| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * ECC cipher suite support in OpenSSL originally written by |
| * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories. |
| * |
| */ |
| /* ==================================================================== |
| * Copyright 2005 Nokia. All rights reserved. |
| * |
| * The portions of the attached software ("Contribution") is developed by |
| * Nokia Corporation and is licensed pursuant to the OpenSSL open source |
| * license. |
| * |
| * The Contribution, originally written by Mika Kousa and Pasi Eronen of |
| * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites |
| * support (see RFC 4279) to OpenSSL. |
| * |
| * No patent licenses or other rights except those expressly stated in |
| * the OpenSSL open source license shall be deemed granted or received |
| * expressly, by implication, estoppel, or otherwise. |
| * |
| * No assurances are provided by Nokia that the Contribution does not |
| * infringe the patent or other intellectual property rights of any third |
| * party or that the license provides you with all the necessary rights |
| * to make use of the Contribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN |
| * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA |
| * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY |
| * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR |
| * OTHERWISE. */ |
| |
| #include <assert.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/buf.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/cipher.h> |
| #include <openssl/dh.h> |
| #include <openssl/ec.h> |
| #include <openssl/ecdsa.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/hmac.h> |
| #include <openssl/md5.h> |
| #include <openssl/mem.h> |
| #include <openssl/obj.h> |
| #include <openssl/rand.h> |
| #include <openssl/sha.h> |
| #include <openssl/x509.h> |
| |
| #include "internal.h" |
| #include "../crypto/internal.h" |
| #include "../crypto/dh/internal.h" |
| |
| |
| int ssl3_accept(SSL *s) { |
| BUF_MEM *buf = NULL; |
| uint32_t alg_a; |
| void (*cb)(const SSL *ssl, int type, int val) = NULL; |
| int ret = -1; |
| int new_state, state, skip = 0; |
| |
| assert(s->handshake_func == ssl3_accept); |
| assert(s->server); |
| assert(!SSL_IS_DTLS(s)); |
| |
| ERR_clear_error(); |
| ERR_clear_system_error(); |
| |
| if (s->info_callback != NULL) { |
| cb = s->info_callback; |
| } else if (s->ctx->info_callback != NULL) { |
| cb = s->ctx->info_callback; |
| } |
| |
| s->in_handshake++; |
| |
| if (s->cert == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_SET); |
| return -1; |
| } |
| |
| for (;;) { |
| state = s->state; |
| |
| switch (s->state) { |
| case SSL_ST_ACCEPT: |
| if (cb != NULL) { |
| cb(s, SSL_CB_HANDSHAKE_START, 1); |
| } |
| |
| if (s->init_buf == NULL) { |
| buf = BUF_MEM_new(); |
| if (!buf || !BUF_MEM_grow(buf, SSL3_RT_MAX_PLAIN_LENGTH)) { |
| ret = -1; |
| goto end; |
| } |
| s->init_buf = buf; |
| buf = NULL; |
| } |
| s->init_num = 0; |
| |
| /* Enable a write buffer. This groups handshake messages within a flight |
| * into a single write. */ |
| if (!ssl_init_wbio_buffer(s, 1)) { |
| ret = -1; |
| goto end; |
| } |
| |
| if (!ssl3_init_handshake_buffer(s)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| ret = -1; |
| goto end; |
| } |
| |
| if (!s->s3->have_version) { |
| s->state = SSL3_ST_SR_INITIAL_BYTES; |
| } else { |
| s->state = SSL3_ST_SR_CLNT_HELLO_A; |
| } |
| break; |
| |
| case SSL3_ST_SR_INITIAL_BYTES: |
| ret = ssl3_get_initial_bytes(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| /* ssl3_get_initial_bytes sets s->state to one of |
| * SSL3_ST_SR_V2_CLIENT_HELLO or SSL3_ST_SR_CLNT_HELLO_A on success. */ |
| break; |
| |
| case SSL3_ST_SR_V2_CLIENT_HELLO: |
| ret = ssl3_get_v2_client_hello(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| s->state = SSL3_ST_SR_CLNT_HELLO_A; |
| break; |
| |
| case SSL3_ST_SR_CLNT_HELLO_A: |
| case SSL3_ST_SR_CLNT_HELLO_B: |
| case SSL3_ST_SR_CLNT_HELLO_C: |
| case SSL3_ST_SR_CLNT_HELLO_D: |
| s->shutdown = 0; |
| ret = ssl3_get_client_hello(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| s->state = SSL3_ST_SW_SRVR_HELLO_A; |
| s->init_num = 0; |
| break; |
| |
| case SSL3_ST_SW_SRVR_HELLO_A: |
| case SSL3_ST_SW_SRVR_HELLO_B: |
| ret = ssl3_send_server_hello(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| if (s->hit) { |
| if (s->tlsext_ticket_expected) { |
| s->state = SSL3_ST_SW_SESSION_TICKET_A; |
| } else { |
| s->state = SSL3_ST_SW_CHANGE_A; |
| } |
| } else { |
| s->state = SSL3_ST_SW_CERT_A; |
| } |
| s->init_num = 0; |
| break; |
| |
| case SSL3_ST_SW_CERT_A: |
| case SSL3_ST_SW_CERT_B: |
| if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher)) { |
| ret = ssl3_send_server_certificate(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| if (s->s3->tmp.certificate_status_expected) { |
| s->state = SSL3_ST_SW_CERT_STATUS_A; |
| } else { |
| s->state = SSL3_ST_SW_KEY_EXCH_A; |
| } |
| } else { |
| skip = 1; |
| s->state = SSL3_ST_SW_KEY_EXCH_A; |
| } |
| s->init_num = 0; |
| break; |
| |
| case SSL3_ST_SW_CERT_STATUS_A: |
| case SSL3_ST_SW_CERT_STATUS_B: |
| ret = ssl3_send_certificate_status(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| s->state = SSL3_ST_SW_KEY_EXCH_A; |
| s->init_num = 0; |
| break; |
| |
| case SSL3_ST_SW_KEY_EXCH_A: |
| case SSL3_ST_SW_KEY_EXCH_B: |
| case SSL3_ST_SW_KEY_EXCH_C: |
| alg_a = s->s3->tmp.new_cipher->algorithm_auth; |
| |
| /* Send a ServerKeyExchange message if: |
| * - The key exchange is ephemeral or anonymous |
| * Diffie-Hellman. |
| * - There is a PSK identity hint. |
| * |
| * TODO(davidben): This logic is currently duplicated in d1_srvr.c. Fix |
| * this. In the meantime, keep them in sync. */ |
| if (ssl_cipher_requires_server_key_exchange(s->s3->tmp.new_cipher) || |
| ((alg_a & SSL_aPSK) && s->psk_identity_hint)) { |
| ret = ssl3_send_server_key_exchange(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| } else { |
| skip = 1; |
| } |
| |
| s->state = SSL3_ST_SW_CERT_REQ_A; |
| s->init_num = 0; |
| break; |
| |
| case SSL3_ST_SW_CERT_REQ_A: |
| case SSL3_ST_SW_CERT_REQ_B: |
| if (s->s3->tmp.cert_request) { |
| ret = ssl3_send_certificate_request(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| } else { |
| skip = 1; |
| } |
| s->state = SSL3_ST_SW_SRVR_DONE_A; |
| s->init_num = 0; |
| break; |
| |
| case SSL3_ST_SW_SRVR_DONE_A: |
| case SSL3_ST_SW_SRVR_DONE_B: |
| ret = ssl3_send_server_done(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| s->s3->tmp.next_state = SSL3_ST_SR_CERT_A; |
| s->state = SSL3_ST_SW_FLUSH; |
| s->init_num = 0; |
| break; |
| |
| case SSL3_ST_SW_FLUSH: |
| /* This code originally checked to see if any data was pending using |
| * BIO_CTRL_INFO and then flushed. This caused problems as documented |
| * in PR#1939. The proposed fix doesn't completely resolve this issue |
| * as buggy implementations of BIO_CTRL_PENDING still exist. So instead |
| * we just flush unconditionally. */ |
| s->rwstate = SSL_WRITING; |
| if (BIO_flush(s->wbio) <= 0) { |
| ret = -1; |
| goto end; |
| } |
| s->rwstate = SSL_NOTHING; |
| |
| s->state = s->s3->tmp.next_state; |
| break; |
| |
| case SSL3_ST_SR_CERT_A: |
| case SSL3_ST_SR_CERT_B: |
| if (s->s3->tmp.cert_request) { |
| ret = ssl3_get_client_certificate(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| } |
| s->init_num = 0; |
| s->state = SSL3_ST_SR_KEY_EXCH_A; |
| break; |
| |
| case SSL3_ST_SR_KEY_EXCH_A: |
| case SSL3_ST_SR_KEY_EXCH_B: |
| ret = ssl3_get_client_key_exchange(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| s->state = SSL3_ST_SR_CERT_VRFY_A; |
| s->init_num = 0; |
| break; |
| |
| case SSL3_ST_SR_CERT_VRFY_A: |
| case SSL3_ST_SR_CERT_VRFY_B: |
| ret = ssl3_get_cert_verify(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| |
| s->state = SSL3_ST_SR_CHANGE; |
| s->init_num = 0; |
| break; |
| |
| case SSL3_ST_SR_CHANGE: { |
| char next_proto_neg = 0; |
| char channel_id = 0; |
| next_proto_neg = s->s3->next_proto_neg_seen; |
| channel_id = s->s3->tlsext_channel_id_valid; |
| |
| /* At this point, the next message must be entirely behind a |
| * ChangeCipherSpec. */ |
| if (!ssl3_expect_change_cipher_spec(s)) { |
| ret = -1; |
| goto end; |
| } |
| if (next_proto_neg) { |
| s->state = SSL3_ST_SR_NEXT_PROTO_A; |
| } else if (channel_id) { |
| s->state = SSL3_ST_SR_CHANNEL_ID_A; |
| } else { |
| s->state = SSL3_ST_SR_FINISHED_A; |
| } |
| break; |
| } |
| |
| case SSL3_ST_SR_NEXT_PROTO_A: |
| case SSL3_ST_SR_NEXT_PROTO_B: |
| ret = ssl3_get_next_proto(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| s->init_num = 0; |
| if (s->s3->tlsext_channel_id_valid) { |
| s->state = SSL3_ST_SR_CHANNEL_ID_A; |
| } else { |
| s->state = SSL3_ST_SR_FINISHED_A; |
| } |
| break; |
| |
| case SSL3_ST_SR_CHANNEL_ID_A: |
| case SSL3_ST_SR_CHANNEL_ID_B: |
| ret = ssl3_get_channel_id(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| s->init_num = 0; |
| s->state = SSL3_ST_SR_FINISHED_A; |
| break; |
| |
| case SSL3_ST_SR_FINISHED_A: |
| case SSL3_ST_SR_FINISHED_B: |
| ret = |
| ssl3_get_finished(s, SSL3_ST_SR_FINISHED_A, SSL3_ST_SR_FINISHED_B); |
| if (ret <= 0) { |
| goto end; |
| } |
| |
| if (s->hit) { |
| s->state = SSL_ST_OK; |
| } else if (s->tlsext_ticket_expected) { |
| s->state = SSL3_ST_SW_SESSION_TICKET_A; |
| } else { |
| s->state = SSL3_ST_SW_CHANGE_A; |
| } |
| /* If this is a full handshake with ChannelID then record the hashshake |
| * hashes in |s->session| in case we need them to verify a ChannelID |
| * signature on a resumption of this session in the future. */ |
| if (!s->hit) { |
| ret = tls1_record_handshake_hashes_for_channel_id(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| } |
| s->init_num = 0; |
| break; |
| |
| case SSL3_ST_SW_SESSION_TICKET_A: |
| case SSL3_ST_SW_SESSION_TICKET_B: |
| ret = ssl3_send_new_session_ticket(s); |
| if (ret <= 0) { |
| goto end; |
| } |
| s->state = SSL3_ST_SW_CHANGE_A; |
| s->init_num = 0; |
| break; |
| |
| case SSL3_ST_SW_CHANGE_A: |
| case SSL3_ST_SW_CHANGE_B: |
| s->session->cipher = s->s3->tmp.new_cipher; |
| if (!s->enc_method->setup_key_block(s)) { |
| ret = -1; |
| goto end; |
| } |
| |
| ret = ssl3_send_change_cipher_spec(s, SSL3_ST_SW_CHANGE_A, |
| SSL3_ST_SW_CHANGE_B); |
| if (ret <= 0) { |
| goto end; |
| } |
| s->state = SSL3_ST_SW_FINISHED_A; |
| s->init_num = 0; |
| |
| if (!s->enc_method->change_cipher_state( |
| s, SSL3_CHANGE_CIPHER_SERVER_WRITE)) { |
| ret = -1; |
| goto end; |
| } |
| break; |
| |
| case SSL3_ST_SW_FINISHED_A: |
| case SSL3_ST_SW_FINISHED_B: |
| ret = |
| ssl3_send_finished(s, SSL3_ST_SW_FINISHED_A, SSL3_ST_SW_FINISHED_B, |
| s->enc_method->server_finished_label, |
| s->enc_method->server_finished_label_len); |
| if (ret <= 0) { |
| goto end; |
| } |
| s->state = SSL3_ST_SW_FLUSH; |
| if (s->hit) { |
| s->s3->tmp.next_state = SSL3_ST_SR_CHANGE; |
| } else { |
| s->s3->tmp.next_state = SSL_ST_OK; |
| } |
| s->init_num = 0; |
| break; |
| |
| case SSL_ST_OK: |
| /* clean a few things up */ |
| ssl3_cleanup_key_block(s); |
| |
| BUF_MEM_free(s->init_buf); |
| s->init_buf = NULL; |
| |
| /* remove buffering on output */ |
| ssl_free_wbio_buffer(s); |
| |
| s->init_num = 0; |
| |
| /* If we aren't retaining peer certificates then we can discard it |
| * now. */ |
| if (s->ctx->retain_only_sha256_of_client_certs) { |
| X509_free(s->session->peer); |
| s->session->peer = NULL; |
| sk_X509_pop_free(s->session->cert_chain, X509_free); |
| s->session->cert_chain = NULL; |
| } |
| |
| s->s3->initial_handshake_complete = 1; |
| |
| ssl_update_cache(s, SSL_SESS_CACHE_SERVER); |
| |
| if (cb != NULL) { |
| cb(s, SSL_CB_HANDSHAKE_DONE, 1); |
| } |
| |
| ret = 1; |
| goto end; |
| |
| default: |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_STATE); |
| ret = -1; |
| goto end; |
| } |
| |
| if (!s->s3->tmp.reuse_message && !skip && cb != NULL && s->state != state) { |
| new_state = s->state; |
| s->state = state; |
| cb(s, SSL_CB_ACCEPT_LOOP, 1); |
| s->state = new_state; |
| } |
| skip = 0; |
| } |
| |
| end: |
| s->in_handshake--; |
| BUF_MEM_free(buf); |
| if (cb != NULL) { |
| cb(s, SSL_CB_ACCEPT_EXIT, ret); |
| } |
| return ret; |
| } |
| |
| int ssl3_get_initial_bytes(SSL *s) { |
| /* Read the first 5 bytes, the size of the TLS record header. This is |
| * sufficient to detect a V2ClientHello and ensures that we never read beyond |
| * the first record. */ |
| int ret = ssl_read_buffer_extend_to(s, SSL3_RT_HEADER_LENGTH); |
| if (ret <= 0) { |
| return ret; |
| } |
| assert(ssl_read_buffer_len(s) == SSL3_RT_HEADER_LENGTH); |
| const uint8_t *p = ssl_read_buffer(s); |
| |
| /* Some dedicated error codes for protocol mixups should the application wish |
| * to interpret them differently. (These do not overlap with ClientHello or |
| * V2ClientHello.) */ |
| if (strncmp("GET ", (const char *)p, 4) == 0 || |
| strncmp("POST ", (const char *)p, 5) == 0 || |
| strncmp("HEAD ", (const char *)p, 5) == 0 || |
| strncmp("PUT ", (const char *)p, 4) == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_HTTP_REQUEST); |
| return -1; |
| } |
| if (strncmp("CONNE", (const char *)p, 5) == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_HTTPS_PROXY_REQUEST); |
| return -1; |
| } |
| |
| /* Determine if this is a V2ClientHello. */ |
| if ((p[0] & 0x80) && p[2] == SSL2_MT_CLIENT_HELLO && |
| p[3] >= SSL3_VERSION_MAJOR) { |
| /* This is a V2ClientHello. */ |
| s->state = SSL3_ST_SR_V2_CLIENT_HELLO; |
| return 1; |
| } |
| |
| /* Fall through to the standard logic. */ |
| s->state = SSL3_ST_SR_CLNT_HELLO_A; |
| return 1; |
| } |
| |
| int ssl3_get_v2_client_hello(SSL *s) { |
| const uint8_t *p; |
| int ret; |
| CBS v2_client_hello, cipher_specs, session_id, challenge; |
| size_t msg_length, rand_len, len; |
| uint8_t msg_type; |
| uint16_t version, cipher_spec_length, session_id_length, challenge_length; |
| CBB client_hello, hello_body, cipher_suites; |
| uint8_t random[SSL3_RANDOM_SIZE]; |
| |
| /* Determine the length of the V2ClientHello. */ |
| assert(ssl_read_buffer_len(s) >= SSL3_RT_HEADER_LENGTH); |
| p = ssl_read_buffer(s); |
| msg_length = ((p[0] & 0x7f) << 8) | p[1]; |
| if (msg_length > (1024 * 4)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_TOO_LARGE); |
| return -1; |
| } |
| if (msg_length < SSL3_RT_HEADER_LENGTH - 2) { |
| /* Reject lengths that are too short early. We have already read |
| * |SSL3_RT_HEADER_LENGTH| bytes, so we should not attempt to process an |
| * (invalid) V2ClientHello which would be shorter than that. */ |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RECORD_LENGTH_MISMATCH); |
| return -1; |
| } |
| |
| /* Read the remainder of the V2ClientHello. */ |
| ret = ssl_read_buffer_extend_to(s, 2 + msg_length); |
| if (ret <= 0) { |
| return ret; |
| } |
| assert(ssl_read_buffer_len(s) == msg_length + 2); |
| CBS_init(&v2_client_hello, ssl_read_buffer(s) + 2, msg_length); |
| |
| /* The V2ClientHello without the length is incorporated into the handshake |
| * hash. */ |
| if (!ssl3_update_handshake_hash(s, CBS_data(&v2_client_hello), |
| CBS_len(&v2_client_hello))) { |
| return -1; |
| } |
| if (s->msg_callback) { |
| s->msg_callback(0, SSL2_VERSION, 0, CBS_data(&v2_client_hello), |
| CBS_len(&v2_client_hello), s, s->msg_callback_arg); |
| } |
| |
| if (!CBS_get_u8(&v2_client_hello, &msg_type) || |
| !CBS_get_u16(&v2_client_hello, &version) || |
| !CBS_get_u16(&v2_client_hello, &cipher_spec_length) || |
| !CBS_get_u16(&v2_client_hello, &session_id_length) || |
| !CBS_get_u16(&v2_client_hello, &challenge_length) || |
| !CBS_get_bytes(&v2_client_hello, &cipher_specs, cipher_spec_length) || |
| !CBS_get_bytes(&v2_client_hello, &session_id, session_id_length) || |
| !CBS_get_bytes(&v2_client_hello, &challenge, challenge_length) || |
| CBS_len(&v2_client_hello) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| return -1; |
| } |
| |
| /* msg_type has already been checked. */ |
| assert(msg_type == SSL2_MT_CLIENT_HELLO); |
| |
| /* The client_random is the V2ClientHello challenge. Truncate or |
| * left-pad with zeros as needed. */ |
| memset(random, 0, SSL3_RANDOM_SIZE); |
| rand_len = CBS_len(&challenge); |
| if (rand_len > SSL3_RANDOM_SIZE) { |
| rand_len = SSL3_RANDOM_SIZE; |
| } |
| memcpy(random + (SSL3_RANDOM_SIZE - rand_len), CBS_data(&challenge), |
| rand_len); |
| |
| /* Write out an equivalent SSLv3 ClientHello. */ |
| CBB_zero(&client_hello); |
| if (!CBB_init_fixed(&client_hello, (uint8_t *)s->init_buf->data, |
| s->init_buf->max) || |
| !CBB_add_u8(&client_hello, SSL3_MT_CLIENT_HELLO) || |
| !CBB_add_u24_length_prefixed(&client_hello, &hello_body) || |
| !CBB_add_u16(&hello_body, version) || |
| !CBB_add_bytes(&hello_body, random, SSL3_RANDOM_SIZE) || |
| /* No session id. */ |
| !CBB_add_u8(&hello_body, 0) || |
| !CBB_add_u16_length_prefixed(&hello_body, &cipher_suites)) { |
| CBB_cleanup(&client_hello); |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| return -1; |
| } |
| |
| /* Copy the cipher suites. */ |
| while (CBS_len(&cipher_specs) > 0) { |
| uint32_t cipher_spec; |
| if (!CBS_get_u24(&cipher_specs, &cipher_spec)) { |
| CBB_cleanup(&client_hello); |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| return -1; |
| } |
| |
| /* Skip SSLv2 ciphers. */ |
| if ((cipher_spec & 0xff0000) != 0) { |
| continue; |
| } |
| if (!CBB_add_u16(&cipher_suites, cipher_spec)) { |
| CBB_cleanup(&client_hello); |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| } |
| |
| /* Add the null compression scheme and finish. */ |
| if (!CBB_add_u8(&hello_body, 1) || !CBB_add_u8(&hello_body, 0) || |
| !CBB_finish(&client_hello, NULL, &len)) { |
| CBB_cleanup(&client_hello); |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| |
| /* Mark the message for "re"-use by the version-specific method. */ |
| s->s3->tmp.reuse_message = 1; |
| s->s3->tmp.message_type = SSL3_MT_CLIENT_HELLO; |
| /* The handshake message header is 4 bytes. */ |
| s->s3->tmp.message_size = len - 4; |
| |
| /* Consume and discard the V2ClientHello. */ |
| ssl_read_buffer_consume(s, 2 + msg_length); |
| ssl_read_buffer_discard(s); |
| |
| return 1; |
| } |
| |
| int ssl3_get_client_hello(SSL *s) { |
| int ok, al = SSL_AD_INTERNAL_ERROR, ret = -1; |
| long n; |
| const SSL_CIPHER *c; |
| STACK_OF(SSL_CIPHER) *ciphers = NULL; |
| struct ssl_early_callback_ctx early_ctx; |
| CBS client_hello; |
| uint16_t client_version; |
| CBS client_random, session_id, cipher_suites, compression_methods; |
| SSL_SESSION *session = NULL; |
| |
| /* We do this so that we will respond with our native type. If we are TLSv1 |
| * and we get SSLv3, we will respond with TLSv1, This down switching should |
| * be handled by a different method. If we are SSLv3, we will respond with |
| * SSLv3, even if prompted with TLSv1. */ |
| switch (s->state) { |
| case SSL3_ST_SR_CLNT_HELLO_A: |
| case SSL3_ST_SR_CLNT_HELLO_B: |
| n = s->method->ssl_get_message( |
| s, SSL3_ST_SR_CLNT_HELLO_A, SSL3_ST_SR_CLNT_HELLO_B, |
| SSL3_MT_CLIENT_HELLO, SSL3_RT_MAX_PLAIN_LENGTH, |
| ssl_hash_message, &ok); |
| |
| if (!ok) { |
| return n; |
| } |
| |
| s->state = SSL3_ST_SR_CLNT_HELLO_C; |
| /* fallthrough */ |
| case SSL3_ST_SR_CLNT_HELLO_C: |
| case SSL3_ST_SR_CLNT_HELLO_D: |
| /* We have previously parsed the ClientHello message, and can't call |
| * ssl_get_message again without hashing the message into the Finished |
| * digest again. */ |
| n = s->init_num; |
| |
| memset(&early_ctx, 0, sizeof(early_ctx)); |
| early_ctx.ssl = s; |
| early_ctx.client_hello = s->init_msg; |
| early_ctx.client_hello_len = n; |
| if (!ssl_early_callback_init(&early_ctx)) { |
| al = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CLIENTHELLO_PARSE_FAILED); |
| goto f_err; |
| } |
| |
| if (s->state == SSL3_ST_SR_CLNT_HELLO_C && |
| s->ctx->select_certificate_cb != NULL) { |
| s->state = SSL3_ST_SR_CLNT_HELLO_D; |
| switch (s->ctx->select_certificate_cb(&early_ctx)) { |
| case 0: |
| s->rwstate = SSL_CERTIFICATE_SELECTION_PENDING; |
| goto err; |
| |
| case -1: |
| /* Connection rejected. */ |
| al = SSL_AD_ACCESS_DENIED; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED); |
| goto f_err; |
| |
| default: |
| /* fallthrough */; |
| } |
| } |
| s->state = SSL3_ST_SR_CLNT_HELLO_D; |
| break; |
| |
| default: |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_STATE); |
| return -1; |
| } |
| |
| CBS_init(&client_hello, s->init_msg, n); |
| if (!CBS_get_u16(&client_hello, &client_version) || |
| !CBS_get_bytes(&client_hello, &client_random, SSL3_RANDOM_SIZE) || |
| !CBS_get_u8_length_prefixed(&client_hello, &session_id) || |
| CBS_len(&session_id) > SSL_MAX_SSL_SESSION_ID_LENGTH) { |
| al = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| goto f_err; |
| } |
| |
| /* use version from inside client hello, not from record header (may differ: |
| * see RFC 2246, Appendix E, second paragraph) */ |
| s->client_version = client_version; |
| |
| /* Load the client random. */ |
| memcpy(s->s3->client_random, CBS_data(&client_random), SSL3_RANDOM_SIZE); |
| |
| if (SSL_IS_DTLS(s)) { |
| CBS cookie; |
| |
| if (!CBS_get_u8_length_prefixed(&client_hello, &cookie) || |
| CBS_len(&cookie) > DTLS1_COOKIE_LENGTH) { |
| al = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| goto f_err; |
| } |
| } |
| |
| /* Note: This codepath may run twice if |ssl_get_prev_session| completes |
| * asynchronously. |
| * |
| * TODO(davidben): Clean up the order of events around ClientHello |
| * processing. */ |
| if (!s->s3->have_version) { |
| /* Select version to use */ |
| uint16_t version = ssl3_get_mutual_version(s, client_version); |
| if (version == 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_PROTOCOL); |
| s->version = s->client_version; |
| al = SSL_AD_PROTOCOL_VERSION; |
| goto f_err; |
| } |
| s->version = version; |
| s->enc_method = ssl3_get_enc_method(version); |
| assert(s->enc_method != NULL); |
| /* At this point, the connection's version is known and |s->version| is |
| * fixed. Begin enforcing the record-layer version. */ |
| s->s3->have_version = 1; |
| } else if (SSL_IS_DTLS(s) ? (s->client_version > s->version) |
| : (s->client_version < s->version)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_VERSION_NUMBER); |
| al = SSL_AD_PROTOCOL_VERSION; |
| goto f_err; |
| } |
| |
| s->hit = 0; |
| int send_new_ticket = 0; |
| switch (ssl_get_prev_session(s, &session, &send_new_ticket, &early_ctx)) { |
| case ssl_session_success: |
| break; |
| case ssl_session_error: |
| goto err; |
| case ssl_session_retry: |
| s->rwstate = SSL_PENDING_SESSION; |
| goto err; |
| } |
| s->tlsext_ticket_expected = send_new_ticket; |
| |
| /* The EMS state is needed when making the resumption decision, but |
| * extensions are not normally parsed until later. This detects the EMS |
| * extension for the resumption decision and it's checked against the result |
| * of the normal parse later in this function. */ |
| const uint8_t *ems_data; |
| size_t ems_len; |
| int have_extended_master_secret = |
| s->version != SSL3_VERSION && |
| SSL_early_callback_ctx_extension_get(&early_ctx, |
| TLSEXT_TYPE_extended_master_secret, |
| &ems_data, &ems_len) && |
| ems_len == 0; |
| |
| if (session != NULL) { |
| if (session->extended_master_secret && |
| !have_extended_master_secret) { |
| /* A ClientHello without EMS that attempts to resume a session with EMS |
| * is fatal to the connection. */ |
| al = SSL_AD_HANDSHAKE_FAILURE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION); |
| goto f_err; |
| } |
| |
| s->hit = |
| /* Only resume if the session's version matches the negotiated version: |
| * most clients do not accept a mismatch. */ |
| s->version == session->ssl_version && |
| /* If the client offers the EMS extension, but the previous session |
| * didn't use it, then negotiate a new session. */ |
| have_extended_master_secret == session->extended_master_secret; |
| } |
| |
| if (s->hit) { |
| /* Use the new session. */ |
| SSL_SESSION_free(s->session); |
| s->session = session; |
| session = NULL; |
| |
| s->verify_result = s->session->verify_result; |
| } else if (!ssl_get_new_session(s, 1)) { |
| goto err; |
| } |
| |
| if (s->ctx->dos_protection_cb != NULL && s->ctx->dos_protection_cb(&early_ctx) == 0) { |
| /* Connection rejected for DOS reasons. */ |
| al = SSL_AD_ACCESS_DENIED; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED); |
| goto f_err; |
| } |
| |
| if (!CBS_get_u16_length_prefixed(&client_hello, &cipher_suites) || |
| CBS_len(&cipher_suites) == 0 || |
| CBS_len(&cipher_suites) % 2 != 0 || |
| !CBS_get_u8_length_prefixed(&client_hello, &compression_methods) || |
| CBS_len(&compression_methods) == 0) { |
| al = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| goto f_err; |
| } |
| |
| ciphers = ssl_bytes_to_cipher_list(s, &cipher_suites); |
| if (ciphers == NULL) { |
| goto err; |
| } |
| |
| /* If it is a hit, check that the cipher is in the list. */ |
| if (s->hit) { |
| size_t j; |
| int found_cipher = 0; |
| uint32_t id = s->session->cipher->id; |
| |
| for (j = 0; j < sk_SSL_CIPHER_num(ciphers); j++) { |
| c = sk_SSL_CIPHER_value(ciphers, j); |
| if (c->id == id) { |
| found_cipher = 1; |
| break; |
| } |
| } |
| |
| if (!found_cipher) { |
| /* we need to have the cipher in the cipher list if we are asked to reuse |
| * it */ |
| al = SSL_AD_ILLEGAL_PARAMETER; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_REQUIRED_CIPHER_MISSING); |
| goto f_err; |
| } |
| } |
| |
| /* Only null compression is supported. */ |
| if (memchr(CBS_data(&compression_methods), 0, |
| CBS_len(&compression_methods)) == NULL) { |
| al = SSL_AD_ILLEGAL_PARAMETER; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_COMPRESSION_SPECIFIED); |
| goto f_err; |
| } |
| |
| /* TLS extensions. */ |
| if (s->version >= SSL3_VERSION && |
| !ssl_parse_clienthello_tlsext(s, &client_hello)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); |
| goto err; |
| } |
| |
| /* There should be nothing left over in the record. */ |
| if (CBS_len(&client_hello) != 0) { |
| /* wrong packet length */ |
| al = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_PACKET_LENGTH); |
| goto f_err; |
| } |
| |
| if (have_extended_master_secret != s->s3->tmp.extended_master_secret) { |
| al = SSL_AD_INTERNAL_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_EMS_STATE_INCONSISTENT); |
| goto f_err; |
| } |
| |
| /* Given ciphers and SSL_get_ciphers, we must pick a cipher */ |
| if (!s->hit) { |
| if (ciphers == NULL) { |
| al = SSL_AD_ILLEGAL_PARAMETER; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHERS_PASSED); |
| goto f_err; |
| } |
| |
| /* Let cert callback update server certificates if required */ |
| if (s->cert->cert_cb) { |
| int rv = s->cert->cert_cb(s, s->cert->cert_cb_arg); |
| if (rv == 0) { |
| al = SSL_AD_INTERNAL_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR); |
| goto f_err; |
| } |
| if (rv < 0) { |
| s->rwstate = SSL_X509_LOOKUP; |
| goto err; |
| } |
| s->rwstate = SSL_NOTHING; |
| } |
| c = ssl3_choose_cipher(s, ciphers, ssl_get_cipher_preferences(s)); |
| |
| if (c == NULL) { |
| al = SSL_AD_HANDSHAKE_FAILURE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_SHARED_CIPHER); |
| goto f_err; |
| } |
| s->s3->tmp.new_cipher = c; |
| |
| /* Determine whether to request a client certificate. */ |
| s->s3->tmp.cert_request = !!(s->verify_mode & SSL_VERIFY_PEER); |
| /* Only request a certificate if Channel ID isn't negotiated. */ |
| if ((s->verify_mode & SSL_VERIFY_PEER_IF_NO_OBC) && |
| s->s3->tlsext_channel_id_valid) { |
| s->s3->tmp.cert_request = 0; |
| } |
| /* Plain PSK forbids Certificate and CertificateRequest. */ |
| if (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kPSK) { |
| s->s3->tmp.cert_request = 0; |
| } |
| } else { |
| /* Session-id reuse */ |
| s->s3->tmp.new_cipher = s->session->cipher; |
| s->s3->tmp.cert_request = 0; |
| } |
| |
| /* Now that the cipher is known, initialize the handshake hash. */ |
| if (!ssl3_init_handshake_hash(s)) { |
| goto f_err; |
| } |
| |
| /* In TLS 1.2, client authentication requires hashing the handshake transcript |
| * under a different hash. Otherwise, release the handshake buffer. */ |
| if (!SSL_USE_SIGALGS(s) || !s->s3->tmp.cert_request) { |
| ssl3_free_handshake_buffer(s); |
| } |
| |
| /* we now have the following setup; |
| * client_random |
| * cipher_list - our prefered list of ciphers |
| * ciphers - the clients prefered list of ciphers |
| * compression - basically ignored right now |
| * ssl version is set - sslv3 |
| * s->session - The ssl session has been setup. |
| * s->hit - session reuse flag |
| * s->tmp.new_cipher - the new cipher to use. */ |
| |
| if (ret < 0) { |
| ret = -ret; |
| } |
| |
| if (0) { |
| f_err: |
| ssl3_send_alert(s, SSL3_AL_FATAL, al); |
| } |
| |
| err: |
| sk_SSL_CIPHER_free(ciphers); |
| SSL_SESSION_free(session); |
| return ret; |
| } |
| |
| int ssl3_send_server_hello(SSL *s) { |
| uint8_t *buf; |
| uint8_t *p, *d; |
| int sl; |
| unsigned long l; |
| |
| if (s->state == SSL3_ST_SW_SRVR_HELLO_A) { |
| /* We only accept ChannelIDs on connections with ECDHE in order to avoid a |
| * known attack while we fix ChannelID itself. */ |
| if (s->s3->tlsext_channel_id_valid && |
| (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kECDHE) == 0) { |
| s->s3->tlsext_channel_id_valid = 0; |
| } |
| |
| /* If this is a resumption and the original handshake didn't support |
| * ChannelID then we didn't record the original handshake hashes in the |
| * session and so cannot resume with ChannelIDs. */ |
| if (s->hit && s->session->original_handshake_hash_len == 0) { |
| s->s3->tlsext_channel_id_valid = 0; |
| } |
| |
| buf = (uint8_t *)s->init_buf->data; |
| /* Do the message type and length last */ |
| d = p = ssl_handshake_start(s); |
| |
| *(p++) = s->version >> 8; |
| *(p++) = s->version & 0xff; |
| |
| /* Random stuff */ |
| if (!ssl_fill_hello_random(s->s3->server_random, SSL3_RANDOM_SIZE, |
| 1 /* server */)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| memcpy(p, s->s3->server_random, SSL3_RANDOM_SIZE); |
| p += SSL3_RANDOM_SIZE; |
| |
| /* There are several cases for the session ID to send |
| * back in the server hello: |
| * - For session reuse from the session cache, we send back the old session |
| * ID. |
| * - If stateless session reuse (using a session ticket) is successful, we |
| * send back the client's "session ID" (which doesn't actually identify |
| * the session). |
| * - If it is a new session, we send back the new session ID. |
| * - However, if we want the new session to be single-use, we send back a |
| * 0-length session ID. |
| * s->hit is non-zero in either case of session reuse, so the following |
| * won't overwrite an ID that we're supposed to send back. */ |
| if (!(s->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER) && !s->hit) { |
| s->session->session_id_length = 0; |
| } |
| |
| sl = s->session->session_id_length; |
| if (sl > (int)sizeof(s->session->session_id)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| *(p++) = sl; |
| memcpy(p, s->session->session_id, sl); |
| p += sl; |
| |
| /* put the cipher */ |
| s2n(ssl_cipher_get_value(s->s3->tmp.new_cipher), p); |
| |
| /* put the compression method */ |
| *(p++) = 0; |
| |
| p = ssl_add_serverhello_tlsext(s, p, buf + SSL3_RT_MAX_PLAIN_LENGTH); |
| if (p == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| return -1; |
| } |
| |
| /* do the header */ |
| l = (p - d); |
| if (!ssl_set_handshake_header(s, SSL3_MT_SERVER_HELLO, l)) { |
| return -1; |
| } |
| s->state = SSL3_ST_SW_SRVR_HELLO_B; |
| } |
| |
| /* SSL3_ST_SW_SRVR_HELLO_B */ |
| return ssl_do_write(s); |
| } |
| |
| int ssl3_send_certificate_status(SSL *ssl) { |
| if (ssl->state == SSL3_ST_SW_CERT_STATUS_A) { |
| CBB out, ocsp_response; |
| size_t length; |
| |
| CBB_zero(&out); |
| if (!CBB_init_fixed(&out, ssl_handshake_start(ssl), |
| ssl->init_buf->max - SSL_HM_HEADER_LENGTH(ssl)) || |
| !CBB_add_u8(&out, TLSEXT_STATUSTYPE_ocsp) || |
| !CBB_add_u24_length_prefixed(&out, &ocsp_response) || |
| !CBB_add_bytes(&ocsp_response, ssl->ctx->ocsp_response, |
| ssl->ctx->ocsp_response_length) || |
| !CBB_finish(&out, NULL, &length) || |
| !ssl_set_handshake_header(ssl, SSL3_MT_CERTIFICATE_STATUS, length)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| CBB_cleanup(&out); |
| return -1; |
| } |
| |
| ssl->state = SSL3_ST_SW_CERT_STATUS_B; |
| } |
| |
| /* SSL3_ST_SW_CERT_STATUS_B */ |
| return ssl_do_write(ssl); |
| } |
| |
| int ssl3_send_server_done(SSL *s) { |
| if (s->state == SSL3_ST_SW_SRVR_DONE_A) { |
| if (!ssl_set_handshake_header(s, SSL3_MT_SERVER_DONE, 0)) { |
| return -1; |
| } |
| s->state = SSL3_ST_SW_SRVR_DONE_B; |
| } |
| |
| /* SSL3_ST_SW_SRVR_DONE_B */ |
| return ssl_do_write(s); |
| } |
| |
| int ssl3_send_server_key_exchange(SSL *s) { |
| DH *dh = NULL, *dhp; |
| EC_KEY *ecdh = NULL; |
| uint8_t *encodedPoint = NULL; |
| int encodedlen = 0; |
| uint16_t curve_id = 0; |
| BN_CTX *bn_ctx = NULL; |
| const char *psk_identity_hint = NULL; |
| size_t psk_identity_hint_len = 0; |
| size_t sig_len; |
| size_t max_sig_len; |
| uint8_t *p, *d; |
| int al, i; |
| uint32_t alg_k; |
| uint32_t alg_a; |
| int n; |
| CERT *cert; |
| BIGNUM *r[4]; |
| int nr[4]; |
| BUF_MEM *buf; |
| EVP_MD_CTX md_ctx; |
| |
| if (s->state == SSL3_ST_SW_KEY_EXCH_C) { |
| return ssl_do_write(s); |
| } |
| |
| if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher)) { |
| if (!ssl_has_private_key(s)) { |
| al = SSL_AD_INTERNAL_ERROR; |
| goto f_err; |
| } |
| max_sig_len = ssl_private_key_max_signature_len(s); |
| } else { |
| max_sig_len = 0; |
| } |
| |
| EVP_MD_CTX_init(&md_ctx); |
| enum ssl_private_key_result_t sign_result; |
| if (s->state == SSL3_ST_SW_KEY_EXCH_A) { |
| alg_k = s->s3->tmp.new_cipher->algorithm_mkey; |
| alg_a = s->s3->tmp.new_cipher->algorithm_auth; |
| cert = s->cert; |
| |
| buf = s->init_buf; |
| |
| r[0] = r[1] = r[2] = r[3] = NULL; |
| n = 0; |
| if (alg_a & SSL_aPSK) { |
| /* size for PSK identity hint */ |
| psk_identity_hint = s->psk_identity_hint; |
| if (psk_identity_hint) { |
| psk_identity_hint_len = strlen(psk_identity_hint); |
| } else { |
| psk_identity_hint_len = 0; |
| } |
| n += 2 + psk_identity_hint_len; |
| } |
| |
| if (alg_k & SSL_kDHE) { |
| dhp = cert->dh_tmp; |
| if (dhp == NULL && s->cert->dh_tmp_cb != NULL) { |
| dhp = s->cert->dh_tmp_cb(s, 0, 1024); |
| } |
| if (dhp == NULL) { |
| al = SSL_AD_HANDSHAKE_FAILURE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_TMP_DH_KEY); |
| goto f_err; |
| } |
| |
| if (s->s3->tmp.dh != NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| dh = DHparams_dup(dhp); |
| if (dh == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB); |
| goto err; |
| } |
| s->s3->tmp.dh = dh; |
| |
| if (!DH_generate_key(dh)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB); |
| goto err; |
| } |
| |
| r[0] = dh->p; |
| r[1] = dh->g; |
| r[2] = dh->pub_key; |
| } else if (alg_k & SSL_kECDHE) { |
| /* Determine the curve to use. */ |
| int nid = NID_undef; |
| if (cert->ecdh_nid != NID_undef) { |
| nid = cert->ecdh_nid; |
| } else if (cert->ecdh_tmp_cb != NULL) { |
| /* Note: |ecdh_tmp_cb| does NOT pass ownership of the result |
| * to the caller. */ |
| EC_KEY *template = s->cert->ecdh_tmp_cb(s, 0, 1024); |
| if (template != NULL && EC_KEY_get0_group(template) != NULL) { |
| nid = EC_GROUP_get_curve_name(EC_KEY_get0_group(template)); |
| } |
| } else { |
| nid = tls1_get_shared_curve(s); |
| } |
| if (nid == NID_undef) { |
| al = SSL_AD_HANDSHAKE_FAILURE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_TMP_ECDH_KEY); |
| goto f_err; |
| } |
| |
| if (s->s3->tmp.ecdh != NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| ecdh = EC_KEY_new_by_curve_name(nid); |
| if (ecdh == NULL) { |
| goto err; |
| } |
| s->s3->tmp.ecdh = ecdh; |
| |
| if (!EC_KEY_generate_key(ecdh)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ECDH_LIB); |
| goto err; |
| } |
| |
| /* We only support ephemeral ECDH keys over named (not generic) curves. */ |
| const EC_GROUP *group = EC_KEY_get0_group(ecdh); |
| if (!tls1_ec_nid2curve_id(&curve_id, EC_GROUP_get_curve_name(group))) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNSUPPORTED_ELLIPTIC_CURVE); |
| goto err; |
| } |
| |
| /* Encode the public key. First check the size of encoding and allocate |
| * memory accordingly. */ |
| encodedlen = |
| EC_POINT_point2oct(group, EC_KEY_get0_public_key(ecdh), |
| POINT_CONVERSION_UNCOMPRESSED, NULL, 0, NULL); |
| |
| encodedPoint = (uint8_t *)OPENSSL_malloc(encodedlen * sizeof(uint8_t)); |
| bn_ctx = BN_CTX_new(); |
| if (encodedPoint == NULL || bn_ctx == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| encodedlen = EC_POINT_point2oct(group, EC_KEY_get0_public_key(ecdh), |
| POINT_CONVERSION_UNCOMPRESSED, |
| encodedPoint, encodedlen, bn_ctx); |
| |
| if (encodedlen == 0) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ECDH_LIB); |
| goto err; |
| } |
| |
| BN_CTX_free(bn_ctx); |
| bn_ctx = NULL; |
| |
| /* We only support named (not generic) curves in ECDH ephemeral key |
| * exchanges. In this situation, we need four additional bytes to encode |
| * the entire ServerECDHParams structure. */ |
| n += 4 + encodedlen; |
| |
| /* We'll generate the serverKeyExchange message explicitly so we can set |
| * these to NULLs */ |
| r[0] = NULL; |
| r[1] = NULL; |
| r[2] = NULL; |
| r[3] = NULL; |
| } else if (!(alg_k & SSL_kPSK)) { |
| al = SSL_AD_HANDSHAKE_FAILURE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_KEY_EXCHANGE_TYPE); |
| goto f_err; |
| } |
| |
| for (i = 0; i < 4 && r[i] != NULL; i++) { |
| nr[i] = BN_num_bytes(r[i]); |
| n += 2 + nr[i]; |
| } |
| |
| if (!BUF_MEM_grow_clean(buf, n + SSL_HM_HEADER_LENGTH(s) + max_sig_len)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_LIB_BUF); |
| goto err; |
| } |
| d = p = ssl_handshake_start(s); |
| |
| for (i = 0; i < 4 && r[i] != NULL; i++) { |
| s2n(nr[i], p); |
| BN_bn2bin(r[i], p); |
| p += nr[i]; |
| } |
| |
| /* Note: ECDHE PSK ciphersuites use SSL_kECDHE and SSL_aPSK. When one of |
| * them is used, the server key exchange record needs to have both the |
| * psk_identity_hint and the ServerECDHParams. */ |
| if (alg_a & SSL_aPSK) { |
| /* copy PSK identity hint (if provided) */ |
| s2n(psk_identity_hint_len, p); |
| if (psk_identity_hint_len > 0) { |
| memcpy(p, psk_identity_hint, psk_identity_hint_len); |
| p += psk_identity_hint_len; |
| } |
| } |
| |
| if (alg_k & SSL_kECDHE) { |
| /* We only support named (not generic) curves. In this situation, the |
| * serverKeyExchange message has: |
| * [1 byte CurveType], [2 byte CurveName] |
| * [1 byte length of encoded point], followed by |
| * the actual encoded point itself. */ |
| *(p++) = NAMED_CURVE_TYPE; |
| *(p++) = (uint8_t)(curve_id >> 8); |
| *(p++) = (uint8_t)(curve_id & 0xff); |
| *(p++) = encodedlen; |
| memcpy(p, encodedPoint, encodedlen); |
| p += encodedlen; |
| OPENSSL_free(encodedPoint); |
| encodedPoint = NULL; |
| } |
| |
| if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher)) { |
| /* n is the length of the params, they start at d and p points to |
| * the space at the end. */ |
| const EVP_MD *md; |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| unsigned int digest_length; |
| |
| const int pkey_type = ssl_private_key_type(s); |
| |
| /* Determine signature algorithm. */ |
| if (SSL_USE_SIGALGS(s)) { |
| md = tls1_choose_signing_digest(s); |
| if (!tls12_get_sigandhash(s, p, md)) { |
| /* Should never happen */ |
| al = SSL_AD_INTERNAL_ERROR; |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| goto f_err; |
| } |
| p += 2; |
| } else if (pkey_type == EVP_PKEY_RSA) { |
| md = EVP_md5_sha1(); |
| } else { |
| md = EVP_sha1(); |
| } |
| |
| if (!EVP_DigestInit_ex(&md_ctx, md, NULL) || |
| !EVP_DigestUpdate(&md_ctx, s->s3->client_random, SSL3_RANDOM_SIZE) || |
| !EVP_DigestUpdate(&md_ctx, s->s3->server_random, SSL3_RANDOM_SIZE) || |
| !EVP_DigestUpdate(&md_ctx, d, n) || |
| !EVP_DigestFinal_ex(&md_ctx, digest, &digest_length)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_LIB_EVP); |
| goto err; |
| } |
| |
| sign_result = ssl_private_key_sign(s, &p[2], &sig_len, max_sig_len, |
| EVP_MD_CTX_md(&md_ctx), digest, |
| digest_length); |
| } else { |
| /* This key exchange doesn't involve a signature. */ |
| sign_result = ssl_private_key_success; |
| sig_len = 0; |
| } |
| } else { |
| assert(s->state == SSL3_ST_SW_KEY_EXCH_B); |
| /* Restore |p|. */ |
| p = ssl_handshake_start(s) + s->init_num - SSL_HM_HEADER_LENGTH(s); |
| sign_result = ssl_private_key_sign_complete(s, &p[2], &sig_len, |
| max_sig_len); |
| } |
| |
| switch (sign_result) { |
| case ssl_private_key_success: |
| s->rwstate = SSL_NOTHING; |
| break; |
| case ssl_private_key_failure: |
| s->rwstate = SSL_NOTHING; |
| goto err; |
| case ssl_private_key_retry: |
| s->rwstate = SSL_PRIVATE_KEY_OPERATION; |
| /* Stash away |p|. */ |
| s->init_num = p - ssl_handshake_start(s) + SSL_HM_HEADER_LENGTH(s); |
| s->state = SSL3_ST_SW_KEY_EXCH_B; |
| goto err; |
| } |
| |
| if (ssl_cipher_has_server_public_key(s->s3->tmp.new_cipher)) { |
| s2n(sig_len, p); |
| p += sig_len; |
| } |
| if (!ssl_set_handshake_header(s, SSL3_MT_SERVER_KEY_EXCHANGE, |
| p - ssl_handshake_start(s))) { |
| goto err; |
| } |
| s->state = SSL3_ST_SW_KEY_EXCH_C; |
| |
| EVP_MD_CTX_cleanup(&md_ctx); |
| return ssl_do_write(s); |
| |
| f_err: |
| ssl3_send_alert(s, SSL3_AL_FATAL, al); |
| err: |
| OPENSSL_free(encodedPoint); |
| BN_CTX_free(bn_ctx); |
| EVP_MD_CTX_cleanup(&md_ctx); |
| return -1; |
| } |
| |
| int ssl3_send_certificate_request(SSL *s) { |
| uint8_t *p, *d; |
| size_t i; |
| int j, nl, off, n; |
| STACK_OF(X509_NAME) *sk = NULL; |
| X509_NAME *name; |
| BUF_MEM *buf; |
| |
| if (s->state == SSL3_ST_SW_CERT_REQ_A) { |
| buf = s->init_buf; |
| |
| d = p = ssl_handshake_start(s); |
| |
| /* get the list of acceptable cert types */ |
| p++; |
| n = ssl3_get_req_cert_type(s, p); |
| d[0] = n; |
| p += n; |
| n++; |
| |
| if (SSL_USE_SIGALGS(s)) { |
| const uint8_t *psigs; |
| nl = tls12_get_psigalgs(s, &psigs); |
| s2n(nl, p); |
| memcpy(p, psigs, nl); |
| p += nl; |
| n += nl + 2; |
| } |
| |
| off = n; |
| p += 2; |
| n += 2; |
| |
| sk = SSL_get_client_CA_list(s); |
| nl = 0; |
| if (sk != NULL) { |
| for (i = 0; i < sk_X509_NAME_num(sk); i++) { |
| name = sk_X509_NAME_value(sk, i); |
| j = i2d_X509_NAME(name, NULL); |
| if (!BUF_MEM_grow_clean(buf, SSL_HM_HEADER_LENGTH(s) + n + j + 2)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_BUF_LIB); |
| goto err; |
| } |
| p = ssl_handshake_start(s) + n; |
| s2n(j, p); |
| i2d_X509_NAME(name, &p); |
| n += 2 + j; |
| nl += 2 + j; |
| } |
| } |
| |
| /* else no CA names */ |
| p = ssl_handshake_start(s) + off; |
| s2n(nl, p); |
| |
| if (!ssl_set_handshake_header(s, SSL3_MT_CERTIFICATE_REQUEST, n)) { |
| goto err; |
| } |
| s->state = SSL3_ST_SW_CERT_REQ_B; |
| } |
| |
| /* SSL3_ST_SW_CERT_REQ_B */ |
| return ssl_do_write(s); |
| |
| err: |
| return -1; |
| } |
| |
| int ssl3_get_client_key_exchange(SSL *s) { |
| int al, ok; |
| long n; |
| CBS client_key_exchange; |
| uint32_t alg_k; |
| uint32_t alg_a; |
| uint8_t *premaster_secret = NULL; |
| size_t premaster_secret_len = 0; |
| RSA *rsa = NULL; |
| uint8_t *decrypt_buf = NULL; |
| EVP_PKEY *pkey = NULL; |
| BIGNUM *pub = NULL; |
| DH *dh_srvr; |
| |
| EC_KEY *srvr_ecdh = NULL; |
| EVP_PKEY *clnt_pub_pkey = NULL; |
| EC_POINT *clnt_ecpoint = NULL; |
| BN_CTX *bn_ctx = NULL; |
| unsigned int psk_len = 0; |
| uint8_t psk[PSK_MAX_PSK_LEN]; |
| |
| n = s->method->ssl_get_message(s, SSL3_ST_SR_KEY_EXCH_A, |
| SSL3_ST_SR_KEY_EXCH_B, |
| SSL3_MT_CLIENT_KEY_EXCHANGE, 2048, /* ??? */ |
| ssl_hash_message, &ok); |
| |
| if (!ok) { |
| return n; |
| } |
| |
| CBS_init(&client_key_exchange, s->init_msg, n); |
| |
| alg_k = s->s3->tmp.new_cipher->algorithm_mkey; |
| alg_a = s->s3->tmp.new_cipher->algorithm_auth; |
| |
| /* If using a PSK key exchange, prepare the pre-shared key. */ |
| if (alg_a & SSL_aPSK) { |
| CBS psk_identity; |
| |
| /* If using PSK, the ClientKeyExchange contains a psk_identity. If PSK, |
| * then this is the only field in the message. */ |
| if (!CBS_get_u16_length_prefixed(&client_key_exchange, &psk_identity) || |
| ((alg_k & SSL_kPSK) && CBS_len(&client_key_exchange) != 0)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| al = SSL_AD_DECODE_ERROR; |
| goto f_err; |
| } |
| |
| if (s->psk_server_callback == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_NO_SERVER_CB); |
| al = SSL_AD_INTERNAL_ERROR; |
| goto f_err; |
| } |
| |
| if (CBS_len(&psk_identity) > PSK_MAX_IDENTITY_LEN || |
| CBS_contains_zero_byte(&psk_identity)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); |
| al = SSL_AD_ILLEGAL_PARAMETER; |
| goto f_err; |
| } |
| |
| if (!CBS_strdup(&psk_identity, &s->session->psk_identity)) { |
| al = SSL_AD_INTERNAL_ERROR; |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto f_err; |
| } |
| |
| /* Look up the key for the identity. */ |
| psk_len = |
| s->psk_server_callback(s, s->session->psk_identity, psk, sizeof(psk)); |
| if (psk_len > PSK_MAX_PSK_LEN) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| al = SSL_AD_INTERNAL_ERROR; |
| goto f_err; |
| } else if (psk_len == 0) { |
| /* PSK related to the given identity not found */ |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); |
| al = SSL_AD_UNKNOWN_PSK_IDENTITY; |
| goto f_err; |
| } |
| } |
| |
| /* Depending on the key exchange method, compute |premaster_secret| and |
| * |premaster_secret_len|. */ |
| if (alg_k & SSL_kRSA) { |
| CBS encrypted_premaster_secret; |
| uint8_t rand_premaster_secret[SSL_MAX_MASTER_KEY_LENGTH]; |
| uint8_t good; |
| size_t rsa_size, decrypt_len, premaster_index, j; |
| |
| pkey = s->cert->privatekey; |
| if (pkey == NULL || pkey->type != EVP_PKEY_RSA || pkey->pkey.rsa == NULL) { |
| al = SSL_AD_HANDSHAKE_FAILURE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_RSA_CERTIFICATE); |
| goto f_err; |
| } |
| rsa = pkey->pkey.rsa; |
| |
| /* TLS and [incidentally] DTLS{0xFEFF} */ |
| if (s->version > SSL3_VERSION) { |
| CBS copy = client_key_exchange; |
| if (!CBS_get_u16_length_prefixed(&client_key_exchange, |
| &encrypted_premaster_secret) || |
| CBS_len(&client_key_exchange) != 0) { |
| if (!(s->options & SSL_OP_TLS_D5_BUG)) { |
| al = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_TLS_RSA_ENCRYPTED_VALUE_LENGTH_IS_WRONG); |
| goto f_err; |
| } else { |
| encrypted_premaster_secret = copy; |
| } |
| } |
| } else { |
| encrypted_premaster_secret = client_key_exchange; |
| } |
| |
| /* Reject overly short RSA keys because we want to be sure that the buffer |
| * size makes it safe to iterate over the entire size of a premaster secret |
| * (SSL_MAX_MASTER_KEY_LENGTH). The actual expected size is larger due to |
| * RSA padding, but the bound is sufficient to be safe. */ |
| rsa_size = RSA_size(rsa); |
| if (rsa_size < SSL_MAX_MASTER_KEY_LENGTH) { |
| al = SSL_AD_DECRYPT_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED); |
| goto f_err; |
| } |
| |
| /* We must not leak whether a decryption failure occurs because of |
| * Bleichenbacher's attack on PKCS #1 v1.5 RSA padding (see RFC 2246, |
| * section 7.4.7.1). The code follows that advice of the TLS RFC and |
| * generates a random premaster secret for the case that the decrypt fails. |
| * See https://tools.ietf.org/html/rfc5246#section-7.4.7.1 */ |
| if (!RAND_bytes(rand_premaster_secret, sizeof(rand_premaster_secret))) { |
| goto err; |
| } |
| |
| /* Allocate a buffer large enough for an RSA decryption. */ |
| decrypt_buf = OPENSSL_malloc(rsa_size); |
| if (decrypt_buf == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* Decrypt with no padding. PKCS#1 padding will be removed as part of the |
| * timing-sensitive code below. */ |
| if (!RSA_decrypt(rsa, &decrypt_len, decrypt_buf, rsa_size, |
| CBS_data(&encrypted_premaster_secret), |
| CBS_len(&encrypted_premaster_secret), RSA_NO_PADDING)) { |
| goto err; |
| } |
| if (decrypt_len != rsa_size) { |
| /* This should never happen, but do a check so we do not read |
| * uninitialized memory. */ |
| OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| /* Remove the PKCS#1 padding and adjust |decrypt_len| as appropriate. |
| * |good| will be 0xff if the premaster is acceptable and zero otherwise. |
| * */ |
| good = |
| constant_time_eq_int_8(RSA_message_index_PKCS1_type_2( |
| decrypt_buf, decrypt_len, &premaster_index), |
| 1); |
| decrypt_len = decrypt_len - premaster_index; |
| |
| /* decrypt_len should be SSL_MAX_MASTER_KEY_LENGTH. */ |
| good &= constant_time_eq_8(decrypt_len, SSL_MAX_MASTER_KEY_LENGTH); |
| |
| /* Copy over the unpadded premaster. Whatever the value of |
| * |decrypt_good_mask|, copy as if the premaster were the right length. It |
| * is important the memory access pattern be constant. */ |
| premaster_secret = |
| BUF_memdup(decrypt_buf + (rsa_size - SSL_MAX_MASTER_KEY_LENGTH), |
| SSL_MAX_MASTER_KEY_LENGTH); |
| if (premaster_secret == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| OPENSSL_free(decrypt_buf); |
| decrypt_buf = NULL; |
| |
| /* If the version in the decrypted pre-master secret is correct then |
| * version_good will be 0xff, otherwise it'll be zero. The |
| * Klima-Pokorny-Rosa extension of Bleichenbacher's attack |
| * (http://eprint.iacr.org/2003/052/) exploits the version number check as |
| * a "bad version oracle". Thus version checks are done in constant time |
| * and are treated like any other decryption error. */ |
| good &= constant_time_eq_8(premaster_secret[0], |
| (unsigned)(s->client_version >> 8)); |
| good &= constant_time_eq_8(premaster_secret[1], |
| (unsigned)(s->client_version & 0xff)); |
| |
| /* Now copy rand_premaster_secret over premaster_secret using |
| * decrypt_good_mask. */ |
| for (j = 0; j < sizeof(rand_premaster_secret); j++) { |
| premaster_secret[j] = constant_time_select_8(good, premaster_secret[j], |
| rand_premaster_secret[j]); |
| } |
| |
| premaster_secret_len = sizeof(rand_premaster_secret); |
| } else if (alg_k & SSL_kDHE) { |
| CBS dh_Yc; |
| int dh_len; |
| |
| if (!CBS_get_u16_length_prefixed(&client_key_exchange, &dh_Yc) || |
| CBS_len(&dh_Yc) == 0 || CBS_len(&client_key_exchange) != 0) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DH_PUBLIC_VALUE_LENGTH_IS_WRONG); |
| al = SSL_R_DECODE_ERROR; |
| goto f_err; |
| } |
| |
| if (s->s3->tmp.dh == NULL) { |
| al = SSL_AD_HANDSHAKE_FAILURE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_TMP_DH_KEY); |
| goto f_err; |
| } |
| dh_srvr = s->s3->tmp.dh; |
| |
| pub = BN_bin2bn(CBS_data(&dh_Yc), CBS_len(&dh_Yc), NULL); |
| if (pub == NULL) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BN_LIB); |
| goto err; |
| } |
| |
| /* Allocate a buffer for the premaster secret. */ |
| premaster_secret = OPENSSL_malloc(DH_size(dh_srvr)); |
| if (premaster_secret == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| BN_clear_free(pub); |
| goto err; |
| } |
| |
| dh_len = DH_compute_key(premaster_secret, pub, dh_srvr); |
| if (dh_len <= 0) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_DH_LIB); |
| BN_clear_free(pub); |
| goto err; |
| } |
| |
| DH_free(s->s3->tmp.dh); |
| s->s3->tmp.dh = NULL; |
| BN_clear_free(pub); |
| pub = NULL; |
| |
| premaster_secret_len = dh_len; |
| } else if (alg_k & SSL_kECDHE) { |
| int field_size = 0, ecdh_len; |
| const EC_KEY *tkey; |
| const EC_GROUP *group; |
| const BIGNUM *priv_key; |
| CBS ecdh_Yc; |
| |
| /* initialize structures for server's ECDH key pair */ |
| srvr_ecdh = EC_KEY_new(); |
| if (srvr_ecdh == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* Use the ephermeral values we saved when generating the ServerKeyExchange |
| * msg. */ |
| tkey = s->s3->tmp.ecdh; |
| |
| group = EC_KEY_get0_group(tkey); |
| priv_key = EC_KEY_get0_private_key(tkey); |
| |
| if (!EC_KEY_set_group(srvr_ecdh, group) || |
| !EC_KEY_set_private_key(srvr_ecdh, priv_key)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_EC_LIB); |
| goto err; |
| } |
| |
| /* Let's get client's public key */ |
| clnt_ecpoint = EC_POINT_new(group); |
| if (clnt_ecpoint == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* Get client's public key from encoded point in the ClientKeyExchange |
| * message. */ |
| if (!CBS_get_u8_length_prefixed(&client_key_exchange, &ecdh_Yc) || |
| CBS_len(&client_key_exchange) != 0) { |
| al = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| goto f_err; |
| } |
| |
| bn_ctx = BN_CTX_new(); |
| if (bn_ctx == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| if (!EC_POINT_oct2point(group, clnt_ecpoint, CBS_data(&ecdh_Yc), |
| CBS_len(&ecdh_Yc), bn_ctx)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_EC_LIB); |
| goto err; |
| } |
| |
| /* Allocate a buffer for both the secret and the PSK. */ |
| field_size = EC_GROUP_get_degree(group); |
| if (field_size <= 0) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ECDH_LIB); |
| goto err; |
| } |
| |
| ecdh_len = (field_size + 7) / 8; |
| premaster_secret = OPENSSL_malloc(ecdh_len); |
| if (premaster_secret == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* Compute the shared pre-master secret */ |
| ecdh_len = ECDH_compute_key(premaster_secret, ecdh_len, clnt_ecpoint, |
| srvr_ecdh, NULL); |
| if (ecdh_len <= 0) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ECDH_LIB); |
| goto err; |
| } |
| |
| EVP_PKEY_free(clnt_pub_pkey); |
| clnt_pub_pkey = NULL; |
| EC_POINT_free(clnt_ecpoint); |
| clnt_ecpoint = NULL; |
| EC_KEY_free(srvr_ecdh); |
| srvr_ecdh = NULL; |
| BN_CTX_free(bn_ctx); |
| bn_ctx = NULL; |
| EC_KEY_free(s->s3->tmp.ecdh); |
| s->s3->tmp.ecdh = NULL; |
| |
| premaster_secret_len = ecdh_len; |
| } else if (alg_k & SSL_kPSK) { |
| /* For plain PSK, other_secret is a block of 0s with the same length as the |
| * pre-shared key. */ |
| premaster_secret_len = psk_len; |
| premaster_secret = OPENSSL_malloc(premaster_secret_len); |
| if (premaster_secret == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| memset(premaster_secret, 0, premaster_secret_len); |
| } else { |
| al = SSL_AD_HANDSHAKE_FAILURE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CIPHER_TYPE); |
| goto f_err; |
| } |
| |
| /* For a PSK cipher suite, the actual pre-master secret is combined with the |
| * pre-shared key. */ |
| if (alg_a & SSL_aPSK) { |
| CBB new_premaster, child; |
| uint8_t *new_data; |
| size_t new_len; |
| |
| CBB_zero(&new_premaster); |
| if (!CBB_init(&new_premaster, 2 + psk_len + 2 + premaster_secret_len) || |
| !CBB_add_u16_length_prefixed(&new_premaster, &child) || |
| !CBB_add_bytes(&child, premaster_secret, premaster_secret_len) || |
| !CBB_add_u16_length_prefixed(&new_premaster, &child) || |
| !CBB_add_bytes(&child, psk, psk_len) || |
| !CBB_finish(&new_premaster, &new_data, &new_len)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| CBB_cleanup(&new_premaster); |
| goto err; |
| } |
| |
| OPENSSL_cleanse(premaster_secret, premaster_secret_len); |
| OPENSSL_free(premaster_secret); |
| premaster_secret = new_data; |
| premaster_secret_len = new_len; |
| } |
| |
| /* Compute the master secret */ |
| s->session->master_key_length = s->enc_method->generate_master_secret( |
| s, s->session->master_key, premaster_secret, premaster_secret_len); |
| if (s->session->master_key_length == 0) { |
| goto err; |
| } |
| s->session->extended_master_secret = s->s3->tmp.extended_master_secret; |
| |
| OPENSSL_cleanse(premaster_secret, premaster_secret_len); |
| OPENSSL_free(premaster_secret); |
| return 1; |
| |
| f_err: |
| ssl3_send_alert(s, SSL3_AL_FATAL, al); |
| err: |
| if (premaster_secret) { |
| if (premaster_secret_len) { |
| OPENSSL_cleanse(premaster_secret, premaster_secret_len); |
| } |
| OPENSSL_free(premaster_secret); |
| } |
| OPENSSL_free(decrypt_buf); |
| EVP_PKEY_free(clnt_pub_pkey); |
| EC_POINT_free(clnt_ecpoint); |
| EC_KEY_free(srvr_ecdh); |
| BN_CTX_free(bn_ctx); |
| |
| return -1; |
| } |
| |
| int ssl3_get_cert_verify(SSL *s) { |
| int al, ok, ret = 0; |
| long n; |
| CBS certificate_verify, signature; |
| X509 *peer = s->session->peer; |
| EVP_PKEY *pkey = NULL; |
| const EVP_MD *md = NULL; |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| size_t digest_length; |
| EVP_PKEY_CTX *pctx = NULL; |
| |
| /* Only RSA and ECDSA client certificates are supported, so a |
| * CertificateVerify is required if and only if there's a client certificate. |
| * */ |
| if (peer == NULL) { |
| ssl3_free_handshake_buffer(s); |
| return 1; |
| } |
| |
| n = s->method->ssl_get_message( |
| s, SSL3_ST_SR_CERT_VRFY_A, SSL3_ST_SR_CERT_VRFY_B, |
| SSL3_MT_CERTIFICATE_VERIFY, SSL3_RT_MAX_PLAIN_LENGTH, |
| ssl_dont_hash_message, &ok); |
| |
| if (!ok) { |
| return n; |
| } |
| |
| /* Filter out unsupported certificate types. */ |
| pkey = X509_get_pubkey(peer); |
| if (pkey == NULL) { |
| goto err; |
| } |
| if (!(X509_certificate_type(peer, pkey) & EVP_PKT_SIGN) || |
| (pkey->type != EVP_PKEY_RSA && pkey->type != EVP_PKEY_EC)) { |
| al = SSL_AD_UNSUPPORTED_CERTIFICATE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE); |
| goto f_err; |
| } |
| |
| CBS_init(&certificate_verify, s->init_msg, n); |
| |
| /* Determine the digest type if needbe. */ |
| if (SSL_USE_SIGALGS(s) && |
| !tls12_check_peer_sigalg(&md, &al, s, &certificate_verify, pkey)) { |
| goto f_err; |
| } |
| |
| /* Compute the digest. */ |
| if (!ssl3_cert_verify_hash(s, digest, &digest_length, &md, pkey->type)) { |
| goto err; |
| } |
| |
| /* The handshake buffer is no longer necessary, and we may hash the current |
| * message.*/ |
| ssl3_free_handshake_buffer(s); |
| if (!ssl3_hash_current_message(s)) { |
| goto err; |
| } |
| |
| /* Parse and verify the signature. */ |
| if (!CBS_get_u16_length_prefixed(&certificate_verify, &signature) || |
| CBS_len(&certificate_verify) != 0) { |
| al = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| goto f_err; |
| } |
| |
| pctx = EVP_PKEY_CTX_new(pkey, NULL); |
| if (pctx == NULL) { |
| goto err; |
| } |
| if (!EVP_PKEY_verify_init(pctx) || |
| !EVP_PKEY_CTX_set_signature_md(pctx, md) || |
| !EVP_PKEY_verify(pctx, CBS_data(&signature), CBS_len(&signature), digest, |
| digest_length)) { |
| al = SSL_AD_DECRYPT_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE); |
| goto f_err; |
| } |
| |
| ret = 1; |
| |
| if (0) { |
| f_err: |
| ssl3_send_alert(s, SSL3_AL_FATAL, al); |
| } |
| |
| err: |
| EVP_PKEY_CTX_free(pctx); |
| EVP_PKEY_free(pkey); |
| |
| return ret; |
| } |
| |
| int ssl3_get_client_certificate(SSL *s) { |
| int i, ok, al, ret = -1; |
| X509 *x = NULL; |
| unsigned long n; |
| STACK_OF(X509) *sk = NULL; |
| SHA256_CTX sha256; |
| CBS certificate_msg, certificate_list; |
| int is_first_certificate = 1; |
| |
| n = s->method->ssl_get_message(s, SSL3_ST_SR_CERT_A, SSL3_ST_SR_CERT_B, -1, |
| (long)s->max_cert_list, ssl_hash_message, &ok); |
| |
| if (!ok) { |
| return n; |
| } |
| |
| if (s->s3->tmp.message_type == SSL3_MT_CLIENT_KEY_EXCHANGE) { |
| if ((s->verify_mode & SSL_VERIFY_PEER) && |
| (s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE); |
| al = SSL_AD_HANDSHAKE_FAILURE; |
| goto f_err; |
| } |
| |
| /* If tls asked for a client cert, the client must return a 0 list */ |
| if (s->version > SSL3_VERSION && s->s3->tmp.cert_request) { |
| OPENSSL_PUT_ERROR(SSL, |
| SSL_R_TLS_PEER_DID_NOT_RESPOND_WITH_CERTIFICATE_LIST); |
| al = SSL_AD_UNEXPECTED_MESSAGE; |
| goto f_err; |
| } |
| s->s3->tmp.reuse_message = 1; |
| |
| return 1; |
| } |
| |
| if (s->s3->tmp.message_type != SSL3_MT_CERTIFICATE) { |
| al = SSL_AD_UNEXPECTED_MESSAGE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_MESSAGE_TYPE); |
| goto f_err; |
| } |
| |
| CBS_init(&certificate_msg, s->init_msg, n); |
| |
| sk = sk_X509_new_null(); |
| if (sk == NULL) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| if (!CBS_get_u24_length_prefixed(&certificate_msg, &certificate_list) || |
| CBS_len(&certificate_msg) != 0) { |
| al = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| goto f_err; |
| } |
| |
| while (CBS_len(&certificate_list) > 0) { |
| CBS certificate; |
| const uint8_t *data; |
| |
| if (!CBS_get_u24_length_prefixed(&certificate_list, &certificate)) { |
| al = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); |
| goto f_err; |
| } |
| |
| if (is_first_certificate && s->ctx->retain_only_sha256_of_client_certs) { |
| /* If this is the first certificate, and we don't want to keep peer |
| * certificates in memory, then we hash it right away. */ |
| SHA256_Init(&sha256); |
| SHA256_Update(&sha256, CBS_data(&certificate), CBS_len(&certificate)); |
| SHA256_Final(s->session->peer_sha256, &sha256); |
| s->session->peer_sha256_valid = 1; |
| } |
| is_first_certificate = 0; |
| |
| data = CBS_data(&certificate); |
| x = d2i_X509(NULL, &data, CBS_len(&certificate)); |
| if (x == NULL) { |
| al = SSL_AD_BAD_CERTIFICATE; |
| OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB); |
| goto f_err; |
| } |
| if (data != CBS_data(&certificate) + CBS_len(&certificate)) { |
| al = SSL_AD_DECODE_ERROR; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_LENGTH_MISMATCH); |
| goto f_err; |
| } |
| if (!sk_X509_push(sk, x)) { |
| OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| x = NULL; |
| } |
| |
| if (sk_X509_num(sk) <= 0) { |
| /* No client certificate so the handshake buffer may be discarded. */ |
| ssl3_free_handshake_buffer(s); |
| |
| /* TLS does not mind 0 certs returned */ |
| if (s->version == SSL3_VERSION) { |
| al = SSL_AD_HANDSHAKE_FAILURE; |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATES_RETURNED); |
| goto f_err; |
| } else if ((s->verify_mode & SSL_VERIFY_PEER) && |
| (s->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT)) { |
| /* Fail for TLS only if we required a certificate */ |
| OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE); |
| al = SSL_AD_HANDSHAKE_FAILURE; |
| goto f_err; |
| } |
| } else { |
| i = ssl_verify_cert_chain(s, sk); |
| if (i <= 0) { |
| al = ssl_verify_alarm_type(s->verify_result); |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CERTIFICATE_VERIFY_FAILED); |
| goto f_err; |
| } |
| } |
| |
| X509_free(s->session->peer); |
| s->session->peer = sk_X509_shift(sk); |
| s->session->verify_result = s->verify_result; |
| |
| sk_X509_pop_free(s->session->cert_chain, X509_free); |
| s->session->cert_chain = sk; |
| /* Inconsistency alert: cert_chain does *not* include the peer's own |
| * certificate, while we do include it in s3_clnt.c */ |
| |
| sk = NULL; |
| |
| ret = 1; |
| |
| if (0) { |
| f_err: |
| ssl3_send_alert(s, SSL3_AL_FATAL, al); |
| } |
| |
| err: |
| X509_free(x); |
| sk_X509_pop_free(sk, X509_free); |
| return ret; |
| } |
| |
| int ssl3_send_server_certificate(SSL *s) { |
| if (s->state == SSL3_ST_SW_CERT_A) { |
| if (!ssl3_output_cert_chain(s)) { |
| return 0; |
| } |
| s->state = SSL3_ST_SW_CERT_B; |
| } |
| |
| /* SSL3_ST_SW_CERT_B */ |
| return ssl_do_write(s); |
| } |
| |
| /* send a new session ticket (not necessarily for a new session) */ |
| int ssl3_send_new_session_ticket(SSL *s) { |
| int ret = -1; |
| uint8_t *session = NULL; |
| size_t session_len; |
| EVP_CIPHER_CTX ctx; |
| HMAC_CTX hctx; |
| |
| EVP_CIPHER_CTX_init(&ctx); |
| HMAC_CTX_init(&hctx); |
| |
| if (s->state == SSL3_ST_SW_SESSION_TICKET_A) { |
| uint8_t *p, *macstart; |
| int len; |
| unsigned int hlen; |
| SSL_CTX *tctx = s->initial_ctx; |
| uint8_t iv[EVP_MAX_IV_LENGTH]; |
| uint8_t key_name[16]; |
| /* The maximum overhead of encrypting the session is 16 (key name) + IV + |
| * one block of encryption overhead + HMAC. */ |
| const size_t max_ticket_overhead = |
| 16 + EVP_MAX_IV_LENGTH + EVP_MAX_BLOCK_LENGTH + EVP_MAX_MD_SIZE; |
| |
| /* Serialize the SSL_SESSION to be encoded into the ticket. */ |
| if (!SSL_SESSION_to_bytes_for_ticket(s->session, &session, &session_len)) { |
| goto err; |
| } |
| |
| /* If the session is too long, emit a dummy value rather than abort the |
| * connection. */ |
| if (session_len > 0xFFFF - max_ticket_overhead) { |
| static const char kTicketPlaceholder[] = "TICKET TOO LARGE"; |
| const size_t placeholder_len = strlen(kTicketPlaceholder); |
| |
| OPENSSL_free(session); |
| session = NULL; |
| |
| p = ssl_handshake_start(s); |
| /* Emit ticket_lifetime_hint. */ |
| l2n(0, p); |
| /* Emit ticket. */ |
| s2n(placeholder_len, p); |
| memcpy(p, kTicketPlaceholder, placeholder_len); |
| p += placeholder_len; |
| |
| len = p - ssl_handshake_start(s); |
| if (!ssl_set_handshake_header(s, SSL3_MT_NEWSESSION_TICKET, len)) { |
| goto err; |
| } |
| s->state = SSL3_ST_SW_SESSION_TICKET_B; |
| return ssl_do_write(s); |
| } |
| |
| /* Grow buffer if need be: the length calculation is as follows: |
| * handshake_header_length + 4 (ticket lifetime hint) + 2 (ticket length) + |
| * max_ticket_overhead + * session_length */ |
| if (!BUF_MEM_grow(s->init_buf, SSL_HM_HEADER_LENGTH(s) + 6 + |
| max_ticket_overhead + session_len)) { |
| goto err; |
| } |
| p = ssl_handshake_start(s); |
| /* Initialize HMAC and cipher contexts. If callback present it does all the |
| * work otherwise use generated values from parent ctx. */ |
| if (tctx->tlsext_ticket_key_cb) { |
| if (tctx->tlsext_ticket_key_cb(s, key_name, iv, &ctx, &hctx, |
| 1 /* encrypt */) < 0) { |
| goto err; |
| } |
| } else { |
| if (!RAND_bytes(iv, 16) || |
| !EVP_EncryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL, |
| tctx->tlsext_tick_aes_key, iv) || |
| !HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16, tlsext_tick_md(), |
| NULL)) { |
| goto err; |
| } |
| memcpy(key_name, tctx->tlsext_tick_key_name, 16); |
| } |
| |
| /* Ticket lifetime hint (advisory only): We leave this unspecified for |
| * resumed session (for simplicity), and guess that tickets for new |
| * sessions will live as long as their sessions. */ |
| l2n(s->hit ? 0 : s->session->timeout, p); |
| |
| /* Skip ticket length for now */ |
| p += 2; |
| /* Output key name */ |
| macstart = p; |
| memcpy(p, key_name, 16); |
| p += 16; |
| /* output IV */ |
| memcpy(p, iv, EVP_CIPHER_CTX_iv_length(&ctx)); |
| p += EVP_CIPHER_CTX_iv_length(&ctx); |
| /* Encrypt session data */ |
| if (!EVP_EncryptUpdate(&ctx, p, &len, session, session_len)) { |
| goto err; |
| } |
| p += len; |
| if (!EVP_EncryptFinal_ex(&ctx, p, &len)) { |
| goto err; |
| } |
| p += len; |
| |
| if (!HMAC_Update(&hctx, macstart, p - macstart) || |
| !HMAC_Final(&hctx, p, &hlen)) { |
| goto err; |
| } |
| |
| p += hlen; |
| /* Now write out lengths: p points to end of data written */ |
| /* Total length */ |
| len = p - ssl_handshake_start(s); |
| /* Skip ticket lifetime hint */ |
| p = ssl_handshake_start(s) + 4; |
| s2n(len - 6, p); |
| if (!ssl_set_handshake_header(s, SSL3_MT_NEWSESSION_TICKET, len)) { |
| goto err; |
| } |
| s->state = SSL3_ST_SW_SESSION_TICKET_B; |
| } |
| |
| /* SSL3_ST_SW_SESSION_TICKET_B */ |
| ret = ssl_do_write(s); |
| |
| err: |
| OPENSSL_free(session); |
| EVP_CIPHER_CTX_cleanup(&ctx); |
| HMAC_CTX_cleanup(&hctx); |
| return ret; |
| } |
| |
| /* ssl3_get_next_proto reads a Next Protocol Negotiation handshake message. It |
| * sets the next_proto member in s if found */ |
| int ssl3_get_next_proto(SSL *s) { |
| int ok; |
| long n; |
| CBS next_protocol, selected_protocol, padding; |
| |
| /* Clients cannot send a NextProtocol message if we didn't see the extension |
| * in their ClientHello */ |
| if (!s->s3->next_proto_neg_seen) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_GOT_NEXT_PROTO_WITHOUT_EXTENSION); |
| return -1; |
| } |
| |
| n = s->method->ssl_get_message(s, SSL3_ST_SR_NEXT_PROTO_A, |
| SSL3_ST_SR_NEXT_PROTO_B, SSL3_MT_NEXT_PROTO, |
| 514, /* See the payload format below */ |
| ssl_hash_message, &ok); |
| |
| if (!ok) { |
| return n; |
| } |
| |
| /* s->state doesn't reflect whether ChangeCipherSpec has been received in |
| * this handshake, but s->s3->change_cipher_spec does (will be reset by |
| * ssl3_get_finished). |
| * |
| * TODO(davidben): Is this check now redundant with |
| * SSL3_FLAGS_EXPECT_CCS? */ |
| if (!s->s3->change_cipher_spec) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_GOT_NEXT_PROTO_BEFORE_A_CCS); |
| return -1; |
| } |
| |
| CBS_init(&next_protocol, s->init_msg, n); |
| |
| /* The payload looks like: |
| * uint8 proto_len; |
| * uint8 proto[proto_len]; |
| * uint8 padding_len; |
| * uint8 padding[padding_len]; */ |
| if (!CBS_get_u8_length_prefixed(&next_protocol, &selected_protocol) || |
| !CBS_get_u8_length_prefixed(&next_protocol, &padding) || |
| CBS_len(&next_protocol) != 0 || |
| !CBS_stow(&selected_protocol, &s->next_proto_negotiated, |
| &s->next_proto_negotiated_len)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* ssl3_get_channel_id reads and verifies a ClientID handshake message. */ |
| int ssl3_get_channel_id(SSL *s) { |
| int ret = -1, ok; |
| long n; |
| uint8_t channel_id_hash[EVP_MAX_MD_SIZE]; |
| size_t channel_id_hash_len; |
| const uint8_t *p; |
| uint16_t extension_type; |
| EC_GROUP *p256 = NULL; |
| EC_KEY *key = NULL; |
| EC_POINT *point = NULL; |
| ECDSA_SIG sig; |
| BIGNUM x, y; |
| CBS encrypted_extensions, extension; |
| |
| n = s->method->ssl_get_message( |
| s, SSL3_ST_SR_CHANNEL_ID_A, SSL3_ST_SR_CHANNEL_ID_B, |
| SSL3_MT_ENCRYPTED_EXTENSIONS, 2 + 2 + TLSEXT_CHANNEL_ID_SIZE, |
| ssl_dont_hash_message, &ok); |
| |
| if (!ok) { |
| return n; |
| } |
| |
| /* Before incorporating the EncryptedExtensions message to the handshake |
| * hash, compute the hash that should have been signed. */ |
| if (!tls1_channel_id_hash(s, channel_id_hash, &channel_id_hash_len)) { |
| return -1; |
| } |
| assert(channel_id_hash_len == SHA256_DIGEST_LENGTH); |
| |
| if (!ssl3_hash_current_message(s)) { |
| return -1; |
| } |
| |
| /* s->state doesn't reflect whether ChangeCipherSpec has been received in |
| * this handshake, but s->s3->change_cipher_spec does (will be reset by |
| * ssl3_get_finished). |
| * |
| * TODO(davidben): Is this check now redundant with SSL3_FLAGS_EXPECT_CCS? */ |
| if (!s->s3->change_cipher_spec) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_GOT_CHANNEL_ID_BEFORE_A_CCS); |
| return -1; |
| } |
| |
| CBS_init(&encrypted_extensions, s->init_msg, n); |
| |
| /* EncryptedExtensions could include multiple extensions, but the only |
| * extension that could be negotiated is ChannelID, so there can only be one |
| * entry. |
| * |
| * The payload looks like: |
| * uint16 extension_type |
| * uint16 extension_len; |
| * uint8 x[32]; |
| * uint8 y[32]; |
| * uint8 r[32]; |
| * uint8 s[32]; */ |
| |
| if (!CBS_get_u16(&encrypted_extensions, &extension_type) || |
| !CBS_get_u16_length_prefixed(&encrypted_extensions, &extension) || |
| CBS_len(&encrypted_extensions) != 0 || |
| extension_type != TLSEXT_TYPE_channel_id || |
| CBS_len(&extension) != TLSEXT_CHANNEL_ID_SIZE) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_MESSAGE); |
| return -1; |
| } |
| |
| p256 = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1); |
| if (!p256) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_NO_P256_SUPPORT); |
| return -1; |
| } |
| |
| BN_init(&x); |
| BN_init(&y); |
| sig.r = BN_new(); |
| sig.s = BN_new(); |
| if (sig.r == NULL || sig.s == NULL) { |
| goto err; |
| } |
| |
| p = CBS_data(&extension); |
| if (BN_bin2bn(p + 0, 32, &x) == NULL || |
| BN_bin2bn(p + 32, 32, &y) == NULL || |
| BN_bin2bn(p + 64, 32, sig.r) == NULL || |
| BN_bin2bn(p + 96, 32, sig.s) == NULL) { |
| goto err; |
| } |
| |
| point = EC_POINT_new(p256); |
| if (!point || !EC_POINT_set_affine_coordinates_GFp(p256, point, &x, &y, NULL)) { |
| goto err; |
| } |
| |
| key = EC_KEY_new(); |
| if (!key || !EC_KEY_set_group(key, p256) || |
| !EC_KEY_set_public_key(key, point)) { |
| goto err; |
| } |
| |
| /* We stored the handshake hash in |tlsext_channel_id| the first time that we |
| * were called. */ |
| if (!ECDSA_do_verify(channel_id_hash, channel_id_hash_len, &sig, key)) { |
| OPENSSL_PUT_ERROR(SSL, SSL_R_CHANNEL_ID_SIGNATURE_INVALID); |
| s->s3->tlsext_channel_id_valid = 0; |
| goto err; |
| } |
| |
| memcpy(s->s3->tlsext_channel_id, p, 64); |
| ret = 1; |
| |
| err: |
| BN_free(&x); |
| BN_free(&y); |
| BN_free(sig.r); |
| BN_free(sig.s); |
| EC_KEY_free(key); |
| EC_POINT_free(point); |
| EC_GROUP_free(p256); |
| return ret; |
| } |