blob: e24f79b77e9924d4c5fd05f22fd8782bc468a777 [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include "test_config.h"
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory>
#include <openssl/base64.h>
#include <openssl/rand.h>
#include <openssl/ssl.h>
#include "../../crypto/internal.h"
#include "../internal.h"
#include "handshake_util.h"
#include "mock_quic_transport.h"
#include "test_state.h"
namespace {
template <typename T>
struct Flag {
const char *flag;
T TestConfig::*member;
};
// FindField looks for the flag in |flags| that matches |flag|. If one is found,
// it returns a pointer to the corresponding field in |config|. Otherwise, it
// returns NULL.
template<typename T, size_t N>
T *FindField(TestConfig *config, const Flag<T> (&flags)[N], const char *flag) {
for (size_t i = 0; i < N; i++) {
if (strcmp(flag, flags[i].flag) == 0) {
return &(config->*(flags[i].member));
}
}
return NULL;
}
const Flag<bool> kBoolFlags[] = {
{"-server", &TestConfig::is_server},
{"-dtls", &TestConfig::is_dtls},
{"-quic", &TestConfig::is_quic},
{"-fallback-scsv", &TestConfig::fallback_scsv},
{"-enable-ech-grease", &TestConfig::enable_ech_grease},
{"-expect-ech-accept", &TestConfig::expect_ech_accept},
{"-require-any-client-certificate",
&TestConfig::require_any_client_certificate},
{"-false-start", &TestConfig::false_start},
{"-async", &TestConfig::async},
{"-write-different-record-sizes",
&TestConfig::write_different_record_sizes},
{"-cbc-record-splitting", &TestConfig::cbc_record_splitting},
{"-partial-write", &TestConfig::partial_write},
{"-no-tls13", &TestConfig::no_tls13},
{"-no-tls12", &TestConfig::no_tls12},
{"-no-tls11", &TestConfig::no_tls11},
{"-no-tls1", &TestConfig::no_tls1},
{"-no-ticket", &TestConfig::no_ticket},
{"-enable-channel-id", &TestConfig::enable_channel_id},
{"-shim-writes-first", &TestConfig::shim_writes_first},
{"-expect-session-miss", &TestConfig::expect_session_miss},
{"-decline-alpn", &TestConfig::decline_alpn},
{"-reject-alpn", &TestConfig::reject_alpn},
{"-select-empty-alpn", &TestConfig::select_empty_alpn},
{"-defer-alps", &TestConfig::defer_alps},
{"-expect-extended-master-secret",
&TestConfig::expect_extended_master_secret},
{"-enable-ocsp-stapling", &TestConfig::enable_ocsp_stapling},
{"-enable-signed-cert-timestamps",
&TestConfig::enable_signed_cert_timestamps},
{"-implicit-handshake", &TestConfig::implicit_handshake},
{"-use-early-callback", &TestConfig::use_early_callback},
{"-fail-early-callback", &TestConfig::fail_early_callback},
{"-install-ddos-callback", &TestConfig::install_ddos_callback},
{"-fail-ddos-callback", &TestConfig::fail_ddos_callback},
{"-fail-cert-callback", &TestConfig::fail_cert_callback},
{"-handshake-never-done", &TestConfig::handshake_never_done},
{"-use-export-context", &TestConfig::use_export_context},
{"-tls-unique", &TestConfig::tls_unique},
{"-expect-ticket-renewal", &TestConfig::expect_ticket_renewal},
{"-expect-no-session", &TestConfig::expect_no_session},
{"-expect-ticket-supports-early-data",
&TestConfig::expect_ticket_supports_early_data},
{"-use-ticket-callback", &TestConfig::use_ticket_callback},
{"-renew-ticket", &TestConfig::renew_ticket},
{"-enable-early-data", &TestConfig::enable_early_data},
{"-check-close-notify", &TestConfig::check_close_notify},
{"-shim-shuts-down", &TestConfig::shim_shuts_down},
{"-verify-fail", &TestConfig::verify_fail},
{"-verify-peer", &TestConfig::verify_peer},
{"-verify-peer-if-no-obc", &TestConfig::verify_peer_if_no_obc},
{"-expect-verify-result", &TestConfig::expect_verify_result},
{"-renegotiate-once", &TestConfig::renegotiate_once},
{"-renegotiate-freely", &TestConfig::renegotiate_freely},
{"-renegotiate-ignore", &TestConfig::renegotiate_ignore},
{"-renegotiate-explicit", &TestConfig::renegotiate_explicit},
{"-forbid-renegotiation-after-handshake",
&TestConfig::forbid_renegotiation_after_handshake},
{"-use-old-client-cert-callback",
&TestConfig::use_old_client_cert_callback},
{"-send-alert", &TestConfig::send_alert},
{"-peek-then-read", &TestConfig::peek_then_read},
{"-enable-grease", &TestConfig::enable_grease},
{"-use-exporter-between-reads", &TestConfig::use_exporter_between_reads},
{"-retain-only-sha256-client-cert",
&TestConfig::retain_only_sha256_client_cert},
{"-expect-sha256-client-cert", &TestConfig::expect_sha256_client_cert},
{"-read-with-unfinished-write", &TestConfig::read_with_unfinished_write},
{"-expect-secure-renegotiation", &TestConfig::expect_secure_renegotiation},
{"-expect-no-secure-renegotiation",
&TestConfig::expect_no_secure_renegotiation},
{"-expect-session-id", &TestConfig::expect_session_id},
{"-expect-no-session-id", &TestConfig::expect_no_session_id},
{"-expect-accept-early-data", &TestConfig::expect_accept_early_data},
{"-expect-reject-early-data", &TestConfig::expect_reject_early_data},
{"-expect-no-offer-early-data", &TestConfig::expect_no_offer_early_data},
{"-no-op-extra-handshake", &TestConfig::no_op_extra_handshake},
{"-handshake-twice", &TestConfig::handshake_twice},
{"-allow-unknown-alpn-protos", &TestConfig::allow_unknown_alpn_protos},
{"-use-custom-verify-callback", &TestConfig::use_custom_verify_callback},
{"-allow-false-start-without-alpn",
&TestConfig::allow_false_start_without_alpn},
{"-handoff", &TestConfig::handoff},
{"-handshake-hints", &TestConfig::handshake_hints},
{"-allow-hint-mismatch", &TestConfig::allow_hint_mismatch},
{"-use-ocsp-callback", &TestConfig::use_ocsp_callback},
{"-set-ocsp-in-callback", &TestConfig::set_ocsp_in_callback},
{"-decline-ocsp-callback", &TestConfig::decline_ocsp_callback},
{"-fail-ocsp-callback", &TestConfig::fail_ocsp_callback},
{"-install-cert-compression-algs",
&TestConfig::install_cert_compression_algs},
{"-is-handshaker-supported", &TestConfig::is_handshaker_supported},
{"-handshaker-resume", &TestConfig::handshaker_resume},
{"-reverify-on-resume", &TestConfig::reverify_on_resume},
{"-enforce-rsa-key-usage", &TestConfig::enforce_rsa_key_usage},
{"-jdk11-workaround", &TestConfig::jdk11_workaround},
{"-server-preference", &TestConfig::server_preference},
{"-export-traffic-secrets", &TestConfig::export_traffic_secrets},
{"-key-update", &TestConfig::key_update},
{"-expect-delegated-credential-used",
&TestConfig::expect_delegated_credential_used},
{"-expect-hrr", &TestConfig::expect_hrr},
{"-expect-no-hrr", &TestConfig::expect_no_hrr},
{"-wait-for-debugger", &TestConfig::wait_for_debugger},
};
const Flag<std::string> kStringFlags[] = {
{"-write-settings", &TestConfig::write_settings},
{"-key-file", &TestConfig::key_file},
{"-cert-file", &TestConfig::cert_file},
{"-expect-server-name", &TestConfig::expect_server_name},
{"-advertise-npn", &TestConfig::advertise_npn},
{"-expect-next-proto", &TestConfig::expect_next_proto},
{"-select-next-proto", &TestConfig::select_next_proto},
{"-send-channel-id", &TestConfig::send_channel_id},
{"-host-name", &TestConfig::host_name},
{"-advertise-alpn", &TestConfig::advertise_alpn},
{"-expect-alpn", &TestConfig::expect_alpn},
{"-expect-late-alpn", &TestConfig::expect_late_alpn},
{"-expect-advertised-alpn", &TestConfig::expect_advertised_alpn},
{"-select-alpn", &TestConfig::select_alpn},
{"-psk", &TestConfig::psk},
{"-psk-identity", &TestConfig::psk_identity},
{"-srtp-profiles", &TestConfig::srtp_profiles},
{"-cipher", &TestConfig::cipher},
{"-export-label", &TestConfig::export_label},
{"-export-context", &TestConfig::export_context},
{"-expect-peer-cert-file", &TestConfig::expect_peer_cert_file},
{"-use-client-ca-list", &TestConfig::use_client_ca_list},
{"-expect-client-ca-list", &TestConfig::expect_client_ca_list},
{"-expect-msg-callback", &TestConfig::expect_msg_callback},
{"-handshaker-path", &TestConfig::handshaker_path},
{"-delegated-credential", &TestConfig::delegated_credential},
{"-expect-early-data-reason", &TestConfig::expect_early_data_reason},
{"-quic-early-data-context", &TestConfig::quic_early_data_context},
};
// TODO(davidben): When we can depend on C++17 or Abseil, switch this to
// std::optional or absl::optional.
const Flag<std::unique_ptr<std::string>> kOptionalStringFlags[] = {
{"-expect-peer-application-settings",
&TestConfig::expect_peer_application_settings},
};
const Flag<std::string> kBase64Flags[] = {
{"-expect-certificate-types", &TestConfig::expect_certificate_types},
{"-expect-channel-id", &TestConfig::expect_channel_id},
{"-expect-ocsp-response", &TestConfig::expect_ocsp_response},
{"-expect-signed-cert-timestamps",
&TestConfig::expect_signed_cert_timestamps},
{"-ocsp-response", &TestConfig::ocsp_response},
{"-signed-cert-timestamps", &TestConfig::signed_cert_timestamps},
{"-ticket-key", &TestConfig::ticket_key},
{"-quic-transport-params", &TestConfig::quic_transport_params},
{"-expect-quic-transport-params",
&TestConfig::expect_quic_transport_params},
};
const Flag<int> kIntFlags[] = {
{"-port", &TestConfig::port},
{"-resume-count", &TestConfig::resume_count},
{"-min-version", &TestConfig::min_version},
{"-max-version", &TestConfig::max_version},
{"-expect-version", &TestConfig::expect_version},
{"-mtu", &TestConfig::mtu},
{"-export-keying-material", &TestConfig::export_keying_material},
{"-expect-total-renegotiations", &TestConfig::expect_total_renegotiations},
{"-expect-peer-signature-algorithm",
&TestConfig::expect_peer_signature_algorithm},
{"-expect-curve-id", &TestConfig::expect_curve_id},
{"-initial-timeout-duration-ms", &TestConfig::initial_timeout_duration_ms},
{"-max-cert-list", &TestConfig::max_cert_list},
{"-expect-cipher-aes", &TestConfig::expect_cipher_aes},
{"-expect-cipher-no-aes", &TestConfig::expect_cipher_no_aes},
{"-expect-cipher", &TestConfig::expect_cipher},
{"-resumption-delay", &TestConfig::resumption_delay},
{"-max-send-fragment", &TestConfig::max_send_fragment},
{"-read-size", &TestConfig::read_size},
{"-expect-ticket-age-skew", &TestConfig::expect_ticket_age_skew},
{"-quic-use-legacy-codepoint", &TestConfig::quic_use_legacy_codepoint},
{"-install-one-cert-compression-alg",
&TestConfig::install_one_cert_compression_alg},
{"-early-write-after-message", &TestConfig::early_write_after_message},
};
const Flag<std::vector<int>> kIntVectorFlags[] = {
{"-signing-prefs", &TestConfig::signing_prefs},
{"-verify-prefs", &TestConfig::verify_prefs},
{"-expect-peer-verify-pref", &TestConfig::expect_peer_verify_prefs},
{"-curves", &TestConfig::curves},
{"-ech-is-retry-config", &TestConfig::ech_is_retry_config},
};
const Flag<std::vector<std::string>> kBase64VectorFlags[] = {
{"-ech-server-config", &TestConfig::ech_server_configs},
{"-ech-server-key", &TestConfig::ech_server_keys},
};
const Flag<std::vector<std::pair<std::string, std::string>>>
kStringPairVectorFlags[] = {
{"-application-settings", &TestConfig::application_settings},
};
bool DecodeBase64(std::string *out, const std::string &in) {
size_t len;
if (!EVP_DecodedLength(&len, in.size())) {
fprintf(stderr, "Invalid base64: %s.\n", in.c_str());
return false;
}
std::vector<uint8_t> buf(len);
if (!EVP_DecodeBase64(buf.data(), &len, buf.size(),
reinterpret_cast<const uint8_t *>(in.data()),
in.size())) {
fprintf(stderr, "Invalid base64: %s.\n", in.c_str());
return false;
}
out->assign(reinterpret_cast<const char *>(buf.data()), len);
return true;
}
bool ParseFlag(const char *flag, int argc, char **argv, int *i,
bool skip, TestConfig *out_config) {
bool *bool_field = FindField(out_config, kBoolFlags, flag);
if (bool_field != NULL) {
if (!skip) {
*bool_field = true;
}
return true;
}
std::string *string_field = FindField(out_config, kStringFlags, flag);
if (string_field != NULL) {
*i = *i + 1;
if (*i >= argc) {
fprintf(stderr, "Missing parameter.\n");
return false;
}
if (!skip) {
string_field->assign(argv[*i]);
}
return true;
}
std::unique_ptr<std::string> *optional_string_field =
FindField(out_config, kOptionalStringFlags, flag);
if (optional_string_field != NULL) {
*i = *i + 1;
if (*i >= argc) {
fprintf(stderr, "Missing parameter.\n");
return false;
}
if (!skip) {
optional_string_field->reset(new std::string(argv[*i]));
}
return true;
}
std::string *base64_field = FindField(out_config, kBase64Flags, flag);
if (base64_field != NULL) {
*i = *i + 1;
if (*i >= argc) {
fprintf(stderr, "Missing parameter.\n");
return false;
}
std::string value;
if (!DecodeBase64(&value, argv[*i])) {
return false;
}
if (!skip) {
*base64_field = std::move(value);
}
return true;
}
int *int_field = FindField(out_config, kIntFlags, flag);
if (int_field) {
*i = *i + 1;
if (*i >= argc) {
fprintf(stderr, "Missing parameter.\n");
return false;
}
if (!skip) {
*int_field = atoi(argv[*i]);
}
return true;
}
std::vector<int> *int_vector_field =
FindField(out_config, kIntVectorFlags, flag);
if (int_vector_field) {
*i = *i + 1;
if (*i >= argc) {
fprintf(stderr, "Missing parameter.\n");
return false;
}
// Each instance of the flag adds to the list.
if (!skip) {
int_vector_field->push_back(atoi(argv[*i]));
}
return true;
}
std::vector<std::string> *base64_vector_field =
FindField(out_config, kBase64VectorFlags, flag);
if (base64_vector_field) {
*i = *i + 1;
if (*i >= argc) {
fprintf(stderr, "Missing parameter.\n");
return false;
}
std::string value;
if (!DecodeBase64(&value, argv[*i])) {
return false;
}
// Each instance of the flag adds to the list.
if (!skip) {
base64_vector_field->push_back(std::move(value));
}
return true;
}
std::vector<std::pair<std::string, std::string>> *string_pair_vector_field =
FindField(out_config, kStringPairVectorFlags, flag);
if (string_pair_vector_field) {
*i = *i + 1;
if (*i >= argc) {
fprintf(stderr, "Missing parameter.\n");
return false;
}
const char *comma = strchr(argv[*i], ',');
if (!comma) {
fprintf(
stderr,
"Parameter should be a comma-separated triple composed of two base64 "
"strings followed by \"true\" or \"false\".\n");
return false;
}
// Each instance of the flag adds to the list.
if (!skip) {
string_pair_vector_field->push_back(std::make_pair(
std::string(argv[*i], comma - argv[*i]), std::string(comma + 1)));
}
return true;
}
fprintf(stderr, "Unknown argument: %s.\n", flag);
return false;
}
// RemovePrefix checks if |*str| begins with |prefix| + "-". If so, it advances
// |*str| past |prefix| (but not past the "-") and returns true. Otherwise, it
// returns false and leaves |*str| unmodified.
bool RemovePrefix(const char **str, const char *prefix) {
size_t prefix_len = strlen(prefix);
if (strncmp(*str, prefix, strlen(prefix)) == 0 && (*str)[prefix_len] == '-') {
*str += strlen(prefix);
return true;
}
return false;
}
} // namespace
bool ParseConfig(int argc, char **argv, bool is_shim,
TestConfig *out_initial,
TestConfig *out_resume,
TestConfig *out_retry) {
out_initial->argc = out_resume->argc = out_retry->argc = argc;
out_initial->argv = out_resume->argv = out_retry->argv = argv;
for (int i = 0; i < argc; i++) {
bool skip = false;
const char *flag = argv[i];
// -on-shim and -on-handshaker prefixes enable flags only on the shim or
// handshaker.
if (RemovePrefix(&flag, "-on-shim")) {
if (!is_shim) {
skip = true;
}
} else if (RemovePrefix(&flag, "-on-handshaker")) {
if (is_shim) {
skip = true;
}
}
// The following prefixes allow different configurations for each of the
// initial, resumption, and 0-RTT retry handshakes.
if (RemovePrefix(&flag, "-on-initial")) {
if (!ParseFlag(flag, argc, argv, &i, skip, out_initial)) {
return false;
}
} else if (RemovePrefix(&flag, "-on-resume")) {
if (!ParseFlag(flag, argc, argv, &i, skip, out_resume)) {
return false;
}
} else if (RemovePrefix(&flag, "-on-retry")) {
if (!ParseFlag(flag, argc, argv, &i, skip, out_retry)) {
return false;
}
} else {
// Unprefixed flags apply to all three.
int i_init = i;
int i_resume = i;
if (!ParseFlag(flag, argc, argv, &i_init, skip, out_initial) ||
!ParseFlag(flag, argc, argv, &i_resume, skip, out_resume) ||
!ParseFlag(flag, argc, argv, &i, skip, out_retry)) {
return false;
}
}
}
return true;
}
static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
static int g_config_index = 0;
static CRYPTO_BUFFER_POOL *g_pool = nullptr;
static void init_once() {
g_config_index = SSL_get_ex_new_index(0, NULL, NULL, NULL, NULL);
if (g_config_index < 0) {
abort();
}
g_pool = CRYPTO_BUFFER_POOL_new();
if (!g_pool) {
abort();
}
}
bool SetTestConfig(SSL *ssl, const TestConfig *config) {
CRYPTO_once(&once, init_once);
return SSL_set_ex_data(ssl, g_config_index, (void *)config) == 1;
}
const TestConfig *GetTestConfig(const SSL *ssl) {
CRYPTO_once(&once, init_once);
return (const TestConfig *)SSL_get_ex_data(ssl, g_config_index);
}
static int LegacyOCSPCallback(SSL *ssl, void *arg) {
const TestConfig *config = GetTestConfig(ssl);
if (!SSL_is_server(ssl)) {
return !config->fail_ocsp_callback;
}
if (!config->ocsp_response.empty() && config->set_ocsp_in_callback &&
!SSL_set_ocsp_response(ssl, (const uint8_t *)config->ocsp_response.data(),
config->ocsp_response.size())) {
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
if (config->fail_ocsp_callback) {
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
if (config->decline_ocsp_callback) {
return SSL_TLSEXT_ERR_NOACK;
}
return SSL_TLSEXT_ERR_OK;
}
static int ServerNameCallback(SSL *ssl, int *out_alert, void *arg) {
// SNI must be accessible from the SNI callback.
const TestConfig *config = GetTestConfig(ssl);
const char *server_name = SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
if (server_name == nullptr ||
std::string(server_name) != config->expect_server_name) {
fprintf(stderr, "servername mismatch (got %s; want %s).\n", server_name,
config->expect_server_name.c_str());
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
return SSL_TLSEXT_ERR_OK;
}
static int NextProtoSelectCallback(SSL *ssl, uint8_t **out, uint8_t *outlen,
const uint8_t *in, unsigned inlen,
void *arg) {
const TestConfig *config = GetTestConfig(ssl);
if (config->select_next_proto.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
*out = (uint8_t *)config->select_next_proto.data();
*outlen = config->select_next_proto.size();
return SSL_TLSEXT_ERR_OK;
}
static int NextProtosAdvertisedCallback(SSL *ssl, const uint8_t **out,
unsigned int *out_len, void *arg) {
const TestConfig *config = GetTestConfig(ssl);
if (config->advertise_npn.empty()) {
return SSL_TLSEXT_ERR_NOACK;
}
*out = (const uint8_t *)config->advertise_npn.data();
*out_len = config->advertise_npn.size();
return SSL_TLSEXT_ERR_OK;
}
static void MessageCallback(int is_write, int version, int content_type,
const void *buf, size_t len, SSL *ssl, void *arg) {
const uint8_t *buf_u8 = reinterpret_cast<const uint8_t *>(buf);
const TestConfig *config = GetTestConfig(ssl);
TestState *state = GetTestState(ssl);
if (!state->msg_callback_ok) {
return;
}
if (content_type == SSL3_RT_HEADER) {
if (len !=
(config->is_dtls ? DTLS1_RT_HEADER_LENGTH : SSL3_RT_HEADER_LENGTH)) {
fprintf(stderr, "Incorrect length for record header: %zu.\n", len);
state->msg_callback_ok = false;
}
return;
}
state->msg_callback_text += is_write ? "write " : "read ";
switch (content_type) {
case 0:
if (version != SSL2_VERSION) {
fprintf(stderr, "Incorrect version for V2ClientHello: %x.\n", version);
state->msg_callback_ok = false;
return;
}
state->msg_callback_text += "v2clienthello\n";
return;
case SSL3_RT_HANDSHAKE: {
CBS cbs;
CBS_init(&cbs, buf_u8, len);
uint8_t type;
uint32_t msg_len;
if (!CBS_get_u8(&cbs, &type) ||
// TODO(davidben): Reporting on entire messages would be more
// consistent than fragments.
(config->is_dtls &&
!CBS_skip(&cbs, 3 /* total */ + 2 /* seq */ + 3 /* frag_off */)) ||
!CBS_get_u24(&cbs, &msg_len) || !CBS_skip(&cbs, msg_len) ||
CBS_len(&cbs) != 0) {
fprintf(stderr, "Could not parse handshake message.\n");
state->msg_callback_ok = false;
return;
}
char text[16];
snprintf(text, sizeof(text), "hs %d\n", type);
state->msg_callback_text += text;
if (!is_write) {
state->last_message_received = type;
}
return;
}
case SSL3_RT_CHANGE_CIPHER_SPEC:
if (len != 1 || buf_u8[0] != 1) {
fprintf(stderr, "Invalid ChangeCipherSpec.\n");
state->msg_callback_ok = false;
return;
}
state->msg_callback_text += "ccs\n";
return;
case SSL3_RT_ALERT:
if (len != 2) {
fprintf(stderr, "Invalid alert.\n");
state->msg_callback_ok = false;
return;
}
char text[16];
snprintf(text, sizeof(text), "alert %d %d\n", buf_u8[0], buf_u8[1]);
state->msg_callback_text += text;
return;
default:
fprintf(stderr, "Invalid content_type: %d.\n", content_type);
state->msg_callback_ok = false;
}
}
static int TicketKeyCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
int encrypt) {
if (!encrypt) {
if (GetTestState(ssl)->ticket_decrypt_done) {
fprintf(stderr, "TicketKeyCallback called after completion.\n");
return -1;
}
GetTestState(ssl)->ticket_decrypt_done = true;
}
// This is just test code, so use the all-zeros key.
static const uint8_t kZeros[16] = {0};
if (encrypt) {
OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros));
RAND_bytes(iv, 16);
} else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) {
return 0;
}
if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
!EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
return -1;
}
if (!encrypt) {
return GetTestConfig(ssl)->renew_ticket ? 2 : 1;
}
return 1;
}
static int NewSessionCallback(SSL *ssl, SSL_SESSION *session) {
// This callback is called as the handshake completes. |SSL_get_session|
// must continue to work and, historically, |SSL_in_init| returned false at
// this point.
if (SSL_in_init(ssl) || SSL_get_session(ssl) == nullptr) {
fprintf(stderr, "Invalid state for NewSessionCallback.\n");
abort();
}
GetTestState(ssl)->got_new_session = true;
GetTestState(ssl)->new_session.reset(session);
return 1;
}
static void InfoCallback(const SSL *ssl, int type, int val) {
if (type == SSL_CB_HANDSHAKE_DONE) {
if (GetTestConfig(ssl)->handshake_never_done) {
fprintf(stderr, "Handshake unexpectedly completed.\n");
// Abort before any expected error code is printed, to ensure the overall
// test fails.
abort();
}
// This callback is called when the handshake completes. |SSL_get_session|
// must continue to work and |SSL_in_init| must return false.
if (SSL_in_init(ssl) || SSL_get_session(ssl) == nullptr) {
fprintf(stderr, "Invalid state for SSL_CB_HANDSHAKE_DONE.\n");
abort();
}
GetTestState(ssl)->handshake_done = true;
}
}
static SSL_SESSION *GetSessionCallback(SSL *ssl, const uint8_t *data, int len,
int *copy) {
TestState *async_state = GetTestState(ssl);
if (async_state->session) {
*copy = 0;
return async_state->session.release();
} else if (async_state->pending_session) {
return SSL_magic_pending_session_ptr();
} else {
return NULL;
}
}
static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
*out_clock = *GetClock();
}
static int AlpnSelectCallback(SSL *ssl, const uint8_t **out, uint8_t *outlen,
const uint8_t *in, unsigned inlen, void *arg) {
if (GetTestState(ssl)->alpn_select_done) {
fprintf(stderr, "AlpnSelectCallback called after completion.\n");
exit(1);
}
GetTestState(ssl)->alpn_select_done = true;
const TestConfig *config = GetTestConfig(ssl);
if (config->decline_alpn) {
return SSL_TLSEXT_ERR_NOACK;
}
if (config->reject_alpn) {
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
if (!config->expect_advertised_alpn.empty() &&
(config->expect_advertised_alpn.size() != inlen ||
OPENSSL_memcmp(config->expect_advertised_alpn.data(), in, inlen) !=
0)) {
fprintf(stderr, "bad ALPN select callback inputs.\n");
exit(1);
}
if (config->defer_alps) {
for (const auto &pair : config->application_settings) {
if (!SSL_add_application_settings(
ssl, reinterpret_cast<const uint8_t *>(pair.first.data()),
pair.first.size(),
reinterpret_cast<const uint8_t *>(pair.second.data()),
pair.second.size())) {
fprintf(stderr, "error configuring ALPS.\n");
exit(1);
}
}
}
assert(config->select_alpn.empty() || !config->select_empty_alpn);
*out = (const uint8_t *)config->select_alpn.data();
*outlen = config->select_alpn.size();
return SSL_TLSEXT_ERR_OK;
}
static bool CheckVerifyCallback(SSL *ssl) {
const TestConfig *config = GetTestConfig(ssl);
if (!config->expect_ocsp_response.empty()) {
const uint8_t *data;
size_t len;
SSL_get0_ocsp_response(ssl, &data, &len);
if (len == 0) {
fprintf(stderr, "OCSP response not available in verify callback.\n");
return false;
}
}
if (GetTestState(ssl)->cert_verified) {
fprintf(stderr, "Certificate verified twice.\n");
return false;
}
return true;
}
static int CertVerifyCallback(X509_STORE_CTX *store_ctx, void *arg) {
SSL *ssl = (SSL *)X509_STORE_CTX_get_ex_data(
store_ctx, SSL_get_ex_data_X509_STORE_CTX_idx());
const TestConfig *config = GetTestConfig(ssl);
if (!CheckVerifyCallback(ssl)) {
return 0;
}
GetTestState(ssl)->cert_verified = true;
if (config->verify_fail) {
store_ctx->error = X509_V_ERR_APPLICATION_VERIFICATION;
return 0;
}
return 1;
}
bool LoadCertificate(bssl::UniquePtr<X509> *out_x509,
bssl::UniquePtr<STACK_OF(X509)> *out_chain,
const std::string &file) {
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
return false;
}
out_x509->reset(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
if (!*out_x509) {
return false;
}
out_chain->reset(sk_X509_new_null());
if (!*out_chain) {
return false;
}
// Keep reading the certificate chain.
for (;;) {
bssl::UniquePtr<X509> cert(
PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
if (!cert) {
break;
}
if (!bssl::PushToStack(out_chain->get(), std::move(cert))) {
return false;
}
}
uint32_t err = ERR_peek_last_error();
if (ERR_GET_LIB(err) != ERR_LIB_PEM ||
ERR_GET_REASON(err) != PEM_R_NO_START_LINE) {
return false;
}
ERR_clear_error();
return true;
}
bssl::UniquePtr<EVP_PKEY> LoadPrivateKey(const std::string &file) {
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_file()));
if (!bio || !BIO_read_filename(bio.get(), file.c_str())) {
return nullptr;
}
return bssl::UniquePtr<EVP_PKEY>(
PEM_read_bio_PrivateKey(bio.get(), NULL, NULL, NULL));
}
static bool GetCertificate(SSL *ssl, bssl::UniquePtr<X509> *out_x509,
bssl::UniquePtr<STACK_OF(X509)> *out_chain,
bssl::UniquePtr<EVP_PKEY> *out_pkey) {
const TestConfig *config = GetTestConfig(ssl);
if (!config->signing_prefs.empty()) {
std::vector<uint16_t> u16s(config->signing_prefs.begin(),
config->signing_prefs.end());
if (!SSL_set_signing_algorithm_prefs(ssl, u16s.data(), u16s.size())) {
return false;
}
}
if (!config->key_file.empty()) {
*out_pkey = LoadPrivateKey(config->key_file.c_str());
if (!*out_pkey) {
return false;
}
}
if (!config->cert_file.empty() &&
!LoadCertificate(out_x509, out_chain, config->cert_file.c_str())) {
return false;
}
if (!config->ocsp_response.empty() && !config->set_ocsp_in_callback &&
!SSL_set_ocsp_response(ssl, (const uint8_t *)config->ocsp_response.data(),
config->ocsp_response.size())) {
return false;
}
return true;
}
static bool FromHexDigit(uint8_t *out, char c) {
if ('0' <= c && c <= '9') {
*out = c - '0';
return true;
}
if ('a' <= c && c <= 'f') {
*out = c - 'a' + 10;
return true;
}
if ('A' <= c && c <= 'F') {
*out = c - 'A' + 10;
return true;
}
return false;
}
static bool HexDecode(std::string *out, const std::string &in) {
if ((in.size() & 1) != 0) {
return false;
}
std::unique_ptr<uint8_t[]> buf(new uint8_t[in.size() / 2]);
for (size_t i = 0; i < in.size() / 2; i++) {
uint8_t high, low;
if (!FromHexDigit(&high, in[i * 2]) || !FromHexDigit(&low, in[i * 2 + 1])) {
return false;
}
buf[i] = (high << 4) | low;
}
out->assign(reinterpret_cast<const char *>(buf.get()), in.size() / 2);
return true;
}
static std::vector<std::string> SplitParts(const std::string &in,
const char delim) {
std::vector<std::string> ret;
size_t start = 0;
for (size_t i = 0; i < in.size(); i++) {
if (in[i] == delim) {
ret.push_back(in.substr(start, i - start));
start = i + 1;
}
}
ret.push_back(in.substr(start, std::string::npos));
return ret;
}
static std::vector<std::string> DecodeHexStrings(
const std::string &hex_strings) {
std::vector<std::string> ret;
const std::vector<std::string> parts = SplitParts(hex_strings, ',');
for (const auto &part : parts) {
std::string binary;
if (!HexDecode(&binary, part)) {
fprintf(stderr, "Bad hex string: %s.\n", part.c_str());
return ret;
}
ret.push_back(binary);
}
return ret;
}
static bssl::UniquePtr<STACK_OF(X509_NAME)> DecodeHexX509Names(
const std::string &hex_names) {
const std::vector<std::string> der_names = DecodeHexStrings(hex_names);
bssl::UniquePtr<STACK_OF(X509_NAME)> ret(sk_X509_NAME_new_null());
if (!ret) {
return nullptr;
}
for (const auto &der_name : der_names) {
const uint8_t *const data =
reinterpret_cast<const uint8_t *>(der_name.data());
const uint8_t *derp = data;
bssl::UniquePtr<X509_NAME> name(
d2i_X509_NAME(nullptr, &derp, der_name.size()));
if (!name || derp != data + der_name.size()) {
fprintf(stderr, "Failed to parse X509_NAME.\n");
return nullptr;
}
if (!bssl::PushToStack(ret.get(), std::move(name))) {
return nullptr;
}
}
return ret;
}
static bool CheckPeerVerifyPrefs(SSL *ssl) {
const TestConfig *config = GetTestConfig(ssl);
if (!config->expect_peer_verify_prefs.empty()) {
const uint16_t *peer_sigalgs;
size_t num_peer_sigalgs =
SSL_get0_peer_verify_algorithms(ssl, &peer_sigalgs);
if (config->expect_peer_verify_prefs.size() != num_peer_sigalgs) {
fprintf(stderr,
"peer verify preferences length mismatch (got %zu, wanted %zu)\n",
num_peer_sigalgs, config->expect_peer_verify_prefs.size());
return false;
}
for (size_t i = 0; i < num_peer_sigalgs; i++) {
if (static_cast<int>(peer_sigalgs[i]) !=
config->expect_peer_verify_prefs[i]) {
fprintf(stderr,
"peer verify preference %zu mismatch (got %04x, wanted %04x\n",
i, peer_sigalgs[i], config->expect_peer_verify_prefs[i]);
return false;
}
}
}
return true;
}
static bool CheckCertificateRequest(SSL *ssl) {
const TestConfig *config = GetTestConfig(ssl);
if (!CheckPeerVerifyPrefs(ssl)) {
return false;
}
if (!config->expect_certificate_types.empty()) {
const uint8_t *certificate_types;
size_t certificate_types_len =
SSL_get0_certificate_types(ssl, &certificate_types);
if (certificate_types_len != config->expect_certificate_types.size() ||
OPENSSL_memcmp(certificate_types,
config->expect_certificate_types.data(),
certificate_types_len) != 0) {
fprintf(stderr, "certificate types mismatch.\n");
return false;
}
}
if (!config->expect_client_ca_list.empty()) {
bssl::UniquePtr<STACK_OF(X509_NAME)> expected =
DecodeHexX509Names(config->expect_client_ca_list);
const size_t num_expected = sk_X509_NAME_num(expected.get());
const STACK_OF(X509_NAME) *received = SSL_get_client_CA_list(ssl);
const size_t num_received = sk_X509_NAME_num(received);
if (num_received != num_expected) {
fprintf(stderr, "expected %u names in CertificateRequest but got %u.\n",
static_cast<unsigned>(num_expected),
static_cast<unsigned>(num_received));
return false;
}
for (size_t i = 0; i < num_received; i++) {
if (X509_NAME_cmp(sk_X509_NAME_value(received, i),
sk_X509_NAME_value(expected.get(), i)) != 0) {
fprintf(stderr, "names in CertificateRequest differ at index #%d.\n",
static_cast<unsigned>(i));
return false;
}
}
const STACK_OF(CRYPTO_BUFFER) *buffers = SSL_get0_server_requested_CAs(ssl);
if (sk_CRYPTO_BUFFER_num(buffers) != num_received) {
fprintf(stderr,
"Mismatch between SSL_get_server_requested_CAs and "
"SSL_get_client_CA_list.\n");
return false;
}
}
return true;
}
static int ClientCertCallback(SSL *ssl, X509 **out_x509, EVP_PKEY **out_pkey) {
if (!CheckCertificateRequest(ssl)) {
return -1;
}
if (GetTestConfig(ssl)->async && !GetTestState(ssl)->cert_ready) {
return -1;
}
bssl::UniquePtr<X509> x509;
bssl::UniquePtr<STACK_OF(X509)> chain;
bssl::UniquePtr<EVP_PKEY> pkey;
if (!GetCertificate(ssl, &x509, &chain, &pkey)) {
return -1;
}
// Return zero for no certificate.
if (!x509) {
return 0;
}
// Chains and asynchronous private keys are not supported with client_cert_cb.
*out_x509 = x509.release();
*out_pkey = pkey.release();
return 1;
}
static ssl_private_key_result_t AsyncPrivateKeyComplete(SSL *ssl, uint8_t *out,
size_t *out_len,
size_t max_out);
static ssl_private_key_result_t AsyncPrivateKeySign(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out,
uint16_t signature_algorithm, const uint8_t *in, size_t in_len) {
TestState *test_state = GetTestState(ssl);
test_state->used_private_key = true;
if (!test_state->private_key_result.empty()) {
fprintf(stderr, "AsyncPrivateKeySign called with operation pending.\n");
abort();
}
if (EVP_PKEY_id(test_state->private_key.get()) !=
SSL_get_signature_algorithm_key_type(signature_algorithm)) {
fprintf(stderr, "Key type does not match signature algorithm.\n");
abort();
}
// Determine the hash.
const EVP_MD *md = SSL_get_signature_algorithm_digest(signature_algorithm);
bssl::ScopedEVP_MD_CTX ctx;
EVP_PKEY_CTX *pctx;
if (!EVP_DigestSignInit(ctx.get(), &pctx, md, nullptr,
test_state->private_key.get())) {
return ssl_private_key_failure;
}
// Configure additional signature parameters.
if (SSL_is_signature_algorithm_rsa_pss(signature_algorithm)) {
if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
!EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
return ssl_private_key_failure;
}
}
// Write the signature into |test_state|.
size_t len = 0;
if (!EVP_DigestSign(ctx.get(), nullptr, &len, in, in_len)) {
return ssl_private_key_failure;
}
test_state->private_key_result.resize(len);
if (!EVP_DigestSign(ctx.get(), test_state->private_key_result.data(), &len,
in, in_len)) {
return ssl_private_key_failure;
}
test_state->private_key_result.resize(len);
return AsyncPrivateKeyComplete(ssl, out, out_len, max_out);
}
static ssl_private_key_result_t AsyncPrivateKeyDecrypt(SSL *ssl, uint8_t *out,
size_t *out_len,
size_t max_out,
const uint8_t *in,
size_t in_len) {
TestState *test_state = GetTestState(ssl);
test_state->used_private_key = true;
if (!test_state->private_key_result.empty()) {
fprintf(stderr, "AsyncPrivateKeyDecrypt called with operation pending.\n");
abort();
}
RSA *rsa = EVP_PKEY_get0_RSA(test_state->private_key.get());
if (rsa == NULL) {
fprintf(stderr, "AsyncPrivateKeyDecrypt called with incorrect key type.\n");
abort();
}
test_state->private_key_result.resize(RSA_size(rsa));
if (!RSA_decrypt(rsa, out_len, test_state->private_key_result.data(),
RSA_size(rsa), in, in_len, RSA_NO_PADDING)) {
return ssl_private_key_failure;
}
test_state->private_key_result.resize(*out_len);
return AsyncPrivateKeyComplete(ssl, out, out_len, max_out);
}
static ssl_private_key_result_t AsyncPrivateKeyComplete(SSL *ssl, uint8_t *out,
size_t *out_len,
size_t max_out) {
TestState *test_state = GetTestState(ssl);
if (test_state->private_key_result.empty()) {
fprintf(stderr,
"AsyncPrivateKeyComplete called without operation pending.\n");
abort();
}
if (GetTestConfig(ssl)->async && test_state->private_key_retries < 2) {
// Only return the decryption on the second attempt, to test both incomplete
// |sign|/|decrypt| and |complete|.
return ssl_private_key_retry;
}
if (max_out < test_state->private_key_result.size()) {
fprintf(stderr, "Output buffer too small.\n");
return ssl_private_key_failure;
}
OPENSSL_memcpy(out, test_state->private_key_result.data(),
test_state->private_key_result.size());
*out_len = test_state->private_key_result.size();
test_state->private_key_result.clear();
test_state->private_key_retries = 0;
return ssl_private_key_success;
}
static const SSL_PRIVATE_KEY_METHOD g_async_private_key_method = {
AsyncPrivateKeySign,
AsyncPrivateKeyDecrypt,
AsyncPrivateKeyComplete,
};
static bool InstallCertificate(SSL *ssl) {
bssl::UniquePtr<X509> x509;
bssl::UniquePtr<STACK_OF(X509)> chain;
bssl::UniquePtr<EVP_PKEY> pkey;
if (!GetCertificate(ssl, &x509, &chain, &pkey)) {
return false;
}
if (pkey) {
TestState *test_state = GetTestState(ssl);
const TestConfig *config = GetTestConfig(ssl);
if (config->async || config->handshake_hints) {
// Install a custom private key if testing asynchronous callbacks, or if
// testing handshake hints. In the handshake hints case, we wish to check
// that hints only mismatch when allowed.
test_state->private_key = std::move(pkey);
SSL_set_private_key_method(ssl, &g_async_private_key_method);
} else if (!SSL_use_PrivateKey(ssl, pkey.get())) {
return false;
}
}
if (x509 && !SSL_use_certificate(ssl, x509.get())) {
return false;
}
if (sk_X509_num(chain.get()) > 0 && !SSL_set1_chain(ssl, chain.get())) {
return false;
}
return true;
}
static enum ssl_select_cert_result_t SelectCertificateCallback(
const SSL_CLIENT_HELLO *client_hello) {
SSL *ssl = client_hello->ssl;
const TestConfig *config = GetTestConfig(ssl);
TestState *test_state = GetTestState(ssl);
test_state->early_callback_called = true;
if (!config->expect_server_name.empty()) {
const char *server_name =
SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name);
if (server_name == nullptr ||
std::string(server_name) != config->expect_server_name) {
fprintf(stderr,
"Server name mismatch in early callback (got %s; want %s).\n",
server_name, config->expect_server_name.c_str());
return ssl_select_cert_error;
}
}
if (config->fail_early_callback) {
return ssl_select_cert_error;
}
// Simulate some asynchronous work in the early callback.
if ((config->use_early_callback || test_state->get_handshake_hints_cb) &&
config->async && !test_state->early_callback_ready) {
return ssl_select_cert_retry;
}
if (test_state->get_handshake_hints_cb &&
!test_state->get_handshake_hints_cb(client_hello)) {
return ssl_select_cert_error;
}
if (config->use_early_callback && !InstallCertificate(ssl)) {
return ssl_select_cert_error;
}
return ssl_select_cert_success;
}
static int SetQuicReadSecret(SSL *ssl, enum ssl_encryption_level_t level,
const SSL_CIPHER *cipher, const uint8_t *secret,
size_t secret_len) {
MockQuicTransport *quic_transport = GetTestState(ssl)->quic_transport.get();
if (quic_transport == nullptr) {
fprintf(stderr, "No QUIC transport.\n");
return 0;
}
return quic_transport->SetReadSecret(level, cipher, secret, secret_len);
}
static int SetQuicWriteSecret(SSL *ssl, enum ssl_encryption_level_t level,
const SSL_CIPHER *cipher, const uint8_t *secret,
size_t secret_len) {
MockQuicTransport *quic_transport = GetTestState(ssl)->quic_transport.get();
if (quic_transport == nullptr) {
fprintf(stderr, "No QUIC transport.\n");
return 0;
}
return quic_transport->SetWriteSecret(level, cipher, secret, secret_len);
}
static int AddQuicHandshakeData(SSL *ssl, enum ssl_encryption_level_t level,
const uint8_t *data, size_t len) {
MockQuicTransport *quic_transport = GetTestState(ssl)->quic_transport.get();
if (quic_transport == nullptr) {
fprintf(stderr, "No QUIC transport.\n");
return 0;
}
return quic_transport->WriteHandshakeData(level, data, len);
}
static int FlushQuicFlight(SSL *ssl) {
MockQuicTransport *quic_transport = GetTestState(ssl)->quic_transport.get();
if (quic_transport == nullptr) {
fprintf(stderr, "No QUIC transport.\n");
return 0;
}
return quic_transport->Flush();
}
static int SendQuicAlert(SSL *ssl, enum ssl_encryption_level_t level,
uint8_t alert) {
MockQuicTransport *quic_transport = GetTestState(ssl)->quic_transport.get();
if (quic_transport == nullptr) {
fprintf(stderr, "No QUIC transport.\n");
return 0;
}
return quic_transport->SendAlert(level, alert);
}
static const SSL_QUIC_METHOD g_quic_method = {
SetQuicReadSecret,
SetQuicWriteSecret,
AddQuicHandshakeData,
FlushQuicFlight,
SendQuicAlert,
};
static bool MaybeInstallCertCompressionAlg(
const TestConfig *config, SSL_CTX *ssl_ctx, uint16_t alg,
ssl_cert_compression_func_t compress,
ssl_cert_decompression_func_t decompress) {
if (!config->install_cert_compression_algs &&
config->install_one_cert_compression_alg != alg) {
return true;
}
return SSL_CTX_add_cert_compression_alg(ssl_ctx, alg, compress, decompress);
}
bssl::UniquePtr<SSL_CTX> TestConfig::SetupCtx(SSL_CTX *old_ctx) const {
bssl::UniquePtr<SSL_CTX> ssl_ctx(
SSL_CTX_new(is_dtls ? DTLS_method() : TLS_method()));
if (!ssl_ctx) {
return nullptr;
}
CRYPTO_once(&once, init_once);
SSL_CTX_set0_buffer_pool(ssl_ctx.get(), g_pool);
std::string cipher_list = "ALL";
if (!cipher.empty()) {
cipher_list = cipher;
SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE);
}
if (!SSL_CTX_set_strict_cipher_list(ssl_ctx.get(), cipher_list.c_str())) {
return nullptr;
}
if (async && is_server) {
// Disable the internal session cache. To test asynchronous session lookup,
// we use an external session cache.
SSL_CTX_set_session_cache_mode(
ssl_ctx.get(), SSL_SESS_CACHE_BOTH | SSL_SESS_CACHE_NO_INTERNAL);
SSL_CTX_sess_set_get_cb(ssl_ctx.get(), GetSessionCallback);
} else {
SSL_CTX_set_session_cache_mode(ssl_ctx.get(), SSL_SESS_CACHE_BOTH);
}
SSL_CTX_set_select_certificate_cb(ssl_ctx.get(), SelectCertificateCallback);
if (use_old_client_cert_callback) {
SSL_CTX_set_client_cert_cb(ssl_ctx.get(), ClientCertCallback);
}
SSL_CTX_set_next_protos_advertised_cb(ssl_ctx.get(),
NextProtosAdvertisedCallback, NULL);
if (!select_next_proto.empty()) {
SSL_CTX_set_next_proto_select_cb(ssl_ctx.get(), NextProtoSelectCallback,
NULL);
}
if (!select_alpn.empty() || decline_alpn || reject_alpn ||
select_empty_alpn) {
SSL_CTX_set_alpn_select_cb(ssl_ctx.get(), AlpnSelectCallback, NULL);
}
SSL_CTX_set_current_time_cb(ssl_ctx.get(), CurrentTimeCallback);
SSL_CTX_set_info_callback(ssl_ctx.get(), InfoCallback);
SSL_CTX_sess_set_new_cb(ssl_ctx.get(), NewSessionCallback);
if (use_ticket_callback || handshake_hints) {
// If using handshake hints, always enable the ticket callback, so we can
// check that hints only mismatch when allowed. The ticket callback also
// uses a constant key, which simplifies the test.
SSL_CTX_set_tlsext_ticket_key_cb(ssl_ctx.get(), TicketKeyCallback);
}
if (!use_custom_verify_callback) {
SSL_CTX_set_cert_verify_callback(ssl_ctx.get(), CertVerifyCallback, NULL);
}
if (!signed_cert_timestamps.empty() &&
!SSL_CTX_set_signed_cert_timestamp_list(
ssl_ctx.get(), (const uint8_t *)signed_cert_timestamps.data(),
signed_cert_timestamps.size())) {
return nullptr;
}
if (!use_client_ca_list.empty()) {
if (use_client_ca_list == "<NULL>") {
SSL_CTX_set_client_CA_list(ssl_ctx.get(), nullptr);
} else if (use_client_ca_list == "<EMPTY>") {
bssl::UniquePtr<STACK_OF(X509_NAME)> names;
SSL_CTX_set_client_CA_list(ssl_ctx.get(), names.release());
} else {
bssl::UniquePtr<STACK_OF(X509_NAME)> names =
DecodeHexX509Names(use_client_ca_list);
SSL_CTX_set_client_CA_list(ssl_ctx.get(), names.release());
}
}
if (enable_grease) {
SSL_CTX_set_grease_enabled(ssl_ctx.get(), 1);
}
if (!expect_server_name.empty()) {
SSL_CTX_set_tlsext_servername_callback(ssl_ctx.get(), ServerNameCallback);
}
if (enable_early_data) {
SSL_CTX_set_early_data_enabled(ssl_ctx.get(), 1);
}
if (allow_unknown_alpn_protos) {
SSL_CTX_set_allow_unknown_alpn_protos(ssl_ctx.get(), 1);
}
if (!verify_prefs.empty()) {
std::vector<uint16_t> u16s(verify_prefs.begin(), verify_prefs.end());
if (!SSL_CTX_set_verify_algorithm_prefs(ssl_ctx.get(), u16s.data(),
u16s.size())) {
return nullptr;
}
}
SSL_CTX_set_msg_callback(ssl_ctx.get(), MessageCallback);
if (allow_false_start_without_alpn) {
SSL_CTX_set_false_start_allowed_without_alpn(ssl_ctx.get(), 1);
}
if (use_ocsp_callback) {
SSL_CTX_set_tlsext_status_cb(ssl_ctx.get(), LegacyOCSPCallback);
}
if (old_ctx) {
uint8_t keys[48];
if (!SSL_CTX_get_tlsext_ticket_keys(old_ctx, &keys, sizeof(keys)) ||
!SSL_CTX_set_tlsext_ticket_keys(ssl_ctx.get(), keys, sizeof(keys))) {
return nullptr;
}
CopySessions(ssl_ctx.get(), old_ctx);
} else if (!ticket_key.empty() &&
!SSL_CTX_set_tlsext_ticket_keys(ssl_ctx.get(), ticket_key.data(),
ticket_key.size())) {
return nullptr;
}
// These mock compression algorithms match the corresponding ones in
// |addCertCompressionTests|.
if (!MaybeInstallCertCompressionAlg(
this, ssl_ctx.get(), 0xff02,
[](SSL *ssl, CBB *out, const uint8_t *in, size_t in_len) -> int {
if (!CBB_add_u8(out, 1) || !CBB_add_u8(out, 2) ||
!CBB_add_u8(out, 3) || !CBB_add_u8(out, 4) ||
!CBB_add_bytes(out, in, in_len)) {
return 0;
}
return 1;
},
[](SSL *ssl, CRYPTO_BUFFER **out, size_t uncompressed_len,
const uint8_t *in, size_t in_len) -> int {
if (in_len < 4 || in[0] != 1 || in[1] != 2 || in[2] != 3 ||
in[3] != 4 || uncompressed_len != in_len - 4) {
return 0;
}
const bssl::Span<const uint8_t> uncompressed(in + 4, in_len - 4);
*out = CRYPTO_BUFFER_new(uncompressed.data(), uncompressed.size(),
nullptr);
return *out != nullptr;
}) ||
!MaybeInstallCertCompressionAlg(
this, ssl_ctx.get(), 0xff01,
[](SSL *ssl, CBB *out, const uint8_t *in, size_t in_len) -> int {
if (in_len < 2 || in[0] != 0 || in[1] != 0) {
return 0;
}
return CBB_add_bytes(out, in + 2, in_len - 2);
},
[](SSL *ssl, CRYPTO_BUFFER **out, size_t uncompressed_len,
const uint8_t *in, size_t in_len) -> int {
if (uncompressed_len != 2 + in_len) {
return 0;
}
std::unique_ptr<uint8_t[]> buf(new uint8_t[2 + in_len]);
buf[0] = 0;
buf[1] = 0;
OPENSSL_memcpy(&buf[2], in, in_len);
*out = CRYPTO_BUFFER_new(buf.get(), 2 + in_len, nullptr);
return *out != nullptr;
}) ||
!MaybeInstallCertCompressionAlg(
this, ssl_ctx.get(), 0xff03,
[](SSL *ssl, CBB *out, const uint8_t *in, size_t in_len) -> int {
uint8_t byte;
return RAND_bytes(&byte, 1) && //
CBB_add_u8(out, byte) && //
CBB_add_bytes(out, in, in_len);
},
[](SSL *ssl, CRYPTO_BUFFER **out, size_t uncompressed_len,
const uint8_t *in, size_t in_len) -> int {
if (uncompressed_len + 1 != in_len) {
return 0;
}
*out = CRYPTO_BUFFER_new(in + 1, in_len - 1, nullptr);
return *out != nullptr;
})) {
fprintf(stderr, "SSL_CTX_add_cert_compression_alg failed.\n");
abort();
}
if (server_preference) {
SSL_CTX_set_options(ssl_ctx.get(), SSL_OP_CIPHER_SERVER_PREFERENCE);
}
if (is_quic) {
SSL_CTX_set_quic_method(ssl_ctx.get(), &g_quic_method);
}
return ssl_ctx;
}
static int DDoSCallback(const SSL_CLIENT_HELLO *client_hello) {
const TestConfig *config = GetTestConfig(client_hello->ssl);
return config->fail_ddos_callback ? 0 : 1;
}
static unsigned PskClientCallback(SSL *ssl, const char *hint,
char *out_identity, unsigned max_identity_len,
uint8_t *out_psk, unsigned max_psk_len) {
const TestConfig *config = GetTestConfig(ssl);
if (config->psk_identity.empty()) {
if (hint != nullptr) {
fprintf(stderr, "Server PSK hint was non-null.\n");
return 0;
}
} else if (hint == nullptr ||
strcmp(hint, config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Server PSK hint did not match.\n");
return 0;
}
// Account for the trailing '\0' for the identity.
if (config->psk_identity.size() >= max_identity_len ||
config->psk.size() > max_psk_len) {
fprintf(stderr, "PSK buffers too small.\n");
return 0;
}
OPENSSL_strlcpy(out_identity, config->psk_identity.c_str(), max_identity_len);
OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size());
return config->psk.size();
}
static unsigned PskServerCallback(SSL *ssl, const char *identity,
uint8_t *out_psk, unsigned max_psk_len) {
const TestConfig *config = GetTestConfig(ssl);
if (strcmp(identity, config->psk_identity.c_str()) != 0) {
fprintf(stderr, "Client PSK identity did not match.\n");
return 0;
}
if (config->psk.size() > max_psk_len) {
fprintf(stderr, "PSK buffers too small.\n");
return 0;
}
OPENSSL_memcpy(out_psk, config->psk.data(), config->psk.size());
return config->psk.size();
}
static ssl_verify_result_t CustomVerifyCallback(SSL *ssl, uint8_t *out_alert) {
const TestConfig *config = GetTestConfig(ssl);
if (!CheckVerifyCallback(ssl)) {
return ssl_verify_invalid;
}
if (config->async && !GetTestState(ssl)->custom_verify_ready) {
return ssl_verify_retry;
}
GetTestState(ssl)->cert_verified = true;
if (config->verify_fail) {
return ssl_verify_invalid;
}
return ssl_verify_ok;
}
static int CertCallback(SSL *ssl, void *arg) {
const TestConfig *config = GetTestConfig(ssl);
// Check the peer certificate metadata is as expected.
if ((!SSL_is_server(ssl) && !CheckCertificateRequest(ssl)) ||
!CheckPeerVerifyPrefs(ssl)) {
return -1;
}
if (config->fail_cert_callback) {
return 0;
}
// The certificate will be installed via other means.
if (!config->async || config->use_early_callback) {
return 1;
}
if (!GetTestState(ssl)->cert_ready) {
return -1;
}
if (!InstallCertificate(ssl)) {
return 0;
}
return 1;
}
bssl::UniquePtr<SSL> TestConfig::NewSSL(
SSL_CTX *ssl_ctx, SSL_SESSION *session,
std::unique_ptr<TestState> test_state) const {
bssl::UniquePtr<SSL> ssl(SSL_new(ssl_ctx));
if (!ssl) {
return nullptr;
}
if (!SetTestConfig(ssl.get(), this)) {
return nullptr;
}
if (test_state != nullptr) {
if (!SetTestState(ssl.get(), std::move(test_state))) {
return nullptr;
}
}
if (fallback_scsv && !SSL_set_mode(ssl.get(), SSL_MODE_SEND_FALLBACK_SCSV)) {
return nullptr;
}
// Install the certificate synchronously if nothing else will handle it.
if (!use_early_callback && !use_old_client_cert_callback && !async &&
!InstallCertificate(ssl.get())) {
return nullptr;
}
if (!use_old_client_cert_callback) {
SSL_set_cert_cb(ssl.get(), CertCallback, nullptr);
}
int mode = SSL_VERIFY_NONE;
if (require_any_client_certificate) {
mode = SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
}
if (verify_peer) {
mode = SSL_VERIFY_PEER;
}
if (verify_peer_if_no_obc) {
// Set SSL_VERIFY_FAIL_IF_NO_PEER_CERT so testing whether client
// certificates were requested is easy.
mode = SSL_VERIFY_PEER | SSL_VERIFY_PEER_IF_NO_OBC |
SSL_VERIFY_FAIL_IF_NO_PEER_CERT;
}
if (use_custom_verify_callback) {
SSL_set_custom_verify(ssl.get(), mode, CustomVerifyCallback);
} else if (mode != SSL_VERIFY_NONE) {
SSL_set_verify(ssl.get(), mode, NULL);
}
if (false_start) {
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_FALSE_START);
}
if (cbc_record_splitting) {
SSL_set_mode(ssl.get(), SSL_MODE_CBC_RECORD_SPLITTING);
}
if (partial_write) {
SSL_set_mode(ssl.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
}
if (reverify_on_resume) {
SSL_CTX_set_reverify_on_resume(ssl_ctx, 1);
}
if (enforce_rsa_key_usage) {
SSL_set_enforce_rsa_key_usage(ssl.get(), 1);
}
if (no_tls13) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_3);
}
if (no_tls12) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_2);
}
if (no_tls11) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1_1);
}
if (no_tls1) {
SSL_set_options(ssl.get(), SSL_OP_NO_TLSv1);
}
if (no_ticket) {
SSL_set_options(ssl.get(), SSL_OP_NO_TICKET);
}
if (!expect_channel_id.empty() || enable_channel_id) {
SSL_set_tls_channel_id_enabled(ssl.get(), 1);
}
if (enable_ech_grease) {
SSL_set_enable_ech_grease(ssl.get(), 1);
}
if (ech_server_configs.size() != ech_server_keys.size() ||
ech_server_configs.size() != ech_is_retry_config.size()) {
fprintf(stderr,
"-ech-server-config, -ech-server-key, and -ech-is-retry-config "
"flags must match.\n");
return nullptr;
}
if (!ech_server_configs.empty()) {
bssl::UniquePtr<SSL_ECH_SERVER_CONFIG_LIST> config_list(
SSL_ECH_SERVER_CONFIG_LIST_new());
if (!config_list) {
return nullptr;
}
for (size_t i = 0; i < ech_server_configs.size(); i++) {
const std::string &ech_config = ech_server_configs[i];
const std::string &ech_private_key = ech_server_keys[i];
const int is_retry_config = ech_is_retry_config[i];
if (!SSL_ECH_SERVER_CONFIG_LIST_add(
config_list.get(), is_retry_config,
reinterpret_cast<const uint8_t *>(ech_config.data()),
ech_config.size(),
reinterpret_cast<const uint8_t *>(ech_private_key.data()),
ech_private_key.size())) {
return nullptr;
}
}
if (!SSL_CTX_set1_ech_server_config_list(ssl_ctx, config_list.get())) {
return nullptr;
}
}
if (!send_channel_id.empty()) {
bssl::UniquePtr<EVP_PKEY> pkey = LoadPrivateKey(send_channel_id);
if (!pkey || !SSL_set1_tls_channel_id(ssl.get(), pkey.get())) {
return nullptr;
}
}
if (!host_name.empty() &&
!SSL_set_tlsext_host_name(ssl.get(), host_name.c_str())) {
return nullptr;
}
if (!advertise_alpn.empty() &&
SSL_set_alpn_protos(
ssl.get(), reinterpret_cast<const uint8_t *>(advertise_alpn.data()),
advertise_alpn.size()) != 0) {
return nullptr;
}
if (!defer_alps) {
for (const auto &pair : application_settings) {
if (!SSL_add_application_settings(
ssl.get(), reinterpret_cast<const uint8_t *>(pair.first.data()),
pair.first.size(),
reinterpret_cast<const uint8_t *>(pair.second.data()),
pair.second.size())) {
return nullptr;
}
}
}
if (!psk.empty()) {
SSL_set_psk_client_callback(ssl.get(), PskClientCallback);
SSL_set_psk_server_callback(ssl.get(), PskServerCallback);
}
if (!psk_identity.empty() &&
!SSL_use_psk_identity_hint(ssl.get(), psk_identity.c_str())) {
return nullptr;
}
if (!srtp_profiles.empty() &&
!SSL_set_srtp_profiles(ssl.get(), srtp_profiles.c_str())) {
return nullptr;
}
if (enable_ocsp_stapling) {
SSL_enable_ocsp_stapling(ssl.get());
}
if (enable_signed_cert_timestamps) {
SSL_enable_signed_cert_timestamps(ssl.get());
}
if (min_version != 0 &&
!SSL_set_min_proto_version(ssl.get(), (uint16_t)min_version)) {
return nullptr;
}
if (max_version != 0 &&
!SSL_set_max_proto_version(ssl.get(), (uint16_t)max_version)) {
return nullptr;
}
if (mtu != 0) {
SSL_set_options(ssl.get(), SSL_OP_NO_QUERY_MTU);
SSL_set_mtu(ssl.get(), mtu);
}
if (install_ddos_callback) {
SSL_CTX_set_dos_protection_cb(ssl_ctx, DDoSCallback);
}
SSL_set_shed_handshake_config(ssl.get(), true);
if (renegotiate_once) {
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_once);
}
if (renegotiate_freely || forbid_renegotiation_after_handshake) {
// |forbid_renegotiation_after_handshake| will disable renegotiation later.
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_freely);
}
if (renegotiate_ignore) {
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_ignore);
}
if (renegotiate_explicit) {
SSL_set_renegotiate_mode(ssl.get(), ssl_renegotiate_explicit);
}
if (!check_close_notify) {
SSL_set_quiet_shutdown(ssl.get(), 1);
}
if (!curves.empty()) {
std::vector<int> nids;
for (auto curve : curves) {
switch (curve) {
case SSL_CURVE_SECP224R1:
nids.push_back(NID_secp224r1);
break;
case SSL_CURVE_SECP256R1:
nids.push_back(NID_X9_62_prime256v1);
break;
case SSL_CURVE_SECP384R1:
nids.push_back(NID_secp384r1);
break;
case SSL_CURVE_SECP521R1:
nids.push_back(NID_secp521r1);
break;
case SSL_CURVE_X25519:
nids.push_back(NID_X25519);
break;
case SSL_CURVE_CECPQ2:
nids.push_back(NID_CECPQ2);
break;
}
if (!SSL_set1_curves(ssl.get(), &nids[0], nids.size())) {
return nullptr;
}
}
}
if (initial_timeout_duration_ms > 0) {
DTLSv1_set_initial_timeout_duration(ssl.get(), initial_timeout_duration_ms);
}
if (max_cert_list > 0) {
SSL_set_max_cert_list(ssl.get(), max_cert_list);
}
if (retain_only_sha256_client_cert) {
SSL_set_retain_only_sha256_of_client_certs(ssl.get(), 1);
}
if (max_send_fragment > 0) {
SSL_set_max_send_fragment(ssl.get(), max_send_fragment);
}
if (quic_use_legacy_codepoint != -1) {
SSL_set_quic_use_legacy_codepoint(ssl.get(), quic_use_legacy_codepoint);
}
if (!quic_transport_params.empty()) {
if (!SSL_set_quic_transport_params(
ssl.get(),
reinterpret_cast<const uint8_t *>(quic_transport_params.data()),
quic_transport_params.size())) {
return nullptr;
}
}
if (jdk11_workaround) {
SSL_set_jdk11_workaround(ssl.get(), 1);
}
if (session != NULL) {
if (!is_server) {
if (SSL_set_session(ssl.get(), session) != 1) {
return nullptr;
}
} else if (async) {
// The internal session cache is disabled, so install the session
// manually.
SSL_SESSION_up_ref(session);
GetTestState(ssl.get())->pending_session.reset(session);
}
}
if (!delegated_credential.empty()) {
std::string::size_type comma = delegated_credential.find(',');
if (comma == std::string::npos) {
fprintf(stderr,
"failed to find comma in delegated credential argument.\n");
return nullptr;
}
const std::string dc_hex = delegated_credential.substr(0, comma);
const std::string pkcs8_hex = delegated_credential.substr(comma + 1);
std::string dc, pkcs8;
if (!HexDecode(&dc, dc_hex) || !HexDecode(&pkcs8, pkcs8_hex)) {
fprintf(stderr, "failed to hex decode delegated credential argument.\n");
return nullptr;
}
CBS dc_cbs(bssl::Span<const uint8_t>(
reinterpret_cast<const uint8_t *>(dc.data()), dc.size()));
CBS pkcs8_cbs(bssl::Span<const uint8_t>(
reinterpret_cast<const uint8_t *>(pkcs8.data()), pkcs8.size()));
bssl::UniquePtr<EVP_PKEY> priv(EVP_parse_private_key(&pkcs8_cbs));
if (!priv) {
fprintf(stderr, "failed to parse delegated credential private key.\n");
return nullptr;
}
bssl::UniquePtr<CRYPTO_BUFFER> dc_buf(
CRYPTO_BUFFER_new_from_CBS(&dc_cbs, nullptr));
if (!SSL_set1_delegated_credential(ssl.get(), dc_buf.get(),
priv.get(), nullptr)) {
fprintf(stderr, "SSL_set1_delegated_credential failed.\n");
return nullptr;
}
}
if (!quic_early_data_context.empty() &&
!SSL_set_quic_early_data_context(
ssl.get(),
reinterpret_cast<const uint8_t *>(quic_early_data_context.data()),
quic_early_data_context.size())) {
return nullptr;
}
return ssl;
}