|  | // Copyright 2024 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #ifndef OPENSSL_HEADER_CRYPTO_FIPSMODULE_BCM_INTERFACE_H | 
|  | #define OPENSSL_HEADER_CRYPTO_FIPSMODULE_BCM_INTERFACE_H | 
|  |  | 
|  | // For the moment, we reach out for AES_KEY. | 
|  | #include <openssl/aes.h> | 
|  | #include <openssl/bcm_public.h> | 
|  |  | 
|  |  | 
|  | // This header will eventually become the interface between BCM and the | 
|  | // rest of libcrypto. More cleanly separating the two is still a work in | 
|  | // progress (see https://crbug.com/boringssl/722) so, at the moment, we | 
|  | // consider this no different from any other header in BCM. | 
|  | // | 
|  | // Over time, calls from libcrypto to BCM will all move to this header | 
|  | // and the separation will become more meaningful. | 
|  |  | 
|  | #if defined(__cplusplus) | 
|  | extern "C" { | 
|  | #endif | 
|  |  | 
|  | // Enumerated types for return values from bcm functions, both infallible | 
|  | // and fallible functions. Two success values are used to correspond to the | 
|  | // FIPS service indicator. For the moment, the official service indicator | 
|  | // remains the counter, not these values. Once we fully transition to | 
|  | // these return values from bcm we will change that. | 
|  | enum class bcm_infallible_t { | 
|  | approved, | 
|  | not_approved, | 
|  | }; | 
|  |  | 
|  | enum class bcm_status_t { | 
|  | approved, | 
|  | not_approved, | 
|  | failure, | 
|  | }; | 
|  | typedef enum bcm_status_t bcm_status; | 
|  | typedef enum bcm_infallible_t bcm_infallible; | 
|  |  | 
|  | inline int bcm_success(bcm_status status) { | 
|  | return status == bcm_status::approved || status == bcm_status::not_approved; | 
|  | } | 
|  |  | 
|  | inline bcm_status_t bcm_as_approved_status(int result) { | 
|  | return result ? bcm_status::approved : bcm_status::failure; | 
|  | } | 
|  |  | 
|  | inline bcm_status_t bcm_as_not_approved_status(int result) { | 
|  | return result ? bcm_status::not_approved : bcm_status::failure; | 
|  | } | 
|  |  | 
|  | // Random number generator. | 
|  |  | 
|  | #if defined(BORINGSSL_FIPS) | 
|  |  | 
|  | // We overread from /dev/urandom or RDRAND by a factor of 10 and XOR to whiten. | 
|  | // TODO(bbe): disentangle this value which is used to calculate the size of the | 
|  | // stack buffer in RAND_need entropy based on a calculation. | 
|  | #define BORINGSSL_FIPS_OVERREAD 10 | 
|  |  | 
|  | #endif  // BORINGSSL_FIPS | 
|  |  | 
|  | // BCM_rand_load_entropy supplies |entropy_len| bytes of entropy to the BCM | 
|  | // module. The |want_additional_input| parameter is true iff the entropy was | 
|  | // obtained from a source other than the system, e.g. directly from the CPU. | 
|  | bcm_infallible BCM_rand_load_entropy(const uint8_t *entropy, size_t entropy_len, | 
|  | int want_additional_input); | 
|  |  | 
|  | // BCM_rand_bytes is the same as the public |RAND_bytes| function, other | 
|  | // than returning a bcm_infallible status indicator. | 
|  | OPENSSL_EXPORT bcm_infallible BCM_rand_bytes(uint8_t *out, size_t out_len); | 
|  |  | 
|  | // BCM_rand_bytes_hwrng attempts to fill |out| with |len| bytes of entropy from | 
|  | // the CPU hardware random number generator if one is present. | 
|  | // bcm_status_approved is returned on success, and a failure status is | 
|  | // returned otherwise. | 
|  | bcm_status BCM_rand_bytes_hwrng(uint8_t *out, size_t len); | 
|  |  | 
|  | // BCM_rand_bytes_with_additional_data samples from the RNG after mixing 32 | 
|  | // bytes from |user_additional_data| in. | 
|  | bcm_infallible BCM_rand_bytes_with_additional_data( | 
|  | uint8_t *out, size_t out_len, const uint8_t user_additional_data[32]); | 
|  |  | 
|  |  | 
|  | // SHA-1 | 
|  |  | 
|  | // BCM_SHA_DIGEST_LENGTH is the length of a SHA-1 digest. | 
|  | #define BCM_SHA_DIGEST_LENGTH 20 | 
|  |  | 
|  | // BCM_sha1_init initialises |sha|. | 
|  | bcm_infallible BCM_sha1_init(SHA_CTX *sha); | 
|  |  | 
|  | // BCM_SHA1_transform is a low-level function that performs a single, SHA-1 | 
|  | // block transformation using the state from |sha| and |SHA_CBLOCK| bytes from | 
|  | // |block|. | 
|  | bcm_infallible BCM_sha1_transform(SHA_CTX *c, | 
|  | const uint8_t data[BCM_SHA_CBLOCK]); | 
|  |  | 
|  | // BCM_sha1_update adds |len| bytes from |data| to |sha|. | 
|  | bcm_infallible BCM_sha1_update(SHA_CTX *c, const void *data, size_t len); | 
|  |  | 
|  | // BCM_sha1_final adds the final padding to |sha| and writes the resulting | 
|  | // digest to |out|, which must have at least |SHA_DIGEST_LENGTH| bytes of space. | 
|  | bcm_infallible BCM_sha1_final(uint8_t out[BCM_SHA_DIGEST_LENGTH], SHA_CTX *c); | 
|  |  | 
|  |  | 
|  | // BCM_fips_186_2_prf derives |out_len| bytes from |xkey| using the PRF | 
|  | // defined in FIPS 186-2, Appendix 3.1, with change notice 1 applied. The b | 
|  | // parameter is 160 and seed, XKEY, is also 160 bits. The optional XSEED user | 
|  | // input is all zeros. | 
|  | // | 
|  | // The PRF generates a sequence of 320-bit numbers. Each number is encoded as a | 
|  | // 40-byte string in big-endian and then concatenated to form |out|. If | 
|  | // |out_len| is not a multiple of 40, the result is truncated. This matches the | 
|  | // construction used in Section 7 of RFC 4186 and Section 7 of RFC 4187. | 
|  | // | 
|  | // This PRF is based on SHA-1, a weak hash function, and should not be used | 
|  | // in new protocols. It is provided for compatibility with some legacy EAP | 
|  | // methods. | 
|  | bcm_infallible BCM_fips_186_2_prf(uint8_t *out, size_t out_len, | 
|  | const uint8_t xkey[BCM_SHA_DIGEST_LENGTH]); | 
|  |  | 
|  |  | 
|  | // SHA-224 | 
|  |  | 
|  | // SHA224_DIGEST_LENGTH is the length of a SHA-224 digest. | 
|  | #define BCM_SHA224_DIGEST_LENGTH 28 | 
|  |  | 
|  | // BCM_sha224_unit initialises |sha|. | 
|  | bcm_infallible BCM_sha224_init(SHA256_CTX *sha); | 
|  |  | 
|  | // BCM_sha224_update adds |len| bytes from |data| to |sha|. | 
|  | bcm_infallible BCM_sha224_update(SHA256_CTX *sha, const void *data, size_t len); | 
|  |  | 
|  | // BCM_sha224_final adds the final padding to |sha| and writes the resulting | 
|  | // digest to |out|, which must have at least |SHA224_DIGEST_LENGTH| bytes of | 
|  | // space. It aborts on programmer error. | 
|  | bcm_infallible BCM_sha224_final(uint8_t out[BCM_SHA224_DIGEST_LENGTH], | 
|  | SHA256_CTX *sha); | 
|  |  | 
|  |  | 
|  | // SHA-256 | 
|  |  | 
|  | // BCM_SHA256_DIGEST_LENGTH is the length of a SHA-256 digest. | 
|  | #define BCM_SHA256_DIGEST_LENGTH 32 | 
|  |  | 
|  | // BCM_sha256_init initialises |sha|. | 
|  | bcm_infallible BCM_sha256_init(SHA256_CTX *sha); | 
|  |  | 
|  | // BCM_sha256_update adds |len| bytes from |data| to |sha|. | 
|  | bcm_infallible BCM_sha256_update(SHA256_CTX *sha, const void *data, size_t len); | 
|  |  | 
|  | // BCM_sha256_final adds the final padding to |sha| and writes the resulting | 
|  | // digest to |out|, which must have at least |BCM_SHA256_DIGEST_LENGTH| bytes of | 
|  | // space. It aborts on programmer error. | 
|  | bcm_infallible BCM_sha256_final(uint8_t out[BCM_SHA256_DIGEST_LENGTH], | 
|  | SHA256_CTX *sha); | 
|  |  | 
|  | // BCM_sha256_transform is a low-level function that performs a single, SHA-256 | 
|  | // block transformation using the state from |sha| and |BCM_SHA256_CBLOCK| bytes | 
|  | // from |block|. | 
|  | bcm_infallible BCM_sha256_transform(SHA256_CTX *sha, | 
|  | const uint8_t block[BCM_SHA256_CBLOCK]); | 
|  |  | 
|  | // BCM_sha256_transform_blocks is a low-level function that takes |num_blocks| * | 
|  | // |BCM_SHA256_CBLOCK| bytes of data and performs SHA-256 transforms on it to | 
|  | // update |state|. | 
|  | bcm_infallible BCM_sha256_transform_blocks(uint32_t state[8], | 
|  | const uint8_t *data, | 
|  | size_t num_blocks); | 
|  |  | 
|  |  | 
|  | // SHA-384. | 
|  |  | 
|  | // BCM_SHA384_DIGEST_LENGTH is the length of a SHA-384 digest. | 
|  | #define BCM_SHA384_DIGEST_LENGTH 48 | 
|  |  | 
|  | // BCM_sha384_init initialises |sha|. | 
|  | bcm_infallible BCM_sha384_init(SHA512_CTX *sha); | 
|  |  | 
|  | // BCM_sha384_update adds |len| bytes from |data| to |sha|. | 
|  | bcm_infallible BCM_sha384_update(SHA512_CTX *sha, const void *data, size_t len); | 
|  |  | 
|  | // BCM_sha384_final adds the final padding to |sha| and writes the resulting | 
|  | // digest to |out|, which must have at least |BCM_sha384_DIGEST_LENGTH| bytes of | 
|  | // space. It may abort on programmer error. | 
|  | bcm_infallible BCM_sha384_final(uint8_t out[BCM_SHA384_DIGEST_LENGTH], | 
|  | SHA512_CTX *sha); | 
|  |  | 
|  |  | 
|  | // SHA-512. | 
|  |  | 
|  | // BCM_SHA512_DIGEST_LENGTH is the length of a SHA-512 digest. | 
|  | #define BCM_SHA512_DIGEST_LENGTH 64 | 
|  |  | 
|  | // BCM_sha512_init initialises |sha|. | 
|  | bcm_infallible BCM_sha512_init(SHA512_CTX *sha); | 
|  |  | 
|  | // BCM_sha512_update adds |len| bytes from |data| to |sha|. | 
|  | bcm_infallible BCM_sha512_update(SHA512_CTX *sha, const void *data, size_t len); | 
|  |  | 
|  | // BCM_sha512_final adds the final padding to |sha| and writes the resulting | 
|  | // digest to |out|, which must have at least |BCM_sha512_DIGEST_LENGTH| bytes of | 
|  | // space. | 
|  | bcm_infallible BCM_sha512_final(uint8_t out[BCM_SHA512_DIGEST_LENGTH], | 
|  | SHA512_CTX *sha); | 
|  |  | 
|  | // BCM_sha512_transform is a low-level function that performs a single, SHA-512 | 
|  | // block transformation using the state from |sha| and |BCM_sha512_CBLOCK| bytes | 
|  | // from |block|. | 
|  | bcm_infallible BCM_sha512_transform(SHA512_CTX *sha, | 
|  | const uint8_t block[BCM_SHA512_CBLOCK]); | 
|  |  | 
|  |  | 
|  | // SHA-512-256 | 
|  | // | 
|  | // See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf section 5.3.6 | 
|  |  | 
|  | #define BCM_SHA512_256_DIGEST_LENGTH 32 | 
|  |  | 
|  | // BCM_sha512_256_init initialises |sha|. | 
|  | bcm_infallible BCM_sha512_256_init(SHA512_CTX *sha); | 
|  |  | 
|  | // BCM_sha512_256_update adds |len| bytes from |data| to |sha|. | 
|  | bcm_infallible BCM_sha512_256_update(SHA512_CTX *sha, const void *data, | 
|  | size_t len); | 
|  |  | 
|  | // BCM_sha512_256_final adds the final padding to |sha| and writes the resulting | 
|  | // digest to |out|, which must have at least |BCM_sha512_256_DIGEST_LENGTH| | 
|  | // bytes of space. It may abort on programmer error. | 
|  | bcm_infallible BCM_sha512_256_final(uint8_t out[BCM_SHA512_256_DIGEST_LENGTH], | 
|  | SHA512_CTX *sha); | 
|  |  | 
|  |  | 
|  | // ML-DSA | 
|  | // | 
|  | // Where not commented, these functions have the same signature as the | 
|  | // corresponding public function. | 
|  |  | 
|  | // BCM_MLDSA_SIGNATURE_RANDOMIZER_BYTES is the number of bytes of uniformly | 
|  | // random entropy necessary to generate a signature in randomized mode. | 
|  | #define BCM_MLDSA_SIGNATURE_RANDOMIZER_BYTES 32 | 
|  |  | 
|  | // BCM_MLDSA_SEED_BYTES is the number of bytes in an ML-DSA seed value. | 
|  | #define BCM_MLDSA_SEED_BYTES 32 | 
|  |  | 
|  | // BCM_MLDSA_MU_BYTES is the number of bytes in an ML-DSA mu value. | 
|  | #define BCM_MLDSA_MU_BYTES 64 | 
|  |  | 
|  | // BCM_MLDSA65_PRIVATE_KEY_BYTES is the number of bytes in an encoded ML-DSA-65 | 
|  | // private key. | 
|  | #define BCM_MLDSA65_PRIVATE_KEY_BYTES 4032 | 
|  |  | 
|  | // BCM_MLDSA65_PUBLIC_KEY_BYTES is the number of bytes in an encoded ML-DSA-65 | 
|  | // public key. | 
|  | #define BCM_MLDSA65_PUBLIC_KEY_BYTES 1952 | 
|  |  | 
|  | // BCM_MLDSA65_SIGNATURE_BYTES is the number of bytes in an encoded ML-DSA-65 | 
|  | // signature. | 
|  | #define BCM_MLDSA65_SIGNATURE_BYTES 3309 | 
|  |  | 
|  | struct BCM_mldsa65_private_key { | 
|  | union { | 
|  | uint8_t bytes[32 + 32 + 64 + 256 * 4 * (5 + 6 + 6)]; | 
|  | uint32_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | struct BCM_mldsa65_public_key { | 
|  | union { | 
|  | uint8_t bytes[32 + 64 + 256 * 4 * 6]; | 
|  | uint32_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | struct BCM_mldsa65_prehash { | 
|  | union { | 
|  | uint8_t bytes[200 + 4 + 4 + 4 * sizeof(size_t)]; | 
|  | uint64_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_generate_key( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA65_PUBLIC_KEY_BYTES], | 
|  | uint8_t out_seed[BCM_MLDSA_SEED_BYTES], | 
|  | struct BCM_mldsa65_private_key *out_private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_private_key_from_seed( | 
|  | struct BCM_mldsa65_private_key *out_private_key, | 
|  | const uint8_t seed[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_public_from_private( | 
|  | struct BCM_mldsa65_public_key *out_public_key, | 
|  | const struct BCM_mldsa65_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status | 
|  | BCM_mldsa65_check_key_fips(struct BCM_mldsa65_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_generate_key_fips( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA65_PUBLIC_KEY_BYTES], | 
|  | uint8_t out_seed[BCM_MLDSA_SEED_BYTES], | 
|  | struct BCM_mldsa65_private_key *out_private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_private_key_from_seed_fips( | 
|  | struct BCM_mldsa65_private_key *out_private_key, | 
|  | const uint8_t seed[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_sign( | 
|  | uint8_t out_encoded_signature[BCM_MLDSA65_SIGNATURE_BYTES], | 
|  | const struct BCM_mldsa65_private_key *private_key, const uint8_t *msg, | 
|  | size_t msg_len, const uint8_t *context, size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_verify( | 
|  | const struct BCM_mldsa65_public_key *public_key, | 
|  | const uint8_t signature[BCM_MLDSA65_SIGNATURE_BYTES], const uint8_t *msg, | 
|  | size_t msg_len, const uint8_t *context, size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT void BCM_mldsa65_prehash_init( | 
|  | struct BCM_mldsa65_prehash *out_prehash_ctx, | 
|  | const struct BCM_mldsa65_public_key *public_key, const uint8_t *context, | 
|  | size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT void BCM_mldsa65_prehash_update( | 
|  | struct BCM_mldsa65_prehash *inout_prehash_ctx, const uint8_t *msg, | 
|  | size_t msg_len); | 
|  |  | 
|  | OPENSSL_EXPORT void BCM_mldsa65_prehash_finalize( | 
|  | uint8_t out_msg_rep[BCM_MLDSA_MU_BYTES], | 
|  | struct BCM_mldsa65_prehash *inout_prehash_ctx); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_sign_message_representative( | 
|  | uint8_t out_encoded_signature[BCM_MLDSA65_SIGNATURE_BYTES], | 
|  | const struct BCM_mldsa65_private_key *private_key, | 
|  | const uint8_t msg_rep[BCM_MLDSA_MU_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_marshal_public_key( | 
|  | CBB *out, const struct BCM_mldsa65_public_key *public_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_parse_public_key( | 
|  | struct BCM_mldsa65_public_key *public_key, CBS *in); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_parse_private_key( | 
|  | struct BCM_mldsa65_private_key *private_key, CBS *in); | 
|  |  | 
|  | // BCM_mldsa65_generate_key_external_entropy generates a public/private key pair | 
|  | // using the given seed, writes the encoded public key to | 
|  | // |out_encoded_public_key| and sets |out_private_key| to the private key. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_generate_key_external_entropy( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA65_PUBLIC_KEY_BYTES], | 
|  | struct BCM_mldsa65_private_key *out_private_key, | 
|  | const uint8_t entropy[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_generate_key_external_entropy_fips( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA65_PUBLIC_KEY_BYTES], | 
|  | struct BCM_mldsa65_private_key *out_private_key, | 
|  | const uint8_t entropy[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | // BCM_mldsa5_sign_internal signs |msg| using |private_key| and writes the | 
|  | // signature to |out_encoded_signature|. The |context_prefix| and |context| are | 
|  | // prefixed to the message, in that order, before signing. The |randomizer| | 
|  | // value can be set to zero bytes in order to make a deterministic signature, or | 
|  | // else filled with entropy for the usual |MLDSA_sign| behavior. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_sign_internal( | 
|  | uint8_t out_encoded_signature[BCM_MLDSA65_SIGNATURE_BYTES], | 
|  | const struct BCM_mldsa65_private_key *private_key, const uint8_t *msg, | 
|  | size_t msg_len, const uint8_t *context_prefix, size_t context_prefix_len, | 
|  | const uint8_t *context, size_t context_len, | 
|  | const uint8_t randomizer[BCM_MLDSA_SIGNATURE_RANDOMIZER_BYTES]); | 
|  |  | 
|  | // BCM_mldsa5_verify_internal verifies that |encoded_signature| is a valid | 
|  | // signature of |msg| by |public_key|. The |context_prefix| and |context| are | 
|  | // prefixed to the message before verification, in that order. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_verify_internal( | 
|  | const struct BCM_mldsa65_public_key *public_key, | 
|  | const uint8_t encoded_signature[BCM_MLDSA65_SIGNATURE_BYTES], | 
|  | const uint8_t *msg, size_t msg_len, const uint8_t *context_prefix, | 
|  | size_t context_prefix_len, const uint8_t *context, size_t context_len); | 
|  |  | 
|  | // BCM_mldsa65_marshal_private_key serializes |private_key| to |out| in the | 
|  | // NIST format for ML-DSA-65 private keys. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa65_marshal_private_key( | 
|  | CBB *out, const struct BCM_mldsa65_private_key *private_key); | 
|  |  | 
|  |  | 
|  | // BCM_MLDSA87_PRIVATE_KEY_BYTES is the number of bytes in an encoded ML-DSA-87 | 
|  | // private key. | 
|  | #define BCM_MLDSA87_PRIVATE_KEY_BYTES 4896 | 
|  |  | 
|  | // BCM_MLDSA87_PUBLIC_KEY_BYTES is the number of bytes in an encoded ML-DSA-87 | 
|  | // public key. | 
|  | #define BCM_MLDSA87_PUBLIC_KEY_BYTES 2592 | 
|  |  | 
|  | // BCM_MLDSA87_SIGNATURE_BYTES is the number of bytes in an encoded ML-DSA-87 | 
|  | // signature. | 
|  | #define BCM_MLDSA87_SIGNATURE_BYTES 4627 | 
|  |  | 
|  | struct BCM_mldsa87_private_key { | 
|  | union { | 
|  | uint8_t bytes[32 + 32 + 64 + 256 * 4 * (7 + 8 + 8)]; | 
|  | uint32_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | struct BCM_mldsa87_public_key { | 
|  | union { | 
|  | uint8_t bytes[32 + 64 + 256 * 4 * 8]; | 
|  | uint32_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | struct BCM_mldsa87_prehash { | 
|  | union { | 
|  | uint8_t bytes[200 + 4 + 4 + 4 * sizeof(size_t)]; | 
|  | uint64_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_generate_key( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA87_PUBLIC_KEY_BYTES], | 
|  | uint8_t out_seed[BCM_MLDSA_SEED_BYTES], | 
|  | struct BCM_mldsa87_private_key *out_private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_private_key_from_seed( | 
|  | struct BCM_mldsa87_private_key *out_private_key, | 
|  | const uint8_t seed[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_public_from_private( | 
|  | struct BCM_mldsa87_public_key *out_public_key, | 
|  | const struct BCM_mldsa87_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status | 
|  | BCM_mldsa87_check_key_fips(struct BCM_mldsa87_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_generate_key_fips( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA87_PUBLIC_KEY_BYTES], | 
|  | uint8_t out_seed[BCM_MLDSA_SEED_BYTES], | 
|  | struct BCM_mldsa87_private_key *out_private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_private_key_from_seed_fips( | 
|  | struct BCM_mldsa87_private_key *out_private_key, | 
|  | const uint8_t seed[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_sign( | 
|  | uint8_t out_encoded_signature[BCM_MLDSA87_SIGNATURE_BYTES], | 
|  | const struct BCM_mldsa87_private_key *private_key, const uint8_t *msg, | 
|  | size_t msg_len, const uint8_t *context, size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status | 
|  | BCM_mldsa87_verify(const struct BCM_mldsa87_public_key *public_key, | 
|  | const uint8_t *signature, const uint8_t *msg, size_t msg_len, | 
|  | const uint8_t *context, size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT void BCM_mldsa87_prehash_init( | 
|  | struct BCM_mldsa87_prehash *out_prehash_ctx, | 
|  | const struct BCM_mldsa87_public_key *public_key, const uint8_t *context, | 
|  | size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT void BCM_mldsa87_prehash_update( | 
|  | struct BCM_mldsa87_prehash *inout_prehash_ctx, const uint8_t *msg, | 
|  | size_t msg_len); | 
|  |  | 
|  | OPENSSL_EXPORT void BCM_mldsa87_prehash_finalize( | 
|  | uint8_t out_msg_rep[BCM_MLDSA_MU_BYTES], | 
|  | struct BCM_mldsa87_prehash *inout_prehash_ctx); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_sign_message_representative( | 
|  | uint8_t out_encoded_signature[BCM_MLDSA87_SIGNATURE_BYTES], | 
|  | const struct BCM_mldsa87_private_key *private_key, | 
|  | const uint8_t msg_rep[BCM_MLDSA_MU_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_marshal_public_key( | 
|  | CBB *out, const struct BCM_mldsa87_public_key *public_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_parse_public_key( | 
|  | struct BCM_mldsa87_public_key *public_key, CBS *in); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_parse_private_key( | 
|  | struct BCM_mldsa87_private_key *private_key, CBS *in); | 
|  |  | 
|  | // BCM_mldsa87_generate_key_external_entropy generates a public/private key pair | 
|  | // using the given seed, writes the encoded public key to | 
|  | // |out_encoded_public_key| and sets |out_private_key| to the private key. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_generate_key_external_entropy( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA87_PUBLIC_KEY_BYTES], | 
|  | struct BCM_mldsa87_private_key *out_private_key, | 
|  | const uint8_t entropy[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_generate_key_external_entropy_fips( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA87_PUBLIC_KEY_BYTES], | 
|  | struct BCM_mldsa87_private_key *out_private_key, | 
|  | const uint8_t entropy[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | // BCM_mldsa87_sign_internal signs |msg| using |private_key| and writes the | 
|  | // signature to |out_encoded_signature|. The |context_prefix| and |context| are | 
|  | // prefixed to the message, in that order, before signing. The |randomizer| | 
|  | // value can be set to zero bytes in order to make a deterministic signature, or | 
|  | // else filled with entropy for the usual |MLDSA_sign| behavior. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_sign_internal( | 
|  | uint8_t out_encoded_signature[BCM_MLDSA87_SIGNATURE_BYTES], | 
|  | const struct BCM_mldsa87_private_key *private_key, const uint8_t *msg, | 
|  | size_t msg_len, const uint8_t *context_prefix, size_t context_prefix_len, | 
|  | const uint8_t *context, size_t context_len, | 
|  | const uint8_t randomizer[BCM_MLDSA_SIGNATURE_RANDOMIZER_BYTES]); | 
|  |  | 
|  | // BCM_mldsa87_verify_internal verifies that |encoded_signature| is a valid | 
|  | // signature of |msg| by |public_key|. The |context_prefix| and |context| are | 
|  | // prefixed to the message before verification, in that order. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_verify_internal( | 
|  | const struct BCM_mldsa87_public_key *public_key, | 
|  | const uint8_t encoded_signature[BCM_MLDSA87_SIGNATURE_BYTES], | 
|  | const uint8_t *msg, size_t msg_len, const uint8_t *context_prefix, | 
|  | size_t context_prefix_len, const uint8_t *context, size_t context_len); | 
|  |  | 
|  | // BCM_mldsa87_marshal_private_key serializes |private_key| to |out| in the | 
|  | // NIST format for ML-DSA-87 private keys. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa87_marshal_private_key( | 
|  | CBB *out, const struct BCM_mldsa87_private_key *private_key); | 
|  |  | 
|  | // BCM_MLDSA44_PRIVATE_KEY_BYTES is the number of bytes in an encoded ML-DSA-44 | 
|  | // private key. | 
|  | #define BCM_MLDSA44_PRIVATE_KEY_BYTES 2560 | 
|  |  | 
|  | // BCM_MLDSA44_PUBLIC_KEY_BYTES is the number of bytes in an encoded ML-DSA-44 | 
|  | // public key. | 
|  | #define BCM_MLDSA44_PUBLIC_KEY_BYTES 1312 | 
|  |  | 
|  | // BCM_MLDSA44_SIGNATURE_BYTES is the number of bytes in an encoded ML-DSA-44 | 
|  | // signature. | 
|  | #define BCM_MLDSA44_SIGNATURE_BYTES 2420 | 
|  |  | 
|  | struct BCM_mldsa44_private_key { | 
|  | union { | 
|  | uint8_t bytes[32 + 32 + 64 + 256 * 4 * (4 + 4 + 4)]; | 
|  | uint32_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | struct BCM_mldsa44_public_key { | 
|  | union { | 
|  | uint8_t bytes[32 + 64 + 256 * 4 * 4]; | 
|  | uint32_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | struct BCM_mldsa44_prehash { | 
|  | union { | 
|  | uint8_t bytes[200 + 4 + 4 + 4 * sizeof(size_t)]; | 
|  | uint64_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_generate_key( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA44_PUBLIC_KEY_BYTES], | 
|  | uint8_t out_seed[BCM_MLDSA_SEED_BYTES], | 
|  | struct BCM_mldsa44_private_key *out_private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_private_key_from_seed( | 
|  | struct BCM_mldsa44_private_key *out_private_key, | 
|  | const uint8_t seed[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_public_from_private( | 
|  | struct BCM_mldsa44_public_key *out_public_key, | 
|  | const struct BCM_mldsa44_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status | 
|  | BCM_mldsa44_check_key_fips(struct BCM_mldsa44_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_generate_key_fips( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA44_PUBLIC_KEY_BYTES], | 
|  | uint8_t out_seed[BCM_MLDSA_SEED_BYTES], | 
|  | struct BCM_mldsa44_private_key *out_private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_private_key_from_seed_fips( | 
|  | struct BCM_mldsa44_private_key *out_private_key, | 
|  | const uint8_t seed[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_sign( | 
|  | uint8_t out_encoded_signature[BCM_MLDSA44_SIGNATURE_BYTES], | 
|  | const struct BCM_mldsa44_private_key *private_key, const uint8_t *msg, | 
|  | size_t msg_len, const uint8_t *context, size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status | 
|  | BCM_mldsa44_verify(const struct BCM_mldsa44_public_key *public_key, | 
|  | const uint8_t *signature, const uint8_t *msg, size_t msg_len, | 
|  | const uint8_t *context, size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT void BCM_mldsa44_prehash_init( | 
|  | struct BCM_mldsa44_prehash *out_prehash_ctx, | 
|  | const struct BCM_mldsa44_public_key *public_key, const uint8_t *context, | 
|  | size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT void BCM_mldsa44_prehash_update( | 
|  | struct BCM_mldsa44_prehash *inout_prehash_ctx, const uint8_t *msg, | 
|  | size_t msg_len); | 
|  |  | 
|  | OPENSSL_EXPORT void BCM_mldsa44_prehash_finalize( | 
|  | uint8_t out_msg_rep[BCM_MLDSA_MU_BYTES], | 
|  | struct BCM_mldsa44_prehash *inout_prehash_ctx); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_sign_message_representative( | 
|  | uint8_t out_encoded_signature[BCM_MLDSA44_SIGNATURE_BYTES], | 
|  | const struct BCM_mldsa44_private_key *private_key, | 
|  | const uint8_t msg_rep[BCM_MLDSA_MU_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_marshal_public_key( | 
|  | CBB *out, const struct BCM_mldsa44_public_key *public_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_parse_public_key( | 
|  | struct BCM_mldsa44_public_key *public_key, CBS *in); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_parse_private_key( | 
|  | struct BCM_mldsa44_private_key *private_key, CBS *in); | 
|  |  | 
|  | // BCM_mldsa44_generate_key_external_entropy generates a public/private key pair | 
|  | // using the given seed, writes the encoded public key to | 
|  | // |out_encoded_public_key| and sets |out_private_key| to the private key. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_generate_key_external_entropy( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA44_PUBLIC_KEY_BYTES], | 
|  | struct BCM_mldsa44_private_key *out_private_key, | 
|  | const uint8_t entropy[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_generate_key_external_entropy_fips( | 
|  | uint8_t out_encoded_public_key[BCM_MLDSA44_PUBLIC_KEY_BYTES], | 
|  | struct BCM_mldsa44_private_key *out_private_key, | 
|  | const uint8_t entropy[BCM_MLDSA_SEED_BYTES]); | 
|  |  | 
|  | // BCM_mldsa44_sign_internal signs |msg| using |private_key| and writes the | 
|  | // signature to |out_encoded_signature|. The |context_prefix| and |context| are | 
|  | // prefixed to the message, in that order, before signing. The |randomizer| | 
|  | // value can be set to zero bytes in order to make a deterministic signature, or | 
|  | // else filled with entropy for the usual |MLDSA_sign| behavior. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_sign_internal( | 
|  | uint8_t out_encoded_signature[BCM_MLDSA44_SIGNATURE_BYTES], | 
|  | const struct BCM_mldsa44_private_key *private_key, const uint8_t *msg, | 
|  | size_t msg_len, const uint8_t *context_prefix, size_t context_prefix_len, | 
|  | const uint8_t *context, size_t context_len, | 
|  | const uint8_t randomizer[BCM_MLDSA_SIGNATURE_RANDOMIZER_BYTES]); | 
|  |  | 
|  | // BCM_mldsa44_verify_internal verifies that |encoded_signature| is a valid | 
|  | // signature of |msg| by |public_key|. The |context_prefix| and |context| are | 
|  | // prefixed to the message before verification, in that order. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_verify_internal( | 
|  | const struct BCM_mldsa44_public_key *public_key, | 
|  | const uint8_t encoded_signature[BCM_MLDSA44_SIGNATURE_BYTES], | 
|  | const uint8_t *msg, size_t msg_len, const uint8_t *context_prefix, | 
|  | size_t context_prefix_len, const uint8_t *context, size_t context_len); | 
|  |  | 
|  | // BCM_mldsa44_marshal_private_key serializes |private_key| to |out| in the | 
|  | // NIST format for ML-DSA-44 private keys. | 
|  | OPENSSL_EXPORT bcm_status BCM_mldsa44_marshal_private_key( | 
|  | CBB *out, const struct BCM_mldsa44_private_key *private_key); | 
|  |  | 
|  |  | 
|  | // ML-KEM | 
|  | // | 
|  | // Where not commented, these functions have the same signature as the | 
|  | // corresponding public function. | 
|  |  | 
|  | // BCM_MLKEM_ENCAP_ENTROPY is the number of bytes of uniformly random entropy | 
|  | // necessary to encapsulate a secret. The entropy will be leaked to the | 
|  | // decapsulating party. | 
|  | #define BCM_MLKEM_ENCAP_ENTROPY 32 | 
|  |  | 
|  | // BCM_MLKEM768_PUBLIC_KEY_BYTES is the number of bytes in an encoded ML-KEM-768 | 
|  | // public key. | 
|  | #define BCM_MLKEM768_PUBLIC_KEY_BYTES 1184 | 
|  |  | 
|  | // BCM_MLKEM1024_PUBLIC_KEY_BYTES is the number of bytes in an encoded | 
|  | // ML-KEM-1024 public key. | 
|  | #define BCM_MLKEM1024_PUBLIC_KEY_BYTES 1568 | 
|  |  | 
|  | // BCM_MLKEM768_CIPHERTEXT_BYTES is number of bytes in the ML-KEM-768 | 
|  | // ciphertext. | 
|  | #define BCM_MLKEM768_CIPHERTEXT_BYTES 1088 | 
|  |  | 
|  | // BCM_MLKEM1024_CIPHERTEXT_BYTES is number of bytes in the ML-KEM-1024 | 
|  | // ciphertext. | 
|  | #define BCM_MLKEM1024_CIPHERTEXT_BYTES 1568 | 
|  |  | 
|  | // BCM_MLKEM768_PRIVATE_KEY_BYTES is the length of the data produced by | 
|  | // |BCM_mlkem768_marshal_private_key|. | 
|  | #define BCM_MLKEM768_PRIVATE_KEY_BYTES 2400 | 
|  |  | 
|  | // BCM_MLKEM1024_PRIVATE_KEY_BYTES is the length of the data produced by | 
|  | // |BCM_mlkem1024_marshal_private_key|. | 
|  | #define BCM_MLKEM1024_PRIVATE_KEY_BYTES 3168 | 
|  |  | 
|  | // BCM_MLKEM_SEED_BYTES is the number of bytes in an ML-KEM seed. | 
|  | #define BCM_MLKEM_SEED_BYTES 64 | 
|  |  | 
|  | // BCM_mlkem_SHARED_SECRET_BYTES is the number of bytes in an ML-KEM shared | 
|  | // secret. | 
|  | #define BCM_MLKEM_SHARED_SECRET_BYTES 32 | 
|  |  | 
|  | struct BCM_mlkem768_public_key { | 
|  | union { | 
|  | uint8_t bytes[512 * (3 + 9) + 32 + 32]; | 
|  | uint16_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | struct BCM_mlkem768_private_key { | 
|  | union { | 
|  | uint8_t bytes[512 * (3 + 3 + 9) + 32 + 32 + 32]; | 
|  | uint16_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | OPENSSL_EXPORT bcm_infallible BCM_mlkem768_generate_key( | 
|  | uint8_t out_encoded_public_key[BCM_MLKEM768_PUBLIC_KEY_BYTES], | 
|  | uint8_t optional_out_seed[BCM_MLKEM_SEED_BYTES], | 
|  | struct BCM_mlkem768_private_key *out_private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem768_private_key_from_seed( | 
|  | struct BCM_mlkem768_private_key *out_private_key, const uint8_t *seed, | 
|  | size_t seed_len); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem768_generate_key_fips( | 
|  | uint8_t out_encoded_public_key[BCM_MLKEM768_PUBLIC_KEY_BYTES], | 
|  | uint8_t optional_out_seed[BCM_MLKEM_SEED_BYTES], | 
|  | struct BCM_mlkem768_private_key *out_private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status | 
|  | BCM_mlkem768_check_fips(const struct BCM_mlkem768_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_infallible BCM_mlkem768_public_from_private( | 
|  | struct BCM_mlkem768_public_key *out_public_key, | 
|  | const struct BCM_mlkem768_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_infallible | 
|  | BCM_mlkem768_encap(uint8_t out_ciphertext[BCM_MLKEM768_CIPHERTEXT_BYTES], | 
|  | uint8_t out_shared_secret[BCM_MLKEM_SHARED_SECRET_BYTES], | 
|  | const struct BCM_mlkem768_public_key *public_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status | 
|  | BCM_mlkem768_decap(uint8_t out_shared_secret[BCM_MLKEM_SHARED_SECRET_BYTES], | 
|  | const uint8_t *ciphertext, size_t ciphertext_len, | 
|  | const struct BCM_mlkem768_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem768_marshal_public_key( | 
|  | CBB *out, const struct BCM_mlkem768_public_key *public_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem768_parse_public_key( | 
|  | struct BCM_mlkem768_public_key *out_public_key, CBS *in); | 
|  |  | 
|  | // BCM_mlkem768_parse_private_key parses a private key, in NIST's format for | 
|  | // private keys, from |in| and writes the result to |out_private_key|. It | 
|  | // returns one on success or zero on parse error or if there are trailing bytes | 
|  | // in |in|. This format is verbose and should be avoided. Private keys should be | 
|  | // stored as seeds and parsed using |BCM_mlkem768_private_key_from_seed|. | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem768_parse_private_key( | 
|  | struct BCM_mlkem768_private_key *out_private_key, CBS *in); | 
|  |  | 
|  | // BCM_mlkem768_generate_key_external_seed is a deterministic function to create | 
|  | // a pair of ML-KEM-768 keys, using the supplied seed. The seed needs to be | 
|  | // uniformly random. This function should only be used for tests; regular | 
|  | // callers should use the non-deterministic |BCM_mlkem768_generate_key| | 
|  | // directly. | 
|  | OPENSSL_EXPORT bcm_infallible BCM_mlkem768_generate_key_external_seed( | 
|  | uint8_t out_encoded_public_key[BCM_MLKEM768_PUBLIC_KEY_BYTES], | 
|  | struct BCM_mlkem768_private_key *out_private_key, | 
|  | const uint8_t seed[BCM_MLKEM_SEED_BYTES]); | 
|  |  | 
|  | // BCM_mlkem768_encap_external_entropy behaves like |MLKEM768_encap|, but uses | 
|  | // |MLKEM_ENCAP_ENTROPY| bytes of |entropy| for randomization. The decapsulating | 
|  | // side will be able to recover |entropy| in full. This function should only be | 
|  | // used for tests, regular callers should use the non-deterministic | 
|  | // |BCM_mlkem768_encap| directly. | 
|  | OPENSSL_EXPORT bcm_infallible BCM_mlkem768_encap_external_entropy( | 
|  | uint8_t out_ciphertext[BCM_MLKEM768_CIPHERTEXT_BYTES], | 
|  | uint8_t out_shared_secret[BCM_MLKEM_SHARED_SECRET_BYTES], | 
|  | const struct BCM_mlkem768_public_key *public_key, | 
|  | const uint8_t entropy[BCM_MLKEM_ENCAP_ENTROPY]); | 
|  |  | 
|  | // BCM_mlkem768_marshal_private_key serializes |private_key| to |out| in the | 
|  | // NIST format for ML-KEM-768 private keys. (Note that one can also save just | 
|  | // the seed value produced by |BCM_mlkem768_generate_key|, which is | 
|  | // significantly smaller.) | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem768_marshal_private_key( | 
|  | CBB *out, const struct BCM_mlkem768_private_key *private_key); | 
|  |  | 
|  | struct BCM_mlkem1024_public_key { | 
|  | union { | 
|  | uint8_t bytes[512 * (4 + 16) + 32 + 32]; | 
|  | uint16_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | struct BCM_mlkem1024_private_key { | 
|  | union { | 
|  | uint8_t bytes[512 * (4 + 4 + 16) + 32 + 32 + 32]; | 
|  | uint16_t alignment; | 
|  | } opaque; | 
|  | }; | 
|  |  | 
|  | OPENSSL_EXPORT bcm_infallible BCM_mlkem1024_generate_key( | 
|  | uint8_t out_encoded_public_key[BCM_MLKEM1024_PUBLIC_KEY_BYTES], | 
|  | uint8_t optional_out_seed[BCM_MLKEM_SEED_BYTES], | 
|  | struct BCM_mlkem1024_private_key *out_private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem1024_generate_key_fips( | 
|  | uint8_t out_encoded_public_key[BCM_MLKEM1024_PUBLIC_KEY_BYTES], | 
|  | uint8_t optional_out_seed[BCM_MLKEM_SEED_BYTES], | 
|  | struct BCM_mlkem1024_private_key *out_private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status | 
|  | BCM_mlkem1024_check_fips(const struct BCM_mlkem1024_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem1024_private_key_from_seed( | 
|  | struct BCM_mlkem1024_private_key *out_private_key, const uint8_t *seed, | 
|  | size_t seed_len); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_infallible BCM_mlkem1024_public_from_private( | 
|  | struct BCM_mlkem1024_public_key *out_public_key, | 
|  | const struct BCM_mlkem1024_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_infallible | 
|  | BCM_mlkem1024_encap(uint8_t out_ciphertext[BCM_MLKEM1024_CIPHERTEXT_BYTES], | 
|  | uint8_t out_shared_secret[BCM_MLKEM_SHARED_SECRET_BYTES], | 
|  | const struct BCM_mlkem1024_public_key *public_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status | 
|  | BCM_mlkem1024_decap(uint8_t out_shared_secret[BCM_MLKEM_SHARED_SECRET_BYTES], | 
|  | const uint8_t *ciphertext, size_t ciphertext_len, | 
|  | const struct BCM_mlkem1024_private_key *private_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem1024_marshal_public_key( | 
|  | CBB *out, const struct BCM_mlkem1024_public_key *public_key); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem1024_parse_public_key( | 
|  | struct BCM_mlkem1024_public_key *out_public_key, CBS *in); | 
|  |  | 
|  | // BCM_mlkem1024_parse_private_key parses a private key, in NIST's format for | 
|  | // private keys, from |in| and writes the result to |out_private_key|. It | 
|  | // returns one on success or zero on parse error or if there are trailing bytes | 
|  | // in |in|. This format is verbose and should be avoided. Private keys should be | 
|  | // stored as seeds and parsed using |BCM_mlkem1024_private_key_from_seed|. | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem1024_parse_private_key( | 
|  | struct BCM_mlkem1024_private_key *out_private_key, CBS *in); | 
|  |  | 
|  | // BCM_mlkem1024_generate_key_external_seed is a deterministic function to | 
|  | // create a pair of ML-KEM-1024 keys, using the supplied seed. The seed needs to | 
|  | // be uniformly random. This function should only be used for tests, regular | 
|  | // callers should use the non-deterministic |BCM_mlkem1024_generate_key| | 
|  | // directly. | 
|  | OPENSSL_EXPORT bcm_infallible BCM_mlkem1024_generate_key_external_seed( | 
|  | uint8_t out_encoded_public_key[BCM_MLKEM1024_PUBLIC_KEY_BYTES], | 
|  | struct BCM_mlkem1024_private_key *out_private_key, | 
|  | const uint8_t seed[BCM_MLKEM_SEED_BYTES]); | 
|  |  | 
|  | // BCM_mlkem1024_encap_external_entropy behaves like |MLKEM1024_encap|, but uses | 
|  | // |MLKEM_ENCAP_ENTROPY| bytes of |entropy| for randomization. The | 
|  | // decapsulating side will be able to recover |entropy| in full. This function | 
|  | // should only be used for tests, regular callers should use the | 
|  | // non-deterministic |BCM_mlkem1024_encap| directly. | 
|  | OPENSSL_EXPORT bcm_infallible BCM_mlkem1024_encap_external_entropy( | 
|  | uint8_t out_ciphertext[BCM_MLKEM1024_CIPHERTEXT_BYTES], | 
|  | uint8_t out_shared_secret[BCM_MLKEM_SHARED_SECRET_BYTES], | 
|  | const struct BCM_mlkem1024_public_key *public_key, | 
|  | const uint8_t entropy[BCM_MLKEM_ENCAP_ENTROPY]); | 
|  |  | 
|  | // BCM_mlkem1024_marshal_private_key serializes |private_key| to |out| in the | 
|  | // NIST format for ML-KEM-1024 private keys. (Note that one can also save just | 
|  | // the seed value produced by |BCM_mlkem1024_generate_key|, which is | 
|  | // significantly smaller.) | 
|  | OPENSSL_EXPORT bcm_status BCM_mlkem1024_marshal_private_key( | 
|  | CBB *out, const struct BCM_mlkem1024_private_key *private_key); | 
|  |  | 
|  |  | 
|  | // SLH-DSA | 
|  |  | 
|  | // Output length of the hash function. | 
|  | #define BCM_SLHDSA_SHA2_128S_N 16 | 
|  |  | 
|  | // The number of bytes at the beginning of M', the augmented message, before the | 
|  | // context. | 
|  | #define BCM_SLHDSA_M_PRIME_HEADER_LEN 2 | 
|  |  | 
|  | // SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES is the number of bytes in an | 
|  | // SLH-DSA-SHA2-128s public key. | 
|  | #define BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES 32 | 
|  |  | 
|  | // BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES is the number of bytes in an | 
|  | // SLH-DSA-SHA2-128s private key. | 
|  | #define BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES 64 | 
|  |  | 
|  | // BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES is the number of bytes in an | 
|  | // SLH-DSA-SHA2-128s signature. | 
|  | #define BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES 7856 | 
|  |  | 
|  | // BCM_slhdsa_sha2_128s_generate_key_from_seed generates an SLH-DSA-SHA2-128s | 
|  | // key pair from a 48-byte seed and writes the result to |out_public_key| and | 
|  | // |out_secret_key|. | 
|  | OPENSSL_EXPORT bcm_infallible BCM_slhdsa_sha2_128s_generate_key_from_seed( | 
|  | uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES], | 
|  | uint8_t out_secret_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES], | 
|  | const uint8_t seed[3 * BCM_SLHDSA_SHA2_128S_N]); | 
|  |  | 
|  | // BCM_slhdsa_sha2_128s_generate_key_from_seed_fips does the same thing as | 
|  | // `BCM_slhdsa_sha2_128s_generate_key_from_seed` but implements the required | 
|  | // second check before generating a key by testing for nullptr arguments. | 
|  | OPENSSL_EXPORT bcm_status BCM_slhdsa_sha2_128s_generate_key_from_seed_fips( | 
|  | uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES], | 
|  | uint8_t out_secret_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES], | 
|  | const uint8_t seed[3 * BCM_SLHDSA_SHA2_128S_N]); | 
|  |  | 
|  | // BCM_slhdsa_sha2_128s_sign_internal acts like |SLHDSA_SHA2_128S_sign| but | 
|  | // accepts an explicit entropy input, which can be PK.seed (bytes 32..48 of | 
|  | // the private key) to generate deterministic signatures. It also takes the | 
|  | // input message in three parts so that the "internal" version of the signing | 
|  | // function, from section 9.2, can be implemented. The |header| argument may be | 
|  | // NULL to omit it. | 
|  | OPENSSL_EXPORT bcm_infallible BCM_slhdsa_sha2_128s_sign_internal( | 
|  | uint8_t out_signature[BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES], | 
|  | const uint8_t secret_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES], | 
|  | const uint8_t header[BCM_SLHDSA_M_PRIME_HEADER_LEN], const uint8_t *context, | 
|  | size_t context_len, const uint8_t *msg, size_t msg_len, | 
|  | const uint8_t entropy[BCM_SLHDSA_SHA2_128S_N]); | 
|  |  | 
|  | // BCM_slhdsa_sha2_128s_verify_internal acts like |SLHDSA_SHA2_128S_verify| but | 
|  | // takes the input message in three parts so that the "internal" version of the | 
|  | // verification function, from section 9.3, can be implemented. The |header| | 
|  | // argument may be NULL to omit it. | 
|  | OPENSSL_EXPORT bcm_status BCM_slhdsa_sha2_128s_verify_internal( | 
|  | const uint8_t *signature, size_t signature_len, | 
|  | const uint8_t public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES], | 
|  | const uint8_t header[BCM_SLHDSA_M_PRIME_HEADER_LEN], const uint8_t *context, | 
|  | size_t context_len, const uint8_t *msg, size_t msg_len); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_infallible BCM_slhdsa_sha2_128s_generate_key( | 
|  | uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES], | 
|  | uint8_t out_private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_slhdsa_sha2_128s_generate_key_fips( | 
|  | uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES], | 
|  | uint8_t out_private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_infallible BCM_slhdsa_sha2_128s_public_from_private( | 
|  | uint8_t out_public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES], | 
|  | const uint8_t private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES]); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_slhdsa_sha2_128s_sign( | 
|  | uint8_t out_signature[BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES], | 
|  | const uint8_t private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES], | 
|  | const uint8_t *msg, size_t msg_len, const uint8_t *context, | 
|  | size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_slhdsa_sha2_128s_verify( | 
|  | const uint8_t *signature, size_t signature_len, | 
|  | const uint8_t public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES], | 
|  | const uint8_t *msg, size_t msg_len, const uint8_t *context, | 
|  | size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_slhdsa_sha2_128s_prehash_sign( | 
|  | uint8_t out_signature[BCM_SLHDSA_SHA2_128S_SIGNATURE_BYTES], | 
|  | const uint8_t private_key[BCM_SLHDSA_SHA2_128S_PRIVATE_KEY_BYTES], | 
|  | const uint8_t *hashed_msg, size_t hashed_msg_len, int hash_nid, | 
|  | const uint8_t *context, size_t context_len); | 
|  |  | 
|  | OPENSSL_EXPORT bcm_status BCM_slhdsa_sha2_128s_prehash_verify( | 
|  | const uint8_t *signature, size_t signature_len, | 
|  | const uint8_t public_key[BCM_SLHDSA_SHA2_128S_PUBLIC_KEY_BYTES], | 
|  | const uint8_t *hashed_msg, size_t hashed_msg_len, int hash_nid, | 
|  | const uint8_t *context, size_t context_len); | 
|  |  | 
|  |  | 
|  | // AES | 
|  |  | 
|  | // BCM_aes_encrypt encrypts a single block from |in| to |out| with |key|. The | 
|  | // |in| and |out| pointers may overlap. | 
|  | OPENSSL_EXPORT bcm_infallible BCM_aes_encrypt(const uint8_t *in, uint8_t *out, | 
|  | const AES_KEY *key); | 
|  | // BCM_aes_decrypt decrypts a single block from |in| to |out| with |key|. The | 
|  | // |in| and |out| pointers may overlap. | 
|  | OPENSSL_EXPORT bcm_infallible BCM_aes_decrypt(const uint8_t *in, uint8_t *out, | 
|  | const AES_KEY *key); | 
|  |  | 
|  | // BCM_aes_set_encrypt_key configures |aeskey| to encrypt with the |bits|-bit | 
|  | // key, |key|. |key| must point to |bits|/8 bytes. It will return failure if | 
|  | // |bits| is an invalid AES key size. | 
|  | OPENSSL_EXPORT bcm_status BCM_aes_set_encrypt_key(const uint8_t *key, | 
|  | unsigned bits, | 
|  | AES_KEY *aeskey); | 
|  |  | 
|  | // BCM_aes_set_decrypt_key configures |aeskey| to decrypt with the |bits|-bit | 
|  | // key, |key|. |key| must point to |bits|/8 bytes. It will return failure if | 
|  | // |bits| is an invalid AES key size. | 
|  | OPENSSL_EXPORT bcm_status BCM_aes_set_decrypt_key(const uint8_t *key, | 
|  | unsigned bits, | 
|  | AES_KEY *aeskey); | 
|  |  | 
|  |  | 
|  | #if defined(__cplusplus) | 
|  | }  // extern C | 
|  | #endif | 
|  |  | 
|  | #endif  // OPENSSL_HEADER_CRYPTO_FIPSMODULE_BCM_INTERFACE_H |