encryption (RFC 9147 section 4.2.3). | 
|  | if (dtls13_header) { | 
|  | // Record number encryption uses bytes from the ciphertext as a sample to | 
|  | // generate the mask used for encryption. For simplicity, pass in the whole | 
|  | // ciphertext as the sample - GenerateRecordNumberMask will read only what | 
|  | // it needs (and error if |sample| is too short). | 
|  | Span<const uint8_t> sample(out + record_header_len, ciphertext_len); | 
|  | uint8_t mask[2]; | 
|  | if (!write_epoch->rn_encrypter->GenerateMask(mask, sample)) { | 
|  | return false; | 
|  | } | 
|  | out[1] ^= mask[0]; | 
|  | out[2] ^= mask[1]; | 
|  | } | 
|  |  | 
|  | *out_number = record_number; | 
|  | write_epoch->next_record = record_number.Next(); | 
|  | *out_len = record_header_len + ciphertext_len; | 
|  | ssl_do_msg_callback(ssl, 1 /* write */, SSL3_RT_HEADER, header); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | BSSL_NAMESPACE_END |