|  | // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/bn.h> | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/mem.h> | 
|  |  | 
|  | #include "internal.h" | 
|  | #include "rsaz_exp.h" | 
|  |  | 
|  | #if defined(OPENSSL_BN_ASM_MONT5) | 
|  |  | 
|  | // bn_mul_mont_gather5 multiples loads index |power| of |table|, multiplies it | 
|  | // by |ap| modulo |np|, and stores the result in |rp|. The values are |num| | 
|  | // words long and represented in Montgomery form. |n0| is a pointer to the | 
|  | // corresponding field in |BN_MONT_CTX|. |table| must be aligned to at least | 
|  | // 16 bytes. |power| must be less than 32 and is treated as secret. | 
|  | // | 
|  | // WARNING: This function implements Almost Montgomery Multiplication from | 
|  | // https://eprint.iacr.org/2011/239. The inputs do not need to be fully reduced. | 
|  | // However, even if they are fully reduced, the output may not be. | 
|  | static void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, | 
|  | const BN_ULONG *table, const BN_ULONG *np, | 
|  | const BN_ULONG *n0, int num, int power) { | 
|  | if (bn_mulx4x_mont_gather5_capable(num)) { | 
|  | bn_mulx4x_mont_gather5(rp, ap, table, np, n0, num, power); | 
|  | } else if (bn_mul4x_mont_gather5_capable(num)) { | 
|  | bn_mul4x_mont_gather5(rp, ap, table, np, n0, num, power); | 
|  | } else { | 
|  | bn_mul_mont_gather5_nohw(rp, ap, table, np, n0, num, power); | 
|  | } | 
|  | } | 
|  |  | 
|  | // bn_power5 squares |ap| five times and multiplies it by the value stored at | 
|  | // index |power| of |table|, modulo |np|. It stores the result in |rp|. The | 
|  | // values are |num| words long and represented in Montgomery form. |n0| is a | 
|  | // pointer to the corresponding field in |BN_MONT_CTX|. |num| must be divisible | 
|  | // by 8. |power| must be less than 32 and is treated as secret. | 
|  | // | 
|  | // WARNING: This function implements Almost Montgomery Multiplication from | 
|  | // https://eprint.iacr.org/2011/239. The inputs do not need to be fully reduced. | 
|  | // However, even if they are fully reduced, the output may not be. | 
|  | static void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *table, | 
|  | const BN_ULONG *np, const BN_ULONG *n0, int num, | 
|  | int power) { | 
|  | assert(bn_power5_capable(num)); | 
|  | if (bn_powerx5_capable(num)) { | 
|  | bn_powerx5(rp, ap, table, np, n0, num, power); | 
|  | } else { | 
|  | bn_power5_nohw(rp, ap, table, np, n0, num, power); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // defined(OPENSSL_BN_ASM_MONT5) | 
|  |  | 
|  | // BN_window_bits_for_exponent_size returns sliding window size for mod_exp with | 
|  | // a |b| bit exponent. | 
|  | // | 
|  | // For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of | 
|  | // multiplications is a constant plus on average | 
|  | // | 
|  | //    2^(w-1) + (b-w)/(w+1); | 
|  | // | 
|  | // here 2^(w-1)  is for precomputing the table (we actually need entries only | 
|  | // for windows that have the lowest bit set), and (b-w)/(w+1)  is an | 
|  | // approximation for the expected number of w-bit windows, not counting the | 
|  | // first one. | 
|  | // | 
|  | // Thus we should use | 
|  | // | 
|  | //    w >= 6  if        b > 671 | 
|  | //     w = 5  if  671 > b > 239 | 
|  | //     w = 4  if  239 > b >  79 | 
|  | //     w = 3  if   79 > b >  23 | 
|  | //    w <= 2  if   23 > b | 
|  | // | 
|  | // (with draws in between).  Very small exponents are often selected | 
|  | // with low Hamming weight, so we use  w = 1  for b <= 23. | 
|  | static int BN_window_bits_for_exponent_size(size_t b) { | 
|  | if (b > 671) { | 
|  | return 6; | 
|  | } | 
|  | if (b > 239) { | 
|  | return 5; | 
|  | } | 
|  | if (b > 79) { | 
|  | return 4; | 
|  | } | 
|  | if (b > 23) { | 
|  | return 3; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // TABLE_SIZE is the maximum precomputation table size for *variable* sliding | 
|  | // windows. This must be 2^(max_window - 1), where max_window is the largest | 
|  | // value returned from |BN_window_bits_for_exponent_size|. | 
|  | #define TABLE_SIZE 32 | 
|  |  | 
|  | // TABLE_BITS_SMALL is the smallest value returned from | 
|  | // |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| * | 
|  | // |BN_SMALL_MAX_WORDS| words. | 
|  | #define TABLE_BITS_SMALL 5 | 
|  |  | 
|  | // TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most | 
|  | // |BN_BITS2| * |BN_SMALL_MAX_WORDS|. | 
|  | #define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1)) | 
|  |  | 
|  | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | 
|  | const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) { | 
|  | if (!BN_is_odd(m)) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); | 
|  | return 0; | 
|  | } | 
|  | if (m->neg) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); | 
|  | return 0; | 
|  | } | 
|  | // |a| is secret, but |a < m| is not. | 
|  | if (a->neg || constant_time_declassify_int(BN_ucmp(a, m)) >= 0) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int bits = BN_num_bits(p); | 
|  | if (bits == 0) { | 
|  | // x**0 mod 1 is still zero. | 
|  | if (BN_abs_is_word(m, 1)) { | 
|  | BN_zero(rr); | 
|  | return 1; | 
|  | } | 
|  | return BN_one(rr); | 
|  | } | 
|  |  | 
|  | BIGNUM *val[TABLE_SIZE]; | 
|  |  | 
|  | bssl::BN_CTXScope scope(ctx); | 
|  | BIGNUM *r = BN_CTX_get(ctx); | 
|  | val[0] = BN_CTX_get(ctx); | 
|  | if (r == NULL || val[0] == NULL) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Allocate a montgomery context if it was not supplied by the caller. | 
|  | bssl::UniquePtr<BN_MONT_CTX> new_mont; | 
|  | if (mont == nullptr) { | 
|  | new_mont.reset(BN_MONT_CTX_new_consttime(m, ctx)); | 
|  | if (new_mont == nullptr) { | 
|  | return 0; | 
|  | } | 
|  | mont = new_mont.get(); | 
|  | } | 
|  |  | 
|  | // We exponentiate by looking at sliding windows of the exponent and | 
|  | // precomputing powers of |a|. Windows may be shifted so they always end on a | 
|  | // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) | 
|  | // for i = 0 to 2^(window-1), all in Montgomery form. | 
|  | int window = BN_window_bits_for_exponent_size(bits); | 
|  | if (!BN_to_montgomery(val[0], a, mont, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | if (window > 1) { | 
|  | BIGNUM *d = BN_CTX_get(ctx); | 
|  | if (d == NULL || !BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | for (int i = 1; i < 1 << (window - 1); i++) { | 
|  | val[i] = BN_CTX_get(ctx); | 
|  | if (val[i] == NULL || | 
|  | !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // |p| is non-zero, so at least one window is non-zero. To save some | 
|  | // multiplications, defer initializing |r| until then. | 
|  | int r_is_one = 1; | 
|  | int wstart = bits - 1;  // The top bit of the window. | 
|  | for (;;) { | 
|  | if (!BN_is_bit_set(p, wstart)) { | 
|  | if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | if (wstart == 0) { | 
|  | break; | 
|  | } | 
|  | wstart--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We now have wstart on a set bit. Find the largest window we can use. | 
|  | int wvalue = 1; | 
|  | int wsize = 0; | 
|  | for (int i = 1; i < window && i <= wstart; i++) { | 
|  | if (BN_is_bit_set(p, wstart - i)) { | 
|  | wvalue <<= (i - wsize); | 
|  | wvalue |= 1; | 
|  | wsize = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Shift |r| to the end of the window. | 
|  | if (!r_is_one) { | 
|  | for (int i = 0; i < wsize + 1; i++) { | 
|  | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(wvalue & 1); | 
|  | assert(wvalue < (1 << window)); | 
|  | if (r_is_one) { | 
|  | if (!BN_copy(r, val[wvalue >> 1])) { | 
|  | return 0; | 
|  | } | 
|  | } else if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | r_is_one = 0; | 
|  | if (wstart == wsize) { | 
|  | break; | 
|  | } | 
|  | wstart -= wsize + 1; | 
|  | } | 
|  |  | 
|  | // |p| is non-zero, so |r_is_one| must be cleared at some point. | 
|  | assert(!r_is_one); | 
|  |  | 
|  | return BN_from_montgomery(rr, r, mont, ctx); | 
|  | } | 
|  |  | 
|  | void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num, | 
|  | const BN_ULONG *p, size_t num_p, | 
|  | const BN_MONT_CTX *mont) { | 
|  | if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS || | 
|  | num_p > SIZE_MAX / BN_BITS2) { | 
|  | abort(); | 
|  | } | 
|  | assert(BN_is_odd(&mont->N)); | 
|  |  | 
|  | // Count the number of bits in |p|, skipping leading zeros. Note this function | 
|  | // treats |p| as public. | 
|  | while (num_p != 0 && p[num_p - 1] == 0) { | 
|  | num_p--; | 
|  | } | 
|  | if (num_p == 0) { | 
|  | bn_from_montgomery_small(r, num, mont->RR.d, num, mont); | 
|  | return; | 
|  | } | 
|  | size_t bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2; | 
|  | assert(bits != 0); | 
|  |  | 
|  | // We exponentiate by looking at sliding windows of the exponent and | 
|  | // precomputing powers of |a|. Windows may be shifted so they always end on a | 
|  | // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for | 
|  | // i = 0 to 2^(window-1), all in Montgomery form. | 
|  | unsigned window = BN_window_bits_for_exponent_size(bits); | 
|  | if (window > TABLE_BITS_SMALL) { | 
|  | window = TABLE_BITS_SMALL;  // Tolerate excessively large |p|. | 
|  | } | 
|  | BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS]; | 
|  | OPENSSL_memcpy(val[0], a, num * sizeof(BN_ULONG)); | 
|  | if (window > 1) { | 
|  | BN_ULONG d[BN_SMALL_MAX_WORDS]; | 
|  | bn_mod_mul_montgomery_small(d, val[0], val[0], num, mont); | 
|  | for (unsigned i = 1; i < 1u << (window - 1); i++) { | 
|  | bn_mod_mul_montgomery_small(val[i], val[i - 1], d, num, mont); | 
|  | } | 
|  | } | 
|  |  | 
|  | // |p| is non-zero, so at least one window is non-zero. To save some | 
|  | // multiplications, defer initializing |r| until then. | 
|  | int r_is_one = 1; | 
|  | size_t wstart = bits - 1;  // The top bit of the window. | 
|  | for (;;) { | 
|  | if (!bn_is_bit_set_words(p, num_p, wstart)) { | 
|  | if (!r_is_one) { | 
|  | bn_mod_mul_montgomery_small(r, r, r, num, mont); | 
|  | } | 
|  | if (wstart == 0) { | 
|  | break; | 
|  | } | 
|  | wstart--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // We now have wstart on a set bit. Find the largest window we can use. | 
|  | unsigned wvalue = 1; | 
|  | unsigned wsize = 0; | 
|  | for (unsigned i = 1; i < window && i <= wstart; i++) { | 
|  | if (bn_is_bit_set_words(p, num_p, wstart - i)) { | 
|  | wvalue <<= (i - wsize); | 
|  | wvalue |= 1; | 
|  | wsize = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Shift |r| to the end of the window. | 
|  | if (!r_is_one) { | 
|  | for (unsigned i = 0; i < wsize + 1; i++) { | 
|  | bn_mod_mul_montgomery_small(r, r, r, num, mont); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(wvalue & 1); | 
|  | assert(wvalue < (1u << window)); | 
|  | if (r_is_one) { | 
|  | OPENSSL_memcpy(r, val[wvalue >> 1], num * sizeof(BN_ULONG)); | 
|  | } else { | 
|  | bn_mod_mul_montgomery_small(r, r, val[wvalue >> 1], num, mont); | 
|  | } | 
|  | r_is_one = 0; | 
|  | if (wstart == wsize) { | 
|  | break; | 
|  | } | 
|  | wstart -= wsize + 1; | 
|  | } | 
|  |  | 
|  | // |p| is non-zero, so |r_is_one| must be cleared at some point. | 
|  | assert(!r_is_one); | 
|  | OPENSSL_cleanse(val, sizeof(val)); | 
|  | } | 
|  |  | 
|  | void bn_mod_inverse0_prime_mont_small(BN_ULONG *r, const BN_ULONG *a, | 
|  | size_t num, const BN_MONT_CTX *mont) { | 
|  | if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS || num == 0) { | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | // Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime. | 
|  | BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS]; | 
|  | const BN_ULONG *p = mont->N.d; | 
|  | OPENSSL_memcpy(p_minus_two, p, num * sizeof(BN_ULONG)); | 
|  | if (p_minus_two[0] >= 2) { | 
|  | p_minus_two[0] -= 2; | 
|  | } else { | 
|  | p_minus_two[0] -= 2; | 
|  | for (size_t i = 1; i < num; i++) { | 
|  | if (p_minus_two[i]-- != 0) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bn_mod_exp_mont_small(r, a, num, p_minus_two, num, mont); | 
|  | } | 
|  |  | 
|  | static void copy_to_prebuf(const BIGNUM *b, int top, BN_ULONG *table, int idx, | 
|  | int window) { | 
|  | int ret = bn_copy_words(table + idx * top, top, b); | 
|  | assert(ret);  // |b| is guaranteed to fit. | 
|  | (void)ret; | 
|  | } | 
|  |  | 
|  | static int copy_from_prebuf(BIGNUM *b, int top, const BN_ULONG *table, int idx, | 
|  | int window) { | 
|  | if (!bn_wexpand(b, top)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | OPENSSL_memset(b->d, 0, sizeof(BN_ULONG) * top); | 
|  | const int width = 1 << window; | 
|  | for (int i = 0; i < width; i++, table += top) { | 
|  | // Use a value barrier to prevent Clang from adding a branch when |i != idx| | 
|  | // and making this copy not constant time. Clang is still allowed to learn | 
|  | // that |mask| is constant across the inner loop, so this won't inhibit any | 
|  | // vectorization it might do. | 
|  | BN_ULONG mask = value_barrier_w(constant_time_eq_int(i, idx)); | 
|  | for (int j = 0; j < top; j++) { | 
|  | b->d[j] |= table[j] & mask; | 
|  | } | 
|  | } | 
|  |  | 
|  | b->width = top; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Window sizes optimized for fixed window size modular exponentiation | 
|  | // algorithm (BN_mod_exp_mont_consttime). | 
|  | // | 
|  | // TODO(davidben): These window sizes were originally set for 64-byte cache | 
|  | // lines with a cache-line-dependent constant-time mitigation. They can probably | 
|  | // be revised now that our implementation is no longer cache-time-dependent. | 
|  | #define BN_window_bits_for_ctime_exponent_size(b) \ | 
|  | ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1) | 
|  | #define BN_MAX_MOD_EXP_CTIME_WINDOW (6) | 
|  |  | 
|  | // This variant of |BN_mod_exp_mont| uses fixed windows and fixed memory access | 
|  | // patterns to protect secret exponents (cf. the hyper-threading timing attacks | 
|  | // pointed out by Colin Percival, | 
|  | // http://www.daemonology.net/hyperthreading-considered-harmful/) | 
|  | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, | 
|  | const BIGNUM *m, BN_CTX *ctx, | 
|  | const BN_MONT_CTX *mont) { | 
|  | int i, ret = 0, wvalue; | 
|  |  | 
|  | void *powerbuf_free = NULL; | 
|  | size_t powerbuf_len = 0; | 
|  | BN_ULONG *powerbuf = NULL; | 
|  |  | 
|  | if (!BN_is_odd(m)) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); | 
|  | return 0; | 
|  | } | 
|  | if (m->neg) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); | 
|  | return 0; | 
|  | } | 
|  | // |a| is secret, but it is required to be in range, so these comparisons may | 
|  | // be leaked. | 
|  | if (a->neg || constant_time_declassify_int(BN_ucmp(a, m) >= 0)) { | 
|  | OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak | 
|  | // whether the top bits are zero. | 
|  | int max_bits = p->width * BN_BITS2; | 
|  | int bits = max_bits; | 
|  | if (bits == 0) { | 
|  | // x**0 mod 1 is still zero. | 
|  | if (BN_abs_is_word(m, 1)) { | 
|  | BN_zero(rr); | 
|  | return 1; | 
|  | } | 
|  | return BN_one(rr); | 
|  | } | 
|  |  | 
|  | // Allocate a montgomery context if it was not supplied by the caller. | 
|  | int top, num_powers, window; | 
|  | bssl::UniquePtr<BN_MONT_CTX> new_mont; | 
|  | if (mont == nullptr) { | 
|  | new_mont.reset(BN_MONT_CTX_new_consttime(m, ctx)); | 
|  | if (new_mont == nullptr) { | 
|  | goto err; | 
|  | } | 
|  | mont = new_mont.get(); | 
|  | } | 
|  |  | 
|  | // Use the width in |mont->N|, rather than the copy in |m|. The assembly | 
|  | // implementation assumes it can use |top| to size R. | 
|  | top = mont->N.width; | 
|  |  | 
|  | #if defined(OPENSSL_BN_ASM_MONT5) || defined(RSAZ_ENABLED) | 
|  | // Share one large stack-allocated buffer between the RSAZ and non-RSAZ code | 
|  | // paths. If we were to use separate static buffers for each then there is | 
|  | // some chance that both large buffers would be allocated on the stack, | 
|  | // causing the stack space requirement to be truly huge (~10KB). | 
|  | alignas(MOD_EXP_CTIME_ALIGN) BN_ULONG storage[MOD_EXP_CTIME_STORAGE_LEN]; | 
|  | #endif | 
|  | #if defined(RSAZ_ENABLED) | 
|  | // If the size of the operands allow it, perform the optimized RSAZ | 
|  | // exponentiation. For further information see crypto/fipsmodule/bn/rsaz_exp.c | 
|  | // and accompanying assembly modules. | 
|  | if (a->width == 16 && p->width == 16 && BN_num_bits(m) == 1024 && | 
|  | rsaz_avx2_preferred()) { | 
|  | if (!bn_wexpand(rr, 16)) { | 
|  | goto err; | 
|  | } | 
|  | RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0], | 
|  | storage); | 
|  | rr->width = 16; | 
|  | rr->neg = 0; | 
|  | ret = 1; | 
|  | goto err; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Get the window size to use with size of p. | 
|  | window = BN_window_bits_for_ctime_exponent_size(bits); | 
|  | assert(window <= BN_MAX_MOD_EXP_CTIME_WINDOW); | 
|  |  | 
|  | // Calculating |powerbuf_len| below cannot overflow because of the bound on | 
|  | // Montgomery reduction. | 
|  | assert((size_t)top <= BN_MONTGOMERY_MAX_WORDS); | 
|  | static_assert( | 
|  | BN_MONTGOMERY_MAX_WORDS <= | 
|  | INT_MAX / sizeof(BN_ULONG) / ((1 << BN_MAX_MOD_EXP_CTIME_WINDOW) + 3), | 
|  | "powerbuf_len may overflow"); | 
|  |  | 
|  | #if defined(OPENSSL_BN_ASM_MONT5) | 
|  | if (window >= 5) { | 
|  | window = 5;  // ~5% improvement for RSA2048 sign, and even for RSA4096 | 
|  | // Reserve space for the |mont->N| copy. | 
|  | powerbuf_len += top * sizeof(mont->N.d[0]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Allocate a buffer large enough to hold all of the pre-computed | 
|  | // powers of |am|, |am| itself, and |tmp|. | 
|  | num_powers = 1 << window; | 
|  | powerbuf_len += sizeof(m->d[0]) * top * (num_powers + 2); | 
|  |  | 
|  | #if defined(OPENSSL_BN_ASM_MONT5) | 
|  | if (powerbuf_len <= sizeof(storage)) { | 
|  | powerbuf = storage; | 
|  | } | 
|  | // |storage| is more than large enough to handle 1024-bit inputs. | 
|  | assert(powerbuf != NULL || top * BN_BITS2 > 1024); | 
|  | #endif | 
|  | if (powerbuf == NULL) { | 
|  | powerbuf_free = OPENSSL_malloc(powerbuf_len + MOD_EXP_CTIME_ALIGN); | 
|  | if (powerbuf_free == NULL) { | 
|  | goto err; | 
|  | } | 
|  | powerbuf = reinterpret_cast<BN_ULONG *>( | 
|  | align_pointer(powerbuf_free, MOD_EXP_CTIME_ALIGN)); | 
|  | } | 
|  | OPENSSL_memset(powerbuf, 0, powerbuf_len); | 
|  |  | 
|  | // Place |tmp| and |am| right after powers table. | 
|  | BIGNUM tmp, am; | 
|  | tmp.d = powerbuf + top * num_powers; | 
|  | am.d = tmp.d + top; | 
|  | tmp.width = am.width = 0; | 
|  | tmp.dmax = am.dmax = top; | 
|  | tmp.neg = am.neg = 0; | 
|  | tmp.flags = am.flags = BN_FLG_STATIC_DATA; | 
|  |  | 
|  | if (!bn_one_to_montgomery(&tmp, mont, ctx) || !bn_resize_words(&tmp, top)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // Prepare a^1 in the Montgomery domain. | 
|  | assert(!a->neg); | 
|  | declassify_assert(BN_ucmp(a, m) < 0); | 
|  | if (!BN_to_montgomery(&am, a, mont, ctx) || !bn_resize_words(&am, top)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | #if defined(OPENSSL_BN_ASM_MONT5) | 
|  | // This optimization uses ideas from https://eprint.iacr.org/2011/239, | 
|  | // specifically optimization of cache-timing attack countermeasures, | 
|  | // pre-computation optimization, and Almost Montgomery Multiplication. | 
|  | // | 
|  | // The paper discusses a 4-bit window to optimize 512-bit modular | 
|  | // exponentiation, used in RSA-1024 with CRT, but RSA-1024 is no longer | 
|  | // important. | 
|  | // | 
|  | // |bn_mul_mont_gather5| and |bn_power5| implement the "almost" reduction | 
|  | // variant, so the values here may not be fully reduced. They are bounded by R | 
|  | // (i.e. they fit in |top| words), not |m|. Additionally, we pass these | 
|  | // "almost" reduced inputs into |bn_mul_mont_words|, which implements the | 
|  | // normal reduction variant. Given those inputs, |bn_mul_mont_words| may not | 
|  | // give reduced output, but it will still produce "almost" reduced output. | 
|  | // | 
|  | // TODO(davidben): Using "almost" reduction complicates analysis of this code, | 
|  | // and its interaction with other parts of the project. Determine whether this | 
|  | // is actually necessary for performance. | 
|  | if (window == 5 && top > 1) { | 
|  | // Copy |mont->N| to improve cache locality. | 
|  | BN_ULONG *np = am.d + top; | 
|  | for (i = 0; i < top; i++) { | 
|  | np[i] = mont->N.d[i]; | 
|  | } | 
|  |  | 
|  | // Fill |powerbuf| with the first 32 powers of |am|. | 
|  | const BN_ULONG *n0 = mont->n0; | 
|  | bn_scatter5(tmp.d, top, powerbuf, 0); | 
|  | bn_scatter5(am.d, am.width, powerbuf, 1); | 
|  | bn_mul_mont_words(tmp.d, am.d, am.d, np, n0, top); | 
|  | bn_scatter5(tmp.d, top, powerbuf, 2); | 
|  |  | 
|  | // Square to compute powers of two. | 
|  | for (i = 4; i < 32; i *= 2) { | 
|  | bn_mul_mont_words(tmp.d, tmp.d, tmp.d, np, n0, top); | 
|  | bn_scatter5(tmp.d, top, powerbuf, i); | 
|  | } | 
|  | // Compute odd powers |i| based on |i - 1|, then all powers |i * 2^j|. | 
|  | for (i = 3; i < 32; i += 2) { | 
|  | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); | 
|  | bn_scatter5(tmp.d, top, powerbuf, i); | 
|  | for (int j = 2 * i; j < 32; j *= 2) { | 
|  | bn_mul_mont_words(tmp.d, tmp.d, tmp.d, np, n0, top); | 
|  | bn_scatter5(tmp.d, top, powerbuf, j); | 
|  | } | 
|  | } | 
|  |  | 
|  | bits--; | 
|  | for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) { | 
|  | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | 
|  | } | 
|  | bn_gather5(tmp.d, top, powerbuf, wvalue); | 
|  |  | 
|  | // At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit | 
|  | // that has not been read yet.) | 
|  | assert(bits >= -1 && (bits == -1 || bits % 5 == 4)); | 
|  |  | 
|  | // Scan the exponent one window at a time starting from the most | 
|  | // significant bits. | 
|  | if (!bn_power5_capable(top)) { | 
|  | while (bits >= 0) { | 
|  | for (wvalue = 0, i = 0; i < 5; i++, bits--) { | 
|  | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | 
|  | } | 
|  |  | 
|  | bn_mul_mont_words(tmp.d, tmp.d, tmp.d, np, n0, top); | 
|  | bn_mul_mont_words(tmp.d, tmp.d, tmp.d, np, n0, top); | 
|  | bn_mul_mont_words(tmp.d, tmp.d, tmp.d, np, n0, top); | 
|  | bn_mul_mont_words(tmp.d, tmp.d, tmp.d, np, n0, top); | 
|  | bn_mul_mont_words(tmp.d, tmp.d, tmp.d, np, n0, top); | 
|  | bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); | 
|  | } | 
|  | } else { | 
|  | const uint8_t *p_bytes = (const uint8_t *)p->d; | 
|  | assert(bits < max_bits); | 
|  | // |p = 0| has been handled as a special case, so |max_bits| is at least | 
|  | // one word. | 
|  | assert(max_bits >= 64); | 
|  |  | 
|  | // If the first bit to be read lands in the last byte, unroll the first | 
|  | // iteration to avoid reading past the bounds of |p->d|. (After the first | 
|  | // iteration, we are guaranteed to be past the last byte.) Note |bits| | 
|  | // here is the top bit, inclusive. | 
|  | if (bits - 4 >= max_bits - 8) { | 
|  | // Read five bits from |bits-4| through |bits|, inclusive. | 
|  | wvalue = p_bytes[p->width * BN_BYTES - 1]; | 
|  | wvalue >>= (bits - 4) & 7; | 
|  | wvalue &= 0x1f; | 
|  | bits -= 5; | 
|  | bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); | 
|  | } | 
|  | while (bits >= 0) { | 
|  | // Read five bits from |bits-4| through |bits|, inclusive. | 
|  | int first_bit = bits - 4; | 
|  | uint16_t val; | 
|  | OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val)); | 
|  | val >>= first_bit & 7; | 
|  | val &= 0x1f; | 
|  | bits -= 5; | 
|  | bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val); | 
|  | } | 
|  | } | 
|  | // The result is now in |tmp| in Montgomery form, but it may not be fully | 
|  | // reduced. This is within bounds for |BN_from_montgomery| (tmp < R <= m*R) | 
|  | // so it will, when converting from Montgomery form, produce a fully reduced | 
|  | // result. | 
|  | // | 
|  | // This differs from Figure 2 of the paper, which uses AMM(h, 1) to convert | 
|  | // from Montgomery form with unreduced output, followed by an extra | 
|  | // reduction step. In the paper's terminology, we replace steps 9 and 10 | 
|  | // with MM(h, 1). | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | copy_to_prebuf(&tmp, top, powerbuf, 0, window); | 
|  | copy_to_prebuf(&am, top, powerbuf, 1, window); | 
|  |  | 
|  | // If the window size is greater than 1, then calculate | 
|  | // val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) | 
|  | // (even powers could instead be computed as (a^(i/2))^2 | 
|  | // to use the slight performance advantage of sqr over mul). | 
|  | if (window > 1) { | 
|  | if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | copy_to_prebuf(&tmp, top, powerbuf, 2, window); | 
|  |  | 
|  | for (i = 3; i < num_powers; i++) { | 
|  | // Calculate a^i = a^(i-1) * a | 
|  | if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | copy_to_prebuf(&tmp, top, powerbuf, i, window); | 
|  | } | 
|  | } | 
|  |  | 
|  | bits--; | 
|  | for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) { | 
|  | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | 
|  | } | 
|  | if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // Scan the exponent one window at a time starting from the most | 
|  | // significant bits. | 
|  | while (bits >= 0) { | 
|  | wvalue = 0;  // The 'value' of the window | 
|  |  | 
|  | // Scan the window, squaring the result as we go | 
|  | for (i = 0; i < window; i++, bits--) { | 
|  | if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) { | 
|  | goto err; | 
|  | } | 
|  | wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); | 
|  | } | 
|  |  | 
|  | // Fetch the appropriate pre-computed value from the pre-buf | 
|  | if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) { | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | // Multiply the result into the intermediate result | 
|  | if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) { | 
|  | goto err; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Convert the final result from Montgomery to standard format. If we used the | 
|  | // |OPENSSL_BN_ASM_MONT5| codepath, |tmp| may not be fully reduced. It is only | 
|  | // bounded by R rather than |m|. However, that is still within bounds for | 
|  | // |BN_from_montgomery|, which implements full Montgomery reduction, not | 
|  | // "almost" Montgomery reduction. | 
|  | if (!BN_from_montgomery(rr, &tmp, mont, ctx)) { | 
|  | goto err; | 
|  | } | 
|  | ret = 1; | 
|  |  | 
|  | err: | 
|  | if (powerbuf != NULL && powerbuf_free == NULL) { | 
|  | OPENSSL_cleanse(powerbuf, powerbuf_len); | 
|  | } | 
|  | OPENSSL_free(powerbuf_free); | 
|  | return ret; | 
|  | } |