| // Copyright 2007, Google Inc. |
| // All rights reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Google Mock - a framework for writing C++ mock classes. |
| // |
| // This file tests some commonly used argument matchers. |
| |
| #include <algorithm> |
| #include <array> |
| #include <deque> |
| #include <forward_list> |
| #include <iterator> |
| #include <list> |
| #include <memory> |
| #include <ostream> |
| #include <string> |
| #include <tuple> |
| #include <vector> |
| |
| #include "gtest/gtest.h" |
| |
| // Silence warning C4244: 'initializing': conversion from 'int' to 'short', |
| // possible loss of data and C4100, unreferenced local parameter |
| GTEST_DISABLE_MSC_WARNINGS_PUSH_(4244 4100) |
| |
| #include "test/gmock-matchers_test.h" |
| |
| namespace testing { |
| namespace gmock_matchers_test { |
| namespace { |
| |
| std::vector<std::unique_ptr<int>> MakeUniquePtrs(const std::vector<int>& ints) { |
| std::vector<std::unique_ptr<int>> pointers; |
| for (int i : ints) pointers.emplace_back(new int(i)); |
| return pointers; |
| } |
| |
| std::string OfType(const std::string& type_name) { |
| #if GTEST_HAS_RTTI |
| return IsReadableTypeName(type_name) ? " (of type " + type_name + ")" : ""; |
| #else |
| return ""; |
| #endif |
| } |
| |
| TEST(ContainsTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(Contains(Pointee(2)))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| } |
| |
| INSTANTIATE_GTEST_MATCHER_TEST_P(ElementsAreTest); |
| |
| // Tests the variadic version of the ElementsAreMatcher |
| TEST(ElementsAreTest, HugeMatcher) { |
| vector<int> test_vector{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; |
| |
| EXPECT_THAT(test_vector, |
| ElementsAre(Eq(1), Eq(2), Lt(13), Eq(4), Eq(5), Eq(6), Eq(7), |
| Eq(8), Eq(9), Eq(10), Gt(1), Eq(12))); |
| } |
| |
| // Tests the variadic version of the UnorderedElementsAreMatcher |
| TEST(ElementsAreTest, HugeMatcherStr) { |
| vector<std::string> test_vector{ |
| "literal_string", "", "", "", "", "", "", "", "", "", "", ""}; |
| |
| EXPECT_THAT(test_vector, UnorderedElementsAre("literal_string", _, _, _, _, _, |
| _, _, _, _, _, _)); |
| } |
| |
| // Tests the variadic version of the UnorderedElementsAreMatcher |
| TEST(ElementsAreTest, HugeMatcherUnordered) { |
| vector<int> test_vector{2, 1, 8, 5, 4, 6, 7, 3, 9, 12, 11, 10}; |
| |
| EXPECT_THAT(test_vector, UnorderedElementsAre( |
| Eq(2), Eq(1), Gt(7), Eq(5), Eq(4), Eq(6), Eq(7), |
| Eq(3), Eq(9), Eq(12), Eq(11), Ne(122))); |
| } |
| |
| // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value |
| // matches the matcher. |
| TEST(MatcherAssertionTest, WorksWhenMatcherIsSatisfied) { |
| ASSERT_THAT(5, Ge(2)) << "This should succeed."; |
| ASSERT_THAT("Foo", EndsWith("oo")); |
| EXPECT_THAT(2, AllOf(Le(7), Ge(0))) << "This should succeed too."; |
| EXPECT_THAT("Hello", StartsWith("Hell")); |
| } |
| |
| // Tests that ASSERT_THAT() and EXPECT_THAT() work when the value |
| // doesn't match the matcher. |
| TEST(MatcherAssertionTest, WorksWhenMatcherIsNotSatisfied) { |
| // 'n' must be static as it is used in an EXPECT_FATAL_FAILURE(), |
| // which cannot reference auto variables. |
| static unsigned short n; // NOLINT |
| n = 5; |
| |
| EXPECT_FATAL_FAILURE(ASSERT_THAT(n, Gt(10)), |
| "Value of: n\n" |
| "Expected: is > 10\n" |
| " Actual: 5" + |
| OfType("unsigned short")); |
| n = 0; |
| EXPECT_NONFATAL_FAILURE(EXPECT_THAT(n, AllOf(Le(7), Ge(5))), |
| "Value of: n\n" |
| "Expected: (is <= 7) and (is >= 5)\n" |
| " Actual: 0" + |
| OfType("unsigned short")); |
| } |
| |
| // Tests that ASSERT_THAT() and EXPECT_THAT() work when the argument |
| // has a reference type. |
| TEST(MatcherAssertionTest, WorksForByRefArguments) { |
| // We use a static variable here as EXPECT_FATAL_FAILURE() cannot |
| // reference auto variables. |
| static int n; |
| n = 0; |
| EXPECT_THAT(n, AllOf(Le(7), Ref(n))); |
| EXPECT_FATAL_FAILURE(ASSERT_THAT(n, Not(Ref(n))), |
| "Value of: n\n" |
| "Expected: does not reference the variable @"); |
| // Tests the "Actual" part. |
| EXPECT_FATAL_FAILURE(ASSERT_THAT(n, Not(Ref(n))), |
| "Actual: 0" + OfType("int") + ", which is located @"); |
| } |
| |
| // Tests that ASSERT_THAT() and EXPECT_THAT() work when the matcher is |
| // monomorphic. |
| TEST(MatcherAssertionTest, WorksForMonomorphicMatcher) { |
| Matcher<const char*> starts_with_he = StartsWith("he"); |
| ASSERT_THAT("hello", starts_with_he); |
| |
| Matcher<const std::string&> ends_with_ok = EndsWith("ok"); |
| ASSERT_THAT("book", ends_with_ok); |
| const std::string bad = "bad"; |
| EXPECT_NONFATAL_FAILURE(EXPECT_THAT(bad, ends_with_ok), |
| "Value of: bad\n" |
| "Expected: ends with \"ok\"\n" |
| " Actual: \"bad\""); |
| Matcher<int> is_greater_than_5 = Gt(5); |
| EXPECT_NONFATAL_FAILURE(EXPECT_THAT(5, is_greater_than_5), |
| "Value of: 5\n" |
| "Expected: is > 5\n" |
| " Actual: 5" + |
| OfType("int")); |
| } |
| |
| TEST(PointeeTest, RawPointer) { |
| const Matcher<int*> m = Pointee(Ge(0)); |
| |
| int n = 1; |
| EXPECT_TRUE(m.Matches(&n)); |
| n = -1; |
| EXPECT_FALSE(m.Matches(&n)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointeeTest, RawPointerToConst) { |
| const Matcher<const double*> m = Pointee(Ge(0)); |
| |
| double x = 1; |
| EXPECT_TRUE(m.Matches(&x)); |
| x = -1; |
| EXPECT_FALSE(m.Matches(&x)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointeeTest, ReferenceToConstRawPointer) { |
| const Matcher<int* const&> m = Pointee(Ge(0)); |
| |
| int n = 1; |
| EXPECT_TRUE(m.Matches(&n)); |
| n = -1; |
| EXPECT_FALSE(m.Matches(&n)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointeeTest, ReferenceToNonConstRawPointer) { |
| const Matcher<double*&> m = Pointee(Ge(0)); |
| |
| double x = 1.0; |
| double* p = &x; |
| EXPECT_TRUE(m.Matches(p)); |
| x = -1; |
| EXPECT_FALSE(m.Matches(p)); |
| p = nullptr; |
| EXPECT_FALSE(m.Matches(p)); |
| } |
| |
| TEST(PointeeTest, SmartPointer) { |
| const Matcher<std::unique_ptr<int>> m = Pointee(Ge(0)); |
| |
| std::unique_ptr<int> n(new int(1)); |
| EXPECT_TRUE(m.Matches(n)); |
| } |
| |
| TEST(PointeeTest, SmartPointerToConst) { |
| const Matcher<std::unique_ptr<const int>> m = Pointee(Ge(0)); |
| |
| // There's no implicit conversion from unique_ptr<int> to const |
| // unique_ptr<const int>, so we must pass a unique_ptr<const int> into the |
| // matcher. |
| std::unique_ptr<const int> n(new int(1)); |
| EXPECT_TRUE(m.Matches(n)); |
| } |
| |
| TEST(PointerTest, RawPointer) { |
| int n = 1; |
| const Matcher<int*> m = Pointer(Eq(&n)); |
| |
| EXPECT_TRUE(m.Matches(&n)); |
| |
| int* p = nullptr; |
| EXPECT_FALSE(m.Matches(p)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointerTest, RawPointerToConst) { |
| int n = 1; |
| const Matcher<const int*> m = Pointer(Eq(&n)); |
| |
| EXPECT_TRUE(m.Matches(&n)); |
| |
| int* p = nullptr; |
| EXPECT_FALSE(m.Matches(p)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointerTest, SmartPointer) { |
| std::unique_ptr<int> n(new int(10)); |
| int* raw_n = n.get(); |
| const Matcher<std::unique_ptr<int>> m = Pointer(Eq(raw_n)); |
| |
| EXPECT_TRUE(m.Matches(n)); |
| } |
| |
| TEST(PointerTest, SmartPointerToConst) { |
| std::unique_ptr<const int> n(new int(10)); |
| const int* raw_n = n.get(); |
| const Matcher<std::unique_ptr<const int>> m = Pointer(Eq(raw_n)); |
| |
| // There's no implicit conversion from unique_ptr<int> to const |
| // unique_ptr<const int>, so we must pass a unique_ptr<const int> into the |
| // matcher. |
| std::unique_ptr<const int> p(new int(10)); |
| EXPECT_FALSE(m.Matches(p)); |
| } |
| |
| // Minimal const-propagating pointer. |
| template <typename T> |
| class ConstPropagatingPtr { |
| public: |
| typedef T element_type; |
| |
| ConstPropagatingPtr() : val_() {} |
| explicit ConstPropagatingPtr(T* t) : val_(t) {} |
| ConstPropagatingPtr(const ConstPropagatingPtr& other) : val_(other.val_) {} |
| |
| T* get() { return val_; } |
| T& operator*() { return *val_; } |
| // Most smart pointers return non-const T* and T& from the next methods. |
| const T* get() const { return val_; } |
| const T& operator*() const { return *val_; } |
| |
| private: |
| T* val_; |
| }; |
| |
| INSTANTIATE_GTEST_MATCHER_TEST_P(PointeeTest); |
| |
| TEST(PointeeTest, WorksWithConstPropagatingPointers) { |
| const Matcher<ConstPropagatingPtr<int>> m = Pointee(Lt(5)); |
| int three = 3; |
| const ConstPropagatingPtr<int> co(&three); |
| ConstPropagatingPtr<int> o(&three); |
| EXPECT_TRUE(m.Matches(o)); |
| EXPECT_TRUE(m.Matches(co)); |
| *o = 6; |
| EXPECT_FALSE(m.Matches(o)); |
| EXPECT_FALSE(m.Matches(ConstPropagatingPtr<int>())); |
| } |
| |
| TEST(PointeeTest, NeverMatchesNull) { |
| const Matcher<const char*> m = Pointee(_); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| // Tests that we can write Pointee(value) instead of Pointee(Eq(value)). |
| TEST(PointeeTest, MatchesAgainstAValue) { |
| const Matcher<int*> m = Pointee(5); |
| |
| int n = 5; |
| EXPECT_TRUE(m.Matches(&n)); |
| n = -1; |
| EXPECT_FALSE(m.Matches(&n)); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| TEST(PointeeTest, CanDescribeSelf) { |
| const Matcher<int*> m = Pointee(Gt(3)); |
| EXPECT_EQ("points to a value that is > 3", Describe(m)); |
| EXPECT_EQ("does not point to a value that is > 3", DescribeNegation(m)); |
| } |
| |
| TEST_P(PointeeTestP, CanExplainMatchResult) { |
| const Matcher<const std::string*> m = Pointee(StartsWith("Hi")); |
| |
| EXPECT_EQ("", Explain(m, static_cast<const std::string*>(nullptr))); |
| |
| const Matcher<long*> m2 = Pointee(GreaterThan(1)); // NOLINT |
| long n = 3; // NOLINT |
| EXPECT_EQ("which points to 3" + OfType("long") + ", which is 2 more than 1", |
| Explain(m2, &n)); |
| } |
| |
| TEST(PointeeTest, AlwaysExplainsPointee) { |
| const Matcher<int*> m = Pointee(0); |
| int n = 42; |
| EXPECT_EQ("which points to 42" + OfType("int"), Explain(m, &n)); |
| } |
| |
| // An uncopyable class. |
| class Uncopyable { |
| public: |
| Uncopyable() : value_(-1) {} |
| explicit Uncopyable(int a_value) : value_(a_value) {} |
| |
| int value() const { return value_; } |
| void set_value(int i) { value_ = i; } |
| |
| private: |
| int value_; |
| Uncopyable(const Uncopyable&) = delete; |
| Uncopyable& operator=(const Uncopyable&) = delete; |
| }; |
| |
| // Returns true if and only if x.value() is positive. |
| bool ValueIsPositive(const Uncopyable& x) { return x.value() > 0; } |
| |
| MATCHER_P(UncopyableIs, inner_matcher, "") { |
| return ExplainMatchResult(inner_matcher, arg.value(), result_listener); |
| } |
| |
| // A user-defined struct for testing Field(). |
| struct AStruct { |
| AStruct() : x(0), y(1.0), z(5), p(nullptr) {} |
| AStruct(const AStruct& rhs) |
| : x(rhs.x), y(rhs.y), z(rhs.z.value()), p(rhs.p) {} |
| |
| int x; // A non-const field. |
| const double y; // A const field. |
| Uncopyable z; // An uncopyable field. |
| const char* p; // A pointer field. |
| }; |
| |
| // A derived struct for testing Field(). |
| struct DerivedStruct : public AStruct { |
| char ch; |
| }; |
| |
| INSTANTIATE_GTEST_MATCHER_TEST_P(FieldTest); |
| |
| // Tests that Field(&Foo::field, ...) works when field is non-const. |
| TEST(FieldTest, WorksForNonConstField) { |
| Matcher<AStruct> m = Field(&AStruct::x, Ge(0)); |
| Matcher<AStruct> m_with_name = Field("x", &AStruct::x, Ge(0)); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Field(&Foo::field, ...) works when field is const. |
| TEST(FieldTest, WorksForConstField) { |
| AStruct a; |
| |
| Matcher<AStruct> m = Field(&AStruct::y, Ge(0.0)); |
| Matcher<AStruct> m_with_name = Field("y", &AStruct::y, Ge(0.0)); |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| m = Field(&AStruct::y, Le(0.0)); |
| m_with_name = Field("y", &AStruct::y, Le(0.0)); |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Field(&Foo::field, ...) works when field is not copyable. |
| TEST(FieldTest, WorksForUncopyableField) { |
| AStruct a; |
| |
| Matcher<AStruct> m = Field(&AStruct::z, Truly(ValueIsPositive)); |
| EXPECT_TRUE(m.Matches(a)); |
| m = Field(&AStruct::z, Not(Truly(ValueIsPositive))); |
| EXPECT_FALSE(m.Matches(a)); |
| } |
| |
| // Tests that Field(&Foo::field, ...) works when field is a pointer. |
| TEST(FieldTest, WorksForPointerField) { |
| // Matching against NULL. |
| Matcher<AStruct> m = Field(&AStruct::p, static_cast<const char*>(nullptr)); |
| AStruct a; |
| EXPECT_TRUE(m.Matches(a)); |
| a.p = "hi"; |
| EXPECT_FALSE(m.Matches(a)); |
| |
| // Matching a pointer that is not NULL. |
| m = Field(&AStruct::p, StartsWith("hi")); |
| a.p = "hill"; |
| EXPECT_TRUE(m.Matches(a)); |
| a.p = "hole"; |
| EXPECT_FALSE(m.Matches(a)); |
| } |
| |
| // Tests that Field() works when the object is passed by reference. |
| TEST(FieldTest, WorksForByRefArgument) { |
| Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(a)); |
| } |
| |
| // Tests that Field(&Foo::field, ...) works when the argument's type |
| // is a sub-type of Foo. |
| TEST(FieldTest, WorksForArgumentOfSubType) { |
| // Note that the matcher expects DerivedStruct but we say AStruct |
| // inside Field(). |
| Matcher<const DerivedStruct&> m = Field(&AStruct::x, Ge(0)); |
| |
| DerivedStruct d; |
| EXPECT_TRUE(m.Matches(d)); |
| d.x = -1; |
| EXPECT_FALSE(m.Matches(d)); |
| } |
| |
| // Tests that Field(&Foo::field, m) works when field's type and m's |
| // argument type are compatible but not the same. |
| TEST(FieldTest, WorksForCompatibleMatcherType) { |
| // The field is an int, but the inner matcher expects a signed char. |
| Matcher<const AStruct&> m = Field(&AStruct::x, Matcher<signed char>(Ge(0))); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(a)); |
| } |
| |
| // Tests that Field() can describe itself. |
| TEST(FieldTest, CanDescribeSelf) { |
| Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); |
| |
| EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); |
| } |
| |
| TEST(FieldTest, CanDescribeSelfWithFieldName) { |
| Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0)); |
| |
| EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose field `field_name` isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| // Tests that Field() can explain the match result. |
| TEST_P(FieldTestP, CanExplainMatchResult) { |
| Matcher<const AStruct&> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| a.x = 1; |
| EXPECT_EQ("whose given field is 1" + OfType("int"), Explain(m, a)); |
| |
| m = Field(&AStruct::x, GreaterThan(0)); |
| EXPECT_EQ( |
| "whose given field is 1" + OfType("int") + ", which is 1 more than 0", |
| Explain(m, a)); |
| } |
| |
| TEST_P(FieldTestP, CanExplainMatchResultWithFieldName) { |
| Matcher<const AStruct&> m = Field("field_name", &AStruct::x, Ge(0)); |
| |
| AStruct a; |
| a.x = 1; |
| EXPECT_EQ("whose field `field_name` is 1" + OfType("int"), Explain(m, a)); |
| |
| m = Field("field_name", &AStruct::x, GreaterThan(0)); |
| EXPECT_EQ("whose field `field_name` is 1" + OfType("int") + |
| ", which is 1 more than 0", |
| Explain(m, a)); |
| } |
| |
| INSTANTIATE_GTEST_MATCHER_TEST_P(FieldForPointerTest); |
| |
| // Tests that Field() works when the argument is a pointer to const. |
| TEST(FieldForPointerTest, WorksForPointerToConst) { |
| Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(&a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Field() works when the argument is a pointer to non-const. |
| TEST(FieldForPointerTest, WorksForPointerToNonConst) { |
| Matcher<AStruct*> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(&a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Field() works when the argument is a reference to a const pointer. |
| TEST(FieldForPointerTest, WorksForReferenceToConstPointer) { |
| Matcher<AStruct* const&> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| EXPECT_TRUE(m.Matches(&a)); |
| a.x = -1; |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Field() does not match the NULL pointer. |
| TEST(FieldForPointerTest, DoesNotMatchNull) { |
| Matcher<const AStruct*> m = Field(&AStruct::x, _); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| // Tests that Field(&Foo::field, ...) works when the argument's type |
| // is a sub-type of const Foo*. |
| TEST(FieldForPointerTest, WorksForArgumentOfSubType) { |
| // Note that the matcher expects DerivedStruct but we say AStruct |
| // inside Field(). |
| Matcher<DerivedStruct*> m = Field(&AStruct::x, Ge(0)); |
| |
| DerivedStruct d; |
| EXPECT_TRUE(m.Matches(&d)); |
| d.x = -1; |
| EXPECT_FALSE(m.Matches(&d)); |
| } |
| |
| // Tests that Field() can describe itself when used to match a pointer. |
| TEST(FieldForPointerTest, CanDescribeSelf) { |
| Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); |
| |
| EXPECT_EQ("is an object whose given field is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose given field isn't >= 0", DescribeNegation(m)); |
| } |
| |
| TEST(FieldForPointerTest, CanDescribeSelfWithFieldName) { |
| Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0)); |
| |
| EXPECT_EQ("is an object whose field `field_name` is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose field `field_name` isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| // Tests that Field() can explain the result of matching a pointer. |
| TEST_P(FieldForPointerTestP, CanExplainMatchResult) { |
| Matcher<const AStruct*> m = Field(&AStruct::x, Ge(0)); |
| |
| AStruct a; |
| a.x = 1; |
| EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(nullptr))); |
| EXPECT_EQ("which points to an object whose given field is 1" + OfType("int"), |
| Explain(m, &a)); |
| |
| m = Field(&AStruct::x, GreaterThan(0)); |
| EXPECT_EQ("which points to an object whose given field is 1" + OfType("int") + |
| ", which is 1 more than 0", |
| Explain(m, &a)); |
| } |
| |
| TEST_P(FieldForPointerTestP, CanExplainMatchResultWithFieldName) { |
| Matcher<const AStruct*> m = Field("field_name", &AStruct::x, Ge(0)); |
| |
| AStruct a; |
| a.x = 1; |
| EXPECT_EQ("", Explain(m, static_cast<const AStruct*>(nullptr))); |
| EXPECT_EQ( |
| "which points to an object whose field `field_name` is 1" + OfType("int"), |
| Explain(m, &a)); |
| |
| m = Field("field_name", &AStruct::x, GreaterThan(0)); |
| EXPECT_EQ("which points to an object whose field `field_name` is 1" + |
| OfType("int") + ", which is 1 more than 0", |
| Explain(m, &a)); |
| } |
| |
| // A user-defined class for testing Property(). |
| class AClass { |
| public: |
| AClass() : n_(0) {} |
| |
| // A getter that returns a non-reference. |
| int n() const { return n_; } |
| |
| void set_n(int new_n) { n_ = new_n; } |
| |
| // A getter that returns a reference to const. |
| const std::string& s() const { return s_; } |
| |
| const std::string& s_ref() const& { return s_; } |
| |
| void set_s(const std::string& new_s) { s_ = new_s; } |
| |
| // A getter that returns a reference to non-const. |
| double& x() const { return x_; } |
| |
| private: |
| int n_; |
| std::string s_; |
| |
| static double x_; |
| }; |
| |
| double AClass::x_ = 0.0; |
| |
| // A derived class for testing Property(). |
| class DerivedClass : public AClass { |
| public: |
| int k() const { return k_; } |
| |
| private: |
| int k_; |
| }; |
| |
| INSTANTIATE_GTEST_MATCHER_TEST_P(PropertyTest); |
| |
| // Tests that Property(&Foo::property, ...) works when property() |
| // returns a non-reference. |
| TEST(PropertyTest, WorksForNonReferenceProperty) { |
| Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); |
| Matcher<const AClass&> m_with_name = Property("n", &AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| |
| a.set_n(-1); |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when property() |
| // returns a reference to const. |
| TEST(PropertyTest, WorksForReferenceToConstProperty) { |
| Matcher<const AClass&> m = Property(&AClass::s, StartsWith("hi")); |
| Matcher<const AClass&> m_with_name = |
| Property("s", &AClass::s, StartsWith("hi")); |
| |
| AClass a; |
| a.set_s("hill"); |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| |
| a.set_s("hole"); |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when property() is |
| // ref-qualified. |
| TEST(PropertyTest, WorksForRefQualifiedProperty) { |
| Matcher<const AClass&> m = Property(&AClass::s_ref, StartsWith("hi")); |
| Matcher<const AClass&> m_with_name = |
| Property("s", &AClass::s_ref, StartsWith("hi")); |
| |
| AClass a; |
| a.set_s("hill"); |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| |
| a.set_s("hole"); |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when property() |
| // returns a reference to non-const. |
| TEST(PropertyTest, WorksForReferenceToNonConstProperty) { |
| double x = 0.0; |
| AClass a; |
| |
| Matcher<const AClass&> m = Property(&AClass::x, Ref(x)); |
| EXPECT_FALSE(m.Matches(a)); |
| |
| m = Property(&AClass::x, Not(Ref(x))); |
| EXPECT_TRUE(m.Matches(a)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when the argument is |
| // passed by value. |
| TEST(PropertyTest, WorksForByValueArgument) { |
| Matcher<AClass> m = Property(&AClass::s, StartsWith("hi")); |
| |
| AClass a; |
| a.set_s("hill"); |
| EXPECT_TRUE(m.Matches(a)); |
| |
| a.set_s("hole"); |
| EXPECT_FALSE(m.Matches(a)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when the argument's |
| // type is a sub-type of Foo. |
| TEST(PropertyTest, WorksForArgumentOfSubType) { |
| // The matcher expects a DerivedClass, but inside the Property() we |
| // say AClass. |
| Matcher<const DerivedClass&> m = Property(&AClass::n, Ge(0)); |
| |
| DerivedClass d; |
| d.set_n(1); |
| EXPECT_TRUE(m.Matches(d)); |
| |
| d.set_n(-1); |
| EXPECT_FALSE(m.Matches(d)); |
| } |
| |
| // Tests that Property(&Foo::property, m) works when property()'s type |
| // and m's argument type are compatible but different. |
| TEST(PropertyTest, WorksForCompatibleMatcherType) { |
| // n() returns an int but the inner matcher expects a signed char. |
| Matcher<const AClass&> m = Property(&AClass::n, Matcher<signed char>(Ge(0))); |
| |
| Matcher<const AClass&> m_with_name = |
| Property("n", &AClass::n, Matcher<signed char>(Ge(0))); |
| |
| AClass a; |
| EXPECT_TRUE(m.Matches(a)); |
| EXPECT_TRUE(m_with_name.Matches(a)); |
| a.set_n(-1); |
| EXPECT_FALSE(m.Matches(a)); |
| EXPECT_FALSE(m_with_name.Matches(a)); |
| } |
| |
| // Tests that Property() can describe itself. |
| TEST(PropertyTest, CanDescribeSelf) { |
| Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); |
| |
| EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose given property isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| TEST(PropertyTest, CanDescribeSelfWithPropertyName) { |
| Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0)); |
| |
| EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| // Tests that Property() can explain the match result. |
| TEST_P(PropertyTestP, CanExplainMatchResult) { |
| Matcher<const AClass&> m = Property(&AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_EQ("whose given property is 1" + OfType("int"), Explain(m, a)); |
| |
| m = Property(&AClass::n, GreaterThan(0)); |
| EXPECT_EQ( |
| "whose given property is 1" + OfType("int") + ", which is 1 more than 0", |
| Explain(m, a)); |
| } |
| |
| TEST_P(PropertyTestP, CanExplainMatchResultWithPropertyName) { |
| Matcher<const AClass&> m = Property("fancy_name", &AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int"), Explain(m, a)); |
| |
| m = Property("fancy_name", &AClass::n, GreaterThan(0)); |
| EXPECT_EQ("whose property `fancy_name` is 1" + OfType("int") + |
| ", which is 1 more than 0", |
| Explain(m, a)); |
| } |
| |
| INSTANTIATE_GTEST_MATCHER_TEST_P(PropertyForPointerTest); |
| |
| // Tests that Property() works when the argument is a pointer to const. |
| TEST(PropertyForPointerTest, WorksForPointerToConst) { |
| Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_TRUE(m.Matches(&a)); |
| |
| a.set_n(-1); |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Property() works when the argument is a pointer to non-const. |
| TEST(PropertyForPointerTest, WorksForPointerToNonConst) { |
| Matcher<AClass*> m = Property(&AClass::s, StartsWith("hi")); |
| |
| AClass a; |
| a.set_s("hill"); |
| EXPECT_TRUE(m.Matches(&a)); |
| |
| a.set_s("hole"); |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Property() works when the argument is a reference to a |
| // const pointer. |
| TEST(PropertyForPointerTest, WorksForReferenceToConstPointer) { |
| Matcher<AClass* const&> m = Property(&AClass::s, StartsWith("hi")); |
| |
| AClass a; |
| a.set_s("hill"); |
| EXPECT_TRUE(m.Matches(&a)); |
| |
| a.set_s("hole"); |
| EXPECT_FALSE(m.Matches(&a)); |
| } |
| |
| // Tests that Property() does not match the NULL pointer. |
| TEST(PropertyForPointerTest, WorksForReferenceToNonConstProperty) { |
| Matcher<const AClass*> m = Property(&AClass::x, _); |
| EXPECT_FALSE(m.Matches(nullptr)); |
| } |
| |
| // Tests that Property(&Foo::property, ...) works when the argument's |
| // type is a sub-type of const Foo*. |
| TEST(PropertyForPointerTest, WorksForArgumentOfSubType) { |
| // The matcher expects a DerivedClass, but inside the Property() we |
| // say AClass. |
| Matcher<const DerivedClass*> m = Property(&AClass::n, Ge(0)); |
| |
| DerivedClass d; |
| d.set_n(1); |
| EXPECT_TRUE(m.Matches(&d)); |
| |
| d.set_n(-1); |
| EXPECT_FALSE(m.Matches(&d)); |
| } |
| |
| // Tests that Property() can describe itself when used to match a pointer. |
| TEST(PropertyForPointerTest, CanDescribeSelf) { |
| Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); |
| |
| EXPECT_EQ("is an object whose given property is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose given property isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| TEST(PropertyForPointerTest, CanDescribeSelfWithPropertyDescription) { |
| Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0)); |
| |
| EXPECT_EQ("is an object whose property `fancy_name` is >= 0", Describe(m)); |
| EXPECT_EQ("is an object whose property `fancy_name` isn't >= 0", |
| DescribeNegation(m)); |
| } |
| |
| // Tests that Property() can explain the result of matching a pointer. |
| TEST_P(PropertyForPointerTestP, CanExplainMatchResult) { |
| Matcher<const AClass*> m = Property(&AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_EQ("", Explain(m, static_cast<const AClass*>(nullptr))); |
| EXPECT_EQ( |
| "which points to an object whose given property is 1" + OfType("int"), |
| Explain(m, &a)); |
| |
| m = Property(&AClass::n, GreaterThan(0)); |
| EXPECT_EQ("which points to an object whose given property is 1" + |
| OfType("int") + ", which is 1 more than 0", |
| Explain(m, &a)); |
| } |
| |
| TEST_P(PropertyForPointerTestP, CanExplainMatchResultWithPropertyName) { |
| Matcher<const AClass*> m = Property("fancy_name", &AClass::n, Ge(0)); |
| |
| AClass a; |
| a.set_n(1); |
| EXPECT_EQ("", Explain(m, static_cast<const AClass*>(nullptr))); |
| EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + |
| OfType("int"), |
| Explain(m, &a)); |
| |
| m = Property("fancy_name", &AClass::n, GreaterThan(0)); |
| EXPECT_EQ("which points to an object whose property `fancy_name` is 1" + |
| OfType("int") + ", which is 1 more than 0", |
| Explain(m, &a)); |
| } |
| |
| // Tests ResultOf. |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f is a |
| // function pointer. |
| std::string IntToStringFunction(int input) { |
| return input == 1 ? "foo" : "bar"; |
| } |
| |
| INSTANTIATE_GTEST_MATCHER_TEST_P(ResultOfTest); |
| |
| TEST(ResultOfTest, WorksForFunctionPointers) { |
| Matcher<int> matcher = ResultOf(&IntToStringFunction, Eq(std::string("foo"))); |
| |
| EXPECT_TRUE(matcher.Matches(1)); |
| EXPECT_FALSE(matcher.Matches(2)); |
| } |
| |
| // Tests that ResultOf() can describe itself. |
| TEST(ResultOfTest, CanDescribeItself) { |
| Matcher<int> matcher = ResultOf(&IntToStringFunction, StrEq("foo")); |
| |
| EXPECT_EQ( |
| "is mapped by the given callable to a value that " |
| "is equal to \"foo\"", |
| Describe(matcher)); |
| EXPECT_EQ( |
| "is mapped by the given callable to a value that " |
| "isn't equal to \"foo\"", |
| DescribeNegation(matcher)); |
| } |
| |
| // Tests that ResultOf() can describe itself when provided a result description. |
| TEST(ResultOfTest, CanDescribeItselfWithResultDescription) { |
| Matcher<int> matcher = |
| ResultOf("string conversion", &IntToStringFunction, StrEq("foo")); |
| |
| EXPECT_EQ("whose string conversion is equal to \"foo\"", Describe(matcher)); |
| EXPECT_EQ("whose string conversion isn't equal to \"foo\"", |
| DescribeNegation(matcher)); |
| } |
| |
| // Tests that ResultOf() can explain the match result. |
| int IntFunction(int input) { return input == 42 ? 80 : 90; } |
| |
| TEST_P(ResultOfTestP, CanExplainMatchResult) { |
| Matcher<int> matcher = ResultOf(&IntFunction, Ge(85)); |
| EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int"), |
| Explain(matcher, 36)); |
| |
| matcher = ResultOf(&IntFunction, GreaterThan(85)); |
| EXPECT_EQ("which is mapped by the given callable to 90" + OfType("int") + |
| ", which is 5 more than 85", |
| Explain(matcher, 36)); |
| } |
| |
| TEST_P(ResultOfTestP, CanExplainMatchResultWithResultDescription) { |
| Matcher<int> matcher = ResultOf("magic int conversion", &IntFunction, Ge(85)); |
| EXPECT_EQ("whose magic int conversion is 90" + OfType("int"), |
| Explain(matcher, 36)); |
| |
| matcher = ResultOf("magic int conversion", &IntFunction, GreaterThan(85)); |
| EXPECT_EQ("whose magic int conversion is 90" + OfType("int") + |
| ", which is 5 more than 85", |
| Explain(matcher, 36)); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f(x) |
| // returns a non-reference. |
| TEST(ResultOfTest, WorksForNonReferenceResults) { |
| Matcher<int> matcher = ResultOf(&IntFunction, Eq(80)); |
| |
| EXPECT_TRUE(matcher.Matches(42)); |
| EXPECT_FALSE(matcher.Matches(36)); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f(x) |
| // returns a reference to non-const. |
| double& DoubleFunction(double& input) { return input; } // NOLINT |
| |
| Uncopyable& RefUncopyableFunction(Uncopyable& obj) { // NOLINT |
| return obj; |
| } |
| |
| TEST(ResultOfTest, WorksForReferenceToNonConstResults) { |
| double x = 3.14; |
| double x2 = x; |
| Matcher<double&> matcher = ResultOf(&DoubleFunction, Ref(x)); |
| |
| EXPECT_TRUE(matcher.Matches(x)); |
| EXPECT_FALSE(matcher.Matches(x2)); |
| |
| // Test that ResultOf works with uncopyable objects |
| Uncopyable obj(0); |
| Uncopyable obj2(0); |
| Matcher<Uncopyable&> matcher2 = ResultOf(&RefUncopyableFunction, Ref(obj)); |
| |
| EXPECT_TRUE(matcher2.Matches(obj)); |
| EXPECT_FALSE(matcher2.Matches(obj2)); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f(x) |
| // returns a reference to const. |
| const std::string& StringFunction(const std::string& input) { return input; } |
| |
| TEST(ResultOfTest, WorksForReferenceToConstResults) { |
| std::string s = "foo"; |
| std::string s2 = s; |
| Matcher<const std::string&> matcher = ResultOf(&StringFunction, Ref(s)); |
| |
| EXPECT_TRUE(matcher.Matches(s)); |
| EXPECT_FALSE(matcher.Matches(s2)); |
| } |
| |
| // Tests that ResultOf(f, m) works when f(x) and m's |
| // argument types are compatible but different. |
| TEST(ResultOfTest, WorksForCompatibleMatcherTypes) { |
| // IntFunction() returns int but the inner matcher expects a signed char. |
| Matcher<int> matcher = ResultOf(IntFunction, Matcher<signed char>(Ge(85))); |
| |
| EXPECT_TRUE(matcher.Matches(36)); |
| EXPECT_FALSE(matcher.Matches(42)); |
| } |
| |
| // Tests that the program aborts when ResultOf is passed |
| // a NULL function pointer. |
| TEST(ResultOfDeathTest, DiesOnNullFunctionPointers) { |
| EXPECT_DEATH_IF_SUPPORTED( |
| ResultOf(static_cast<std::string (*)(int dummy)>(nullptr), |
| Eq(std::string("foo"))), |
| "NULL function pointer is passed into ResultOf\\(\\)\\."); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f is a |
| // function reference. |
| TEST(ResultOfTest, WorksForFunctionReferences) { |
| Matcher<int> matcher = ResultOf(IntToStringFunction, StrEq("foo")); |
| EXPECT_TRUE(matcher.Matches(1)); |
| EXPECT_FALSE(matcher.Matches(2)); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f is a |
| // function object. |
| struct Functor { |
| std::string operator()(int input) const { return IntToStringFunction(input); } |
| }; |
| |
| TEST(ResultOfTest, WorksForFunctors) { |
| Matcher<int> matcher = ResultOf(Functor(), Eq(std::string("foo"))); |
| |
| EXPECT_TRUE(matcher.Matches(1)); |
| EXPECT_FALSE(matcher.Matches(2)); |
| } |
| |
| // Tests that ResultOf(f, ...) compiles and works as expected when f is a |
| // functor with more than one operator() defined. ResultOf() must work |
| // for each defined operator(). |
| struct PolymorphicFunctor { |
| typedef int result_type; |
| int operator()(int n) { return n; } |
| int operator()(const char* s) { return static_cast<int>(strlen(s)); } |
| std::string operator()(int* p) { return p ? "good ptr" : "null"; } |
| }; |
| |
| TEST(ResultOfTest, WorksForPolymorphicFunctors) { |
| Matcher<int> matcher_int = ResultOf(PolymorphicFunctor(), Ge(5)); |
| |
| EXPECT_TRUE(matcher_int.Matches(10)); |
| EXPECT_FALSE(matcher_int.Matches(2)); |
| |
| Matcher<const char*> matcher_string = ResultOf(PolymorphicFunctor(), Ge(5)); |
| |
| EXPECT_TRUE(matcher_string.Matches("long string")); |
| EXPECT_FALSE(matcher_string.Matches("shrt")); |
| } |
| |
| TEST(ResultOfTest, WorksForPolymorphicFunctorsIgnoringResultType) { |
| Matcher<int*> matcher = ResultOf(PolymorphicFunctor(), "good ptr"); |
| |
| int n = 0; |
| EXPECT_TRUE(matcher.Matches(&n)); |
| EXPECT_FALSE(matcher.Matches(nullptr)); |
| } |
| |
| TEST(ResultOfTest, WorksForLambdas) { |
| Matcher<int> matcher = ResultOf( |
| [](int str_len) { |
| return std::string(static_cast<size_t>(str_len), 'x'); |
| }, |
| "xxx"); |
| EXPECT_TRUE(matcher.Matches(3)); |
| EXPECT_FALSE(matcher.Matches(1)); |
| } |
| |
| TEST(ResultOfTest, WorksForNonCopyableArguments) { |
| Matcher<std::unique_ptr<int>> matcher = ResultOf( |
| [](const std::unique_ptr<int>& str_len) { |
| return std::string(static_cast<size_t>(*str_len), 'x'); |
| }, |
| "xxx"); |
| EXPECT_TRUE(matcher.Matches(std::unique_ptr<int>(new int(3)))); |
| EXPECT_FALSE(matcher.Matches(std::unique_ptr<int>(new int(1)))); |
| } |
| |
| const int* ReferencingFunction(const int& n) { return &n; } |
| |
| struct ReferencingFunctor { |
| typedef const int* result_type; |
| result_type operator()(const int& n) { return &n; } |
| }; |
| |
| TEST(ResultOfTest, WorksForReferencingCallables) { |
| const int n = 1; |
| const int n2 = 1; |
| Matcher<const int&> matcher2 = ResultOf(ReferencingFunction, Eq(&n)); |
| EXPECT_TRUE(matcher2.Matches(n)); |
| EXPECT_FALSE(matcher2.Matches(n2)); |
| |
| Matcher<const int&> matcher3 = ResultOf(ReferencingFunctor(), Eq(&n)); |
| EXPECT_TRUE(matcher3.Matches(n)); |
| EXPECT_FALSE(matcher3.Matches(n2)); |
| } |
| |
| TEST(SizeIsTest, ImplementsSizeIs) { |
| vector<int> container; |
| EXPECT_THAT(container, SizeIs(0)); |
| EXPECT_THAT(container, Not(SizeIs(1))); |
| container.push_back(0); |
| EXPECT_THAT(container, Not(SizeIs(0))); |
| EXPECT_THAT(container, SizeIs(1)); |
| container.push_back(0); |
| EXPECT_THAT(container, Not(SizeIs(0))); |
| EXPECT_THAT(container, SizeIs(2)); |
| } |
| |
| TEST(SizeIsTest, WorksWithMap) { |
| map<std::string, int> container; |
| EXPECT_THAT(container, SizeIs(0)); |
| EXPECT_THAT(container, Not(SizeIs(1))); |
| container.insert(make_pair("foo", 1)); |
| EXPECT_THAT(container, Not(SizeIs(0))); |
| EXPECT_THAT(container, SizeIs(1)); |
| container.insert(make_pair("bar", 2)); |
| EXPECT_THAT(container, Not(SizeIs(0))); |
| EXPECT_THAT(container, SizeIs(2)); |
| } |
| |
| TEST(SizeIsTest, WorksWithReferences) { |
| vector<int> container; |
| Matcher<const vector<int>&> m = SizeIs(1); |
| EXPECT_THAT(container, Not(m)); |
| container.push_back(0); |
| EXPECT_THAT(container, m); |
| } |
| |
| TEST(SizeIsTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(SizeIs(3))); |
| helper.Call(MakeUniquePtrs({1, 2, 3})); |
| } |
| |
| // SizeIs should work for any type that provides a size() member function. |
| // For example, a size_type member type should not need to be provided. |
| struct MinimalistCustomType { |
| int size() const { return 1; } |
| }; |
| TEST(SizeIsTest, WorksWithMinimalistCustomType) { |
| MinimalistCustomType container; |
| EXPECT_THAT(container, SizeIs(1)); |
| EXPECT_THAT(container, Not(SizeIs(0))); |
| } |
| |
| TEST(SizeIsTest, CanDescribeSelf) { |
| Matcher<vector<int>> m = SizeIs(2); |
| EXPECT_EQ("has a size that is equal to 2", Describe(m)); |
| EXPECT_EQ("has a size that isn't equal to 2", DescribeNegation(m)); |
| } |
| |
| TEST(SizeIsTest, ExplainsResult) { |
| Matcher<vector<int>> m1 = SizeIs(2); |
| Matcher<vector<int>> m2 = SizeIs(Lt(2u)); |
| Matcher<vector<int>> m3 = SizeIs(AnyOf(0, 3)); |
| Matcher<vector<int>> m4 = SizeIs(Gt(1u)); |
| vector<int> container; |
| EXPECT_EQ("whose size 0 doesn't match", Explain(m1, container)); |
| EXPECT_EQ("whose size 0 matches", Explain(m2, container)); |
| EXPECT_EQ("whose size 0 matches", Explain(m3, container)); |
| EXPECT_EQ("whose size 0 doesn't match", Explain(m4, container)); |
| container.push_back(0); |
| container.push_back(0); |
| EXPECT_EQ("whose size 2 matches", Explain(m1, container)); |
| EXPECT_EQ("whose size 2 doesn't match", Explain(m2, container)); |
| EXPECT_EQ("whose size 2 doesn't match", Explain(m3, container)); |
| EXPECT_EQ("whose size 2 matches", Explain(m4, container)); |
| } |
| |
| TEST(WhenSortedByTest, WorksForEmptyContainer) { |
| const vector<int> numbers; |
| EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre())); |
| EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1)))); |
| } |
| |
| TEST(WhenSortedByTest, WorksForNonEmptyContainer) { |
| vector<unsigned> numbers; |
| numbers.push_back(3); |
| numbers.push_back(1); |
| numbers.push_back(2); |
| numbers.push_back(2); |
| EXPECT_THAT(numbers, |
| WhenSortedBy(greater<unsigned>(), ElementsAre(3, 2, 2, 1))); |
| EXPECT_THAT(numbers, |
| Not(WhenSortedBy(greater<unsigned>(), ElementsAre(1, 2, 2, 3)))); |
| } |
| |
| TEST(WhenSortedByTest, WorksForNonVectorContainer) { |
| list<std::string> words; |
| words.push_back("say"); |
| words.push_back("hello"); |
| words.push_back("world"); |
| EXPECT_THAT(words, WhenSortedBy(less<std::string>(), |
| ElementsAre("hello", "say", "world"))); |
| EXPECT_THAT(words, Not(WhenSortedBy(less<std::string>(), |
| ElementsAre("say", "hello", "world")))); |
| } |
| |
| TEST(WhenSortedByTest, WorksForNativeArray) { |
| const int numbers[] = {1, 3, 2, 4}; |
| const int sorted_numbers[] = {1, 2, 3, 4}; |
| EXPECT_THAT(numbers, WhenSortedBy(less<int>(), ElementsAre(1, 2, 3, 4))); |
| EXPECT_THAT(numbers, |
| WhenSortedBy(less<int>(), ElementsAreArray(sorted_numbers))); |
| EXPECT_THAT(numbers, Not(WhenSortedBy(less<int>(), ElementsAre(1, 3, 2, 4)))); |
| } |
| |
| TEST(WhenSortedByTest, CanDescribeSelf) { |
| const Matcher<vector<int>> m = WhenSortedBy(less<int>(), ElementsAre(1, 2)); |
| EXPECT_EQ( |
| "(when sorted) has 2 elements where\n" |
| "element #0 is equal to 1,\n" |
| "element #1 is equal to 2", |
| Describe(m)); |
| EXPECT_EQ( |
| "(when sorted) doesn't have 2 elements, or\n" |
| "element #0 isn't equal to 1, or\n" |
| "element #1 isn't equal to 2", |
| DescribeNegation(m)); |
| } |
| |
| TEST(WhenSortedByTest, ExplainsMatchResult) { |
| const int a[] = {2, 1}; |
| EXPECT_EQ("which is { 1, 2 } when sorted, whose element #0 doesn't match", |
| Explain(WhenSortedBy(less<int>(), ElementsAre(2, 3)), a)); |
| EXPECT_EQ("which is { 1, 2 } when sorted", |
| Explain(WhenSortedBy(less<int>(), ElementsAre(1, 2)), a)); |
| } |
| |
| // WhenSorted() is a simple wrapper on WhenSortedBy(). Hence we don't |
| // need to test it as exhaustively as we test the latter. |
| |
| TEST(WhenSortedTest, WorksForEmptyContainer) { |
| const vector<int> numbers; |
| EXPECT_THAT(numbers, WhenSorted(ElementsAre())); |
| EXPECT_THAT(numbers, Not(WhenSorted(ElementsAre(1)))); |
| } |
| |
| TEST(WhenSortedTest, WorksForNonEmptyContainer) { |
| list<std::string> words; |
| words.push_back("3"); |
| words.push_back("1"); |
| words.push_back("2"); |
| words.push_back("2"); |
| EXPECT_THAT(words, WhenSorted(ElementsAre("1", "2", "2", "3"))); |
| EXPECT_THAT(words, Not(WhenSorted(ElementsAre("3", "1", "2", "2")))); |
| } |
| |
| TEST(WhenSortedTest, WorksForMapTypes) { |
| map<std::string, int> word_counts; |
| word_counts["and"] = 1; |
| word_counts["the"] = 1; |
| word_counts["buffalo"] = 2; |
| EXPECT_THAT(word_counts, |
| WhenSorted(ElementsAre(Pair("and", 1), Pair("buffalo", 2), |
| Pair("the", 1)))); |
| EXPECT_THAT(word_counts, |
| Not(WhenSorted(ElementsAre(Pair("and", 1), Pair("the", 1), |
| Pair("buffalo", 2))))); |
| } |
| |
| TEST(WhenSortedTest, WorksForMultiMapTypes) { |
| multimap<int, int> ifib; |
| ifib.insert(make_pair(8, 6)); |
| ifib.insert(make_pair(2, 3)); |
| ifib.insert(make_pair(1, 1)); |
| ifib.insert(make_pair(3, 4)); |
| ifib.insert(make_pair(1, 2)); |
| ifib.insert(make_pair(5, 5)); |
| EXPECT_THAT(ifib, |
| WhenSorted(ElementsAre(Pair(1, 1), Pair(1, 2), Pair(2, 3), |
| Pair(3, 4), Pair(5, 5), Pair(8, 6)))); |
| EXPECT_THAT(ifib, |
| Not(WhenSorted(ElementsAre(Pair(8, 6), Pair(2, 3), Pair(1, 1), |
| Pair(3, 4), Pair(1, 2), Pair(5, 5))))); |
| } |
| |
| TEST(WhenSortedTest, WorksForPolymorphicMatcher) { |
| std::deque<int> d; |
| d.push_back(2); |
| d.push_back(1); |
| EXPECT_THAT(d, WhenSorted(ElementsAre(1, 2))); |
| EXPECT_THAT(d, Not(WhenSorted(ElementsAre(2, 1)))); |
| } |
| |
| TEST(WhenSortedTest, WorksForVectorConstRefMatcher) { |
| std::deque<int> d; |
| d.push_back(2); |
| d.push_back(1); |
| Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2); |
| EXPECT_THAT(d, WhenSorted(vector_match)); |
| Matcher<const std::vector<int>&> not_vector_match = ElementsAre(2, 1); |
| EXPECT_THAT(d, Not(WhenSorted(not_vector_match))); |
| } |
| |
| // Deliberately bare pseudo-container. |
| // Offers only begin() and end() accessors, yielding InputIterator. |
| template <typename T> |
| class Streamlike { |
| private: |
| class ConstIter; |
| |
| public: |
| typedef ConstIter const_iterator; |
| typedef T value_type; |
| |
| template <typename InIter> |
| Streamlike(InIter first, InIter last) : remainder_(first, last) {} |
| |
| const_iterator begin() const { |
| return const_iterator(this, remainder_.begin()); |
| } |
| const_iterator end() const { return const_iterator(this, remainder_.end()); } |
| |
| private: |
| class ConstIter { |
| public: |
| using iterator_category = std::input_iterator_tag; |
| using value_type = T; |
| using difference_type = ptrdiff_t; |
| using pointer = const value_type*; |
| using reference = const value_type&; |
| |
| ConstIter(const Streamlike* s, typename std::list<value_type>::iterator pos) |
| : s_(s), pos_(pos) {} |
| |
| const value_type& operator*() const { return *pos_; } |
| const value_type* operator->() const { return &*pos_; } |
| ConstIter& operator++() { |
| s_->remainder_.erase(pos_++); |
| return *this; |
| } |
| |
| // *iter++ is required to work (see std::istreambuf_iterator). |
| // (void)iter++ is also required to work. |
| class PostIncrProxy { |
| public: |
| explicit PostIncrProxy(const value_type& value) : value_(value) {} |
| value_type operator*() const { return value_; } |
| |
| private: |
| value_type value_; |
| }; |
| PostIncrProxy operator++(int) { |
| PostIncrProxy proxy(**this); |
| ++(*this); |
| return proxy; |
| } |
| |
| friend bool operator==(const ConstIter& a, const ConstIter& b) { |
| return a.s_ == b.s_ && a.pos_ == b.pos_; |
| } |
| friend bool operator!=(const ConstIter& a, const ConstIter& b) { |
| return !(a == b); |
| } |
| |
| private: |
| const Streamlike* s_; |
| typename std::list<value_type>::iterator pos_; |
| }; |
| |
| friend std::ostream& operator<<(std::ostream& os, const Streamlike& s) { |
| os << "["; |
| typedef typename std::list<value_type>::const_iterator Iter; |
| const char* sep = ""; |
| for (Iter it = s.remainder_.begin(); it != s.remainder_.end(); ++it) { |
| os << sep << *it; |
| sep = ","; |
| } |
| os << "]"; |
| return os; |
| } |
| |
| mutable std::list<value_type> remainder_; // modified by iteration |
| }; |
| |
| TEST(StreamlikeTest, Iteration) { |
| const int a[5] = {2, 1, 4, 5, 3}; |
| Streamlike<int> s(a, a + 5); |
| Streamlike<int>::const_iterator it = s.begin(); |
| const int* ip = a; |
| while (it != s.end()) { |
| SCOPED_TRACE(ip - a); |
| EXPECT_EQ(*ip++, *it++); |
| } |
| } |
| |
| INSTANTIATE_GTEST_MATCHER_TEST_P(BeginEndDistanceIsTest); |
| |
| TEST(BeginEndDistanceIsTest, WorksWithForwardList) { |
| std::forward_list<int> container; |
| EXPECT_THAT(container, BeginEndDistanceIs(0)); |
| EXPECT_THAT(container, Not(BeginEndDistanceIs(1))); |
| container.push_front(0); |
| EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); |
| EXPECT_THAT(container, BeginEndDistanceIs(1)); |
| container.push_front(0); |
| EXPECT_THAT(container, Not(BeginEndDistanceIs(0))); |
| EXPECT_THAT(container, BeginEndDistanceIs(2)); |
| } |
| |
| TEST(BeginEndDistanceIsTest, WorksWithNonStdList) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| Streamlike<int> s(a, a + 5); |
| EXPECT_THAT(s, BeginEndDistanceIs(5)); |
| } |
| |
| TEST(BeginEndDistanceIsTest, CanDescribeSelf) { |
| Matcher<vector<int>> m = BeginEndDistanceIs(2); |
| EXPECT_EQ("distance between begin() and end() is equal to 2", Describe(m)); |
| EXPECT_EQ("distance between begin() and end() isn't equal to 2", |
| DescribeNegation(m)); |
| } |
| |
| TEST(BeginEndDistanceIsTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(BeginEndDistanceIs(2))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| } |
| |
| TEST_P(BeginEndDistanceIsTestP, ExplainsResult) { |
| Matcher<vector<int>> m1 = BeginEndDistanceIs(2); |
| Matcher<vector<int>> m2 = BeginEndDistanceIs(Lt(2)); |
| Matcher<vector<int>> m3 = BeginEndDistanceIs(AnyOf(0, 3)); |
| Matcher<vector<int>> m4 = BeginEndDistanceIs(GreaterThan(1)); |
| vector<int> container; |
| EXPECT_EQ("whose distance between begin() and end() 0 doesn't match", |
| Explain(m1, container)); |
| EXPECT_EQ("whose distance between begin() and end() 0 matches", |
| Explain(m2, container)); |
| EXPECT_EQ("whose distance between begin() and end() 0 matches", |
| Explain(m3, container)); |
| EXPECT_EQ( |
| "whose distance between begin() and end() 0 doesn't match, which is 1 " |
| "less than 1", |
| Explain(m4, container)); |
| container.push_back(0); |
| container.push_back(0); |
| EXPECT_EQ("whose distance between begin() and end() 2 matches", |
| Explain(m1, container)); |
| EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", |
| Explain(m2, container)); |
| EXPECT_EQ("whose distance between begin() and end() 2 doesn't match", |
| Explain(m3, container)); |
| EXPECT_EQ( |
| "whose distance between begin() and end() 2 matches, which is 1 more " |
| "than 1", |
| Explain(m4, container)); |
| } |
| |
| TEST(WhenSortedTest, WorksForStreamlike) { |
| // Streamlike 'container' provides only minimal iterator support. |
| // Its iterators are tagged with input_iterator_tag. |
| const int a[5] = {2, 1, 4, 5, 3}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| EXPECT_THAT(s, WhenSorted(ElementsAre(1, 2, 3, 4, 5))); |
| EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); |
| } |
| |
| TEST(WhenSortedTest, WorksForVectorConstRefMatcherOnStreamlike) { |
| const int a[] = {2, 1, 4, 5, 3}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| Matcher<const std::vector<int>&> vector_match = ElementsAre(1, 2, 3, 4, 5); |
| EXPECT_THAT(s, WhenSorted(vector_match)); |
| EXPECT_THAT(s, Not(WhenSorted(ElementsAre(2, 1, 4, 5, 3)))); |
| } |
| |
| TEST(IsSupersetOfTest, WorksForNativeArray) { |
| const int subset[] = {1, 4}; |
| const int superset[] = {1, 2, 4}; |
| const int disjoint[] = {1, 0, 3}; |
| EXPECT_THAT(subset, IsSupersetOf(subset)); |
| EXPECT_THAT(subset, Not(IsSupersetOf(superset))); |
| EXPECT_THAT(superset, IsSupersetOf(subset)); |
| EXPECT_THAT(subset, Not(IsSupersetOf(disjoint))); |
| EXPECT_THAT(disjoint, Not(IsSupersetOf(subset))); |
| } |
| |
| TEST(IsSupersetOfTest, WorksWithDuplicates) { |
| const int not_enough[] = {1, 2}; |
| const int enough[] = {1, 1, 2}; |
| const int expected[] = {1, 1}; |
| EXPECT_THAT(not_enough, Not(IsSupersetOf(expected))); |
| EXPECT_THAT(enough, IsSupersetOf(expected)); |
| } |
| |
| TEST(IsSupersetOfTest, WorksForEmpty) { |
| vector<int> numbers; |
| vector<int> expected; |
| EXPECT_THAT(numbers, IsSupersetOf(expected)); |
| expected.push_back(1); |
| EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); |
| expected.clear(); |
| numbers.push_back(1); |
| numbers.push_back(2); |
| EXPECT_THAT(numbers, IsSupersetOf(expected)); |
| expected.push_back(1); |
| EXPECT_THAT(numbers, IsSupersetOf(expected)); |
| expected.push_back(2); |
| EXPECT_THAT(numbers, IsSupersetOf(expected)); |
| expected.push_back(3); |
| EXPECT_THAT(numbers, Not(IsSupersetOf(expected))); |
| } |
| |
| TEST(IsSupersetOfTest, WorksForStreamlike) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| |
| vector<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| expected.push_back(5); |
| EXPECT_THAT(s, IsSupersetOf(expected)); |
| |
| expected.push_back(0); |
| EXPECT_THAT(s, Not(IsSupersetOf(expected))); |
| } |
| |
| TEST(IsSupersetOfTest, TakesStlContainer) { |
| const int actual[] = {3, 1, 2}; |
| |
| ::std::list<int> expected; |
| expected.push_back(1); |
| expected.push_back(3); |
| EXPECT_THAT(actual, IsSupersetOf(expected)); |
| |
| expected.push_back(4); |
| EXPECT_THAT(actual, Not(IsSupersetOf(expected))); |
| } |
| |
| TEST(IsSupersetOfTest, Describe) { |
| typedef std::vector<int> IntVec; |
| IntVec expected; |
| expected.push_back(111); |
| expected.push_back(222); |
| expected.push_back(333); |
| EXPECT_THAT( |
| Describe<IntVec>(IsSupersetOf(expected)), |
| Eq("a surjection from elements to requirements exists such that:\n" |
| " - an element is equal to 111\n" |
| " - an element is equal to 222\n" |
| " - an element is equal to 333")); |
| } |
| |
| TEST(IsSupersetOfTest, DescribeNegation) { |
| typedef std::vector<int> IntVec; |
| IntVec expected; |
| expected.push_back(111); |
| expected.push_back(222); |
| expected.push_back(333); |
| EXPECT_THAT( |
| DescribeNegation<IntVec>(IsSupersetOf(expected)), |
| Eq("no surjection from elements to requirements exists such that:\n" |
| " - an element is equal to 111\n" |
| " - an element is equal to 222\n" |
| " - an element is equal to 333")); |
| } |
| |
| TEST(IsSupersetOfTest, MatchAndExplain) { |
| std::vector<int> v; |
| v.push_back(2); |
| v.push_back(3); |
| std::vector<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| StringMatchResultListener listener; |
| ASSERT_FALSE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), |
| Eq("where the following matchers don't match any elements:\n" |
| "matcher #0: is equal to 1")); |
| |
| v.push_back(1); |
| listener.Clear(); |
| ASSERT_TRUE(ExplainMatchResult(IsSupersetOf(expected), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), Eq("where:\n" |
| " - element #0 is matched by matcher #1,\n" |
| " - element #2 is matched by matcher #0")); |
| } |
| |
| TEST(IsSupersetOfTest, WorksForRhsInitializerList) { |
| const int numbers[] = {1, 3, 6, 2, 4, 5}; |
| EXPECT_THAT(numbers, IsSupersetOf({1, 2})); |
| EXPECT_THAT(numbers, Not(IsSupersetOf({3, 0}))); |
| } |
| |
| TEST(IsSupersetOfTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(IsSupersetOf({Pointee(1)}))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| EXPECT_CALL(helper, Call(Not(IsSupersetOf({Pointee(1), Pointee(2)})))); |
| helper.Call(MakeUniquePtrs({2})); |
| } |
| |
| TEST(IsSubsetOfTest, WorksForNativeArray) { |
| const int subset[] = {1, 4}; |
| const int superset[] = {1, 2, 4}; |
| const int disjoint[] = {1, 0, 3}; |
| EXPECT_THAT(subset, IsSubsetOf(subset)); |
| EXPECT_THAT(subset, IsSubsetOf(superset)); |
| EXPECT_THAT(superset, Not(IsSubsetOf(subset))); |
| EXPECT_THAT(subset, Not(IsSubsetOf(disjoint))); |
| EXPECT_THAT(disjoint, Not(IsSubsetOf(subset))); |
| } |
| |
| TEST(IsSubsetOfTest, WorksWithDuplicates) { |
| const int not_enough[] = {1, 2}; |
| const int enough[] = {1, 1, 2}; |
| const int actual[] = {1, 1}; |
| EXPECT_THAT(actual, Not(IsSubsetOf(not_enough))); |
| EXPECT_THAT(actual, IsSubsetOf(enough)); |
| } |
| |
| TEST(IsSubsetOfTest, WorksForEmpty) { |
| vector<int> numbers; |
| vector<int> expected; |
| EXPECT_THAT(numbers, IsSubsetOf(expected)); |
| expected.push_back(1); |
| EXPECT_THAT(numbers, IsSubsetOf(expected)); |
| expected.clear(); |
| numbers.push_back(1); |
| numbers.push_back(2); |
| EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); |
| expected.push_back(1); |
| EXPECT_THAT(numbers, Not(IsSubsetOf(expected))); |
| expected.push_back(2); |
| EXPECT_THAT(numbers, IsSubsetOf(expected)); |
| expected.push_back(3); |
| EXPECT_THAT(numbers, IsSubsetOf(expected)); |
| } |
| |
| TEST(IsSubsetOfTest, WorksForStreamlike) { |
| const int a[5] = {1, 2}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| |
| vector<int> expected; |
| expected.push_back(1); |
| EXPECT_THAT(s, Not(IsSubsetOf(expected))); |
| expected.push_back(2); |
| expected.push_back(5); |
| EXPECT_THAT(s, IsSubsetOf(expected)); |
| } |
| |
| TEST(IsSubsetOfTest, TakesStlContainer) { |
| const int actual[] = {3, 1, 2}; |
| |
| ::std::list<int> expected; |
| expected.push_back(1); |
| expected.push_back(3); |
| EXPECT_THAT(actual, Not(IsSubsetOf(expected))); |
| |
| expected.push_back(2); |
| expected.push_back(4); |
| EXPECT_THAT(actual, IsSubsetOf(expected)); |
| } |
| |
| TEST(IsSubsetOfTest, Describe) { |
| typedef std::vector<int> IntVec; |
| IntVec expected; |
| expected.push_back(111); |
| expected.push_back(222); |
| expected.push_back(333); |
| |
| EXPECT_THAT( |
| Describe<IntVec>(IsSubsetOf(expected)), |
| Eq("an injection from elements to requirements exists such that:\n" |
| " - an element is equal to 111\n" |
| " - an element is equal to 222\n" |
| " - an element is equal to 333")); |
| } |
| |
| TEST(IsSubsetOfTest, DescribeNegation) { |
| typedef std::vector<int> IntVec; |
| IntVec expected; |
| expected.push_back(111); |
| expected.push_back(222); |
| expected.push_back(333); |
| EXPECT_THAT( |
| DescribeNegation<IntVec>(IsSubsetOf(expected)), |
| Eq("no injection from elements to requirements exists such that:\n" |
| " - an element is equal to 111\n" |
| " - an element is equal to 222\n" |
| " - an element is equal to 333")); |
| } |
| |
| TEST(IsSubsetOfTest, MatchAndExplain) { |
| std::vector<int> v; |
| v.push_back(2); |
| v.push_back(3); |
| std::vector<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| StringMatchResultListener listener; |
| ASSERT_FALSE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), |
| Eq("where the following elements don't match any matchers:\n" |
| "element #1: 3")); |
| |
| expected.push_back(3); |
| listener.Clear(); |
| ASSERT_TRUE(ExplainMatchResult(IsSubsetOf(expected), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), Eq("where:\n" |
| " - element #0 is matched by matcher #1,\n" |
| " - element #1 is matched by matcher #2")); |
| } |
| |
| TEST(IsSubsetOfTest, WorksForRhsInitializerList) { |
| const int numbers[] = {1, 2, 3}; |
| EXPECT_THAT(numbers, IsSubsetOf({1, 2, 3, 4})); |
| EXPECT_THAT(numbers, Not(IsSubsetOf({1, 2}))); |
| } |
| |
| TEST(IsSubsetOfTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(IsSubsetOf({Pointee(1), Pointee(2)}))); |
| helper.Call(MakeUniquePtrs({1})); |
| EXPECT_CALL(helper, Call(Not(IsSubsetOf({Pointee(1)})))); |
| helper.Call(MakeUniquePtrs({2})); |
| } |
| |
| // Tests using ElementsAre() and ElementsAreArray() with stream-like |
| // "containers". |
| |
| TEST(ElemensAreStreamTest, WorksForStreamlike) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| EXPECT_THAT(s, ElementsAre(1, 2, 3, 4, 5)); |
| EXPECT_THAT(s, Not(ElementsAre(2, 1, 4, 5, 3))); |
| } |
| |
| TEST(ElemensAreArrayStreamTest, WorksForStreamlike) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| |
| vector<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| expected.push_back(3); |
| expected.push_back(4); |
| expected.push_back(5); |
| EXPECT_THAT(s, ElementsAreArray(expected)); |
| |
| expected[3] = 0; |
| EXPECT_THAT(s, Not(ElementsAreArray(expected))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithUncopyable) { |
| Uncopyable objs[2]; |
| objs[0].set_value(-3); |
| objs[1].set_value(1); |
| EXPECT_THAT(objs, ElementsAre(UncopyableIs(-3), Truly(ValueIsPositive))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(ElementsAre(Pointee(1), Pointee(2)))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| |
| EXPECT_CALL(helper, Call(ElementsAreArray({Pointee(3), Pointee(4)}))); |
| helper.Call(MakeUniquePtrs({3, 4})); |
| } |
| |
| TEST(ElementsAreTest, TakesStlContainer) { |
| const int actual[] = {3, 1, 2}; |
| |
| ::std::list<int> expected; |
| expected.push_back(3); |
| expected.push_back(1); |
| expected.push_back(2); |
| EXPECT_THAT(actual, ElementsAreArray(expected)); |
| |
| expected.push_back(4); |
| EXPECT_THAT(actual, Not(ElementsAreArray(expected))); |
| } |
| |
| // Tests for UnorderedElementsAreArray() |
| |
| TEST(UnorderedElementsAreArrayTest, SucceedsWhenExpected) { |
| const int a[] = {0, 1, 2, 3, 4}; |
| std::vector<int> s(std::begin(a), std::end(a)); |
| do { |
| StringMatchResultListener listener; |
| EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(a), s, &listener)) |
| << listener.str(); |
| } while (std::next_permutation(s.begin(), s.end())); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, VectorBool) { |
| const bool a[] = {false, true, false, true, true}; |
| const bool b[] = {true, false, true, true, false}; |
| std::vector<bool> expected(std::begin(a), std::end(a)); |
| std::vector<bool> actual(std::begin(b), std::end(b)); |
| StringMatchResultListener listener; |
| EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(expected), actual, |
| &listener)) |
| << listener.str(); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, WorksForStreamlike) { |
| // Streamlike 'container' provides only minimal iterator support. |
| // Its iterators are tagged with input_iterator_tag, and it has no |
| // size() or empty() methods. |
| const int a[5] = {2, 1, 4, 5, 3}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| |
| ::std::vector<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| expected.push_back(3); |
| expected.push_back(4); |
| expected.push_back(5); |
| EXPECT_THAT(s, UnorderedElementsAreArray(expected)); |
| |
| expected.push_back(6); |
| EXPECT_THAT(s, Not(UnorderedElementsAreArray(expected))); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, TakesStlContainer) { |
| const int actual[] = {3, 1, 2}; |
| |
| ::std::list<int> expected; |
| expected.push_back(1); |
| expected.push_back(2); |
| expected.push_back(3); |
| EXPECT_THAT(actual, UnorderedElementsAreArray(expected)); |
| |
| expected.push_back(4); |
| EXPECT_THAT(actual, Not(UnorderedElementsAreArray(expected))); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, TakesInitializerList) { |
| const int a[5] = {2, 1, 4, 5, 3}; |
| EXPECT_THAT(a, UnorderedElementsAreArray({1, 2, 3, 4, 5})); |
| EXPECT_THAT(a, Not(UnorderedElementsAreArray({1, 2, 3, 4, 6}))); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfCStrings) { |
| const std::string a[5] = {"a", "b", "c", "d", "e"}; |
| EXPECT_THAT(a, UnorderedElementsAreArray({"a", "b", "c", "d", "e"})); |
| EXPECT_THAT(a, Not(UnorderedElementsAreArray({"a", "b", "c", "d", "ef"}))); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) { |
| const int a[5] = {2, 1, 4, 5, 3}; |
| EXPECT_THAT(a, |
| UnorderedElementsAreArray({Eq(1), Eq(2), Eq(3), Eq(4), Eq(5)})); |
| EXPECT_THAT( |
| a, Not(UnorderedElementsAreArray({Eq(1), Eq(2), Eq(3), Eq(4), Eq(6)}))); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, |
| TakesInitializerListOfDifferentTypedMatchers) { |
| const int a[5] = {2, 1, 4, 5, 3}; |
| // The compiler cannot infer the type of the initializer list if its |
| // elements have different types. We must explicitly specify the |
| // unified element type in this case. |
| EXPECT_THAT(a, UnorderedElementsAreArray<Matcher<int>>( |
| {Eq(1), Ne(-2), Ge(3), Le(4), Eq(5)})); |
| EXPECT_THAT(a, Not(UnorderedElementsAreArray<Matcher<int>>( |
| {Eq(1), Ne(-2), Ge(3), Le(4), Eq(6)}))); |
| } |
| |
| TEST(UnorderedElementsAreArrayTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, |
| Call(UnorderedElementsAreArray({Pointee(1), Pointee(2)}))); |
| helper.Call(MakeUniquePtrs({2, 1})); |
| } |
| |
| class UnorderedElementsAreTest : public testing::Test { |
| protected: |
| typedef std::vector<int> IntVec; |
| }; |
| |
| TEST_F(UnorderedElementsAreTest, WorksWithUncopyable) { |
| Uncopyable objs[2]; |
| objs[0].set_value(-3); |
| objs[1].set_value(1); |
| EXPECT_THAT(objs, |
| UnorderedElementsAre(Truly(ValueIsPositive), UncopyableIs(-3))); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, SucceedsWhenExpected) { |
| const int a[] = {1, 2, 3}; |
| std::vector<int> s(std::begin(a), std::end(a)); |
| do { |
| StringMatchResultListener listener; |
| EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), s, &listener)) |
| << listener.str(); |
| } while (std::next_permutation(s.begin(), s.end())); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailsWhenAnElementMatchesNoMatcher) { |
| const int a[] = {1, 2, 3}; |
| std::vector<int> s(std::begin(a), std::end(a)); |
| std::vector<Matcher<int>> mv; |
| mv.push_back(1); |
| mv.push_back(2); |
| mv.push_back(2); |
| // The element with value '3' matches nothing: fail fast. |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAreArray(mv), s, &listener)) |
| << listener.str(); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, WorksForStreamlike) { |
| // Streamlike 'container' provides only minimal iterator support. |
| // Its iterators are tagged with input_iterator_tag, and it has no |
| // size() or empty() methods. |
| const int a[5] = {2, 1, 4, 5, 3}; |
| Streamlike<int> s(std::begin(a), std::end(a)); |
| |
| EXPECT_THAT(s, UnorderedElementsAre(1, 2, 3, 4, 5)); |
| EXPECT_THAT(s, Not(UnorderedElementsAre(2, 2, 3, 4, 5))); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(UnorderedElementsAre(Pointee(1), Pointee(2)))); |
| helper.Call(MakeUniquePtrs({2, 1})); |
| } |
| |
| // One naive implementation of the matcher runs in O(N!) time, which is too |
| // slow for many real-world inputs. This test shows that our matcher can match |
| // 100 inputs very quickly (a few milliseconds). An O(100!) is 10^158 |
| // iterations and obviously effectively incomputable. |
| // [ RUN ] UnorderedElementsAreTest.Performance |
| // [ OK ] UnorderedElementsAreTest.Performance (4 ms) |
| TEST_F(UnorderedElementsAreTest, Performance) { |
| std::vector<int> s; |
| std::vector<Matcher<int>> mv; |
| for (int i = 0; i < 100; ++i) { |
| s.push_back(i); |
| mv.push_back(_); |
| } |
| mv[50] = Eq(0); |
| StringMatchResultListener listener; |
| EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), s, &listener)) |
| << listener.str(); |
| } |
| |
| // Another variant of 'Performance' with similar expectations. |
| // [ RUN ] UnorderedElementsAreTest.PerformanceHalfStrict |
| // [ OK ] UnorderedElementsAreTest.PerformanceHalfStrict (4 ms) |
| TEST_F(UnorderedElementsAreTest, PerformanceHalfStrict) { |
| std::vector<int> s; |
| std::vector<Matcher<int>> mv; |
| for (int i = 0; i < 100; ++i) { |
| s.push_back(i); |
| if (i & 1) { |
| mv.push_back(_); |
| } else { |
| mv.push_back(i); |
| } |
| } |
| StringMatchResultListener listener; |
| EXPECT_TRUE(ExplainMatchResult(UnorderedElementsAreArray(mv), s, &listener)) |
| << listener.str(); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageCountWrong) { |
| std::vector<int> v; |
| v.push_back(4); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), Eq("which has 1 element")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageCountWrongZero) { |
| std::vector<int> v; |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2, 3), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), Eq("")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatchers) { |
| std::vector<int> v; |
| v.push_back(1); |
| v.push_back(1); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), |
| Eq("where the following matchers don't match any elements:\n" |
| "matcher #1: is equal to 2")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedElements) { |
| std::vector<int> v; |
| v.push_back(1); |
| v.push_back(2); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 1), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), |
| Eq("where the following elements don't match any matchers:\n" |
| "element #1: 2")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageUnmatchedMatcherAndElement) { |
| std::vector<int> v; |
| v.push_back(2); |
| v.push_back(3); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult(UnorderedElementsAre(1, 2), v, &listener)) |
| << listener.str(); |
| EXPECT_THAT(listener.str(), |
| Eq("where" |
| " the following matchers don't match any elements:\n" |
| "matcher #0: is equal to 1\n" |
| "and" |
| " where" |
| " the following elements don't match any matchers:\n" |
| "element #1: 3")); |
| } |
| |
| // Test helper for formatting element, matcher index pairs in expectations. |
| static std::string EMString(int element, int matcher) { |
| stringstream ss; |
| ss << "(element #" << element << ", matcher #" << matcher << ")"; |
| return ss.str(); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, FailMessageImperfectMatchOnly) { |
| // A situation where all elements and matchers have a match |
| // associated with them, but the max matching is not perfect. |
| std::vector<std::string> v; |
| v.push_back("a"); |
| v.push_back("b"); |
| v.push_back("c"); |
| StringMatchResultListener listener; |
| EXPECT_FALSE(ExplainMatchResult( |
| UnorderedElementsAre("a", "a", AnyOf("b", "c")), v, &listener)) |
| << listener.str(); |
| |
| std::string prefix = |
| "where no permutation of the elements can satisfy all matchers, " |
| "and the closest match is 2 of 3 matchers with the " |
| "pairings:\n"; |
| |
| // We have to be a bit loose here, because there are 4 valid max matches. |
| EXPECT_THAT( |
| listener.str(), |
| AnyOf( |
| prefix + "{\n " + EMString(0, 0) + ",\n " + EMString(1, 2) + "\n}", |
| prefix + "{\n " + EMString(0, 1) + ",\n " + EMString(1, 2) + "\n}", |
| prefix + "{\n " + EMString(0, 0) + ",\n " + EMString(2, 2) + "\n}", |
| prefix + "{\n " + EMString(0, 1) + ",\n " + EMString(2, 2) + |
| "\n}")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, Describe) { |
| EXPECT_THAT(Describe<IntVec>(UnorderedElementsAre()), Eq("is empty")); |
| EXPECT_THAT(Describe<IntVec>(UnorderedElementsAre(345)), |
| Eq("has 1 element and that element is equal to 345")); |
| EXPECT_THAT(Describe<IntVec>(UnorderedElementsAre(111, 222, 333)), |
| Eq("has 3 elements and there exists some permutation " |
| "of elements such that:\n" |
| " - element #0 is equal to 111, and\n" |
| " - element #1 is equal to 222, and\n" |
| " - element #2 is equal to 333")); |
| } |
| |
| TEST_F(UnorderedElementsAreTest, DescribeNegation) { |
| EXPECT_THAT(DescribeNegation<IntVec>(UnorderedElementsAre()), |
| Eq("isn't empty")); |
| EXPECT_THAT( |
| DescribeNegation<IntVec>(UnorderedElementsAre(345)), |
| Eq("doesn't have 1 element, or has 1 element that isn't equal to 345")); |
| EXPECT_THAT(DescribeNegation<IntVec>(UnorderedElementsAre(123, 234, 345)), |
| Eq("doesn't have 3 elements, or there exists no permutation " |
| "of elements such that:\n" |
| " - element #0 is equal to 123, and\n" |
| " - element #1 is equal to 234, and\n" |
| " - element #2 is equal to 345")); |
| } |
| |
| // Tests Each(). |
| |
| INSTANTIATE_GTEST_MATCHER_TEST_P(EachTest); |
| |
| TEST_P(EachTestP, ExplainsMatchResultCorrectly) { |
| set<int> a; // empty |
| |
| Matcher<set<int>> m = Each(2); |
| EXPECT_EQ("", Explain(m, a)); |
| |
| Matcher<const int(&)[1]> n = Each(1); // NOLINT |
| |
| const int b[1] = {1}; |
| EXPECT_EQ("", Explain(n, b)); |
| |
| n = Each(3); |
| EXPECT_EQ("whose element #0 doesn't match", Explain(n, b)); |
| |
| a.insert(1); |
| a.insert(2); |
| a.insert(3); |
| m = Each(GreaterThan(0)); |
| EXPECT_EQ("", Explain(m, a)); |
| |
| m = Each(GreaterThan(10)); |
| EXPECT_EQ("whose element #0 doesn't match, which is 9 less than 10", |
| Explain(m, a)); |
| } |
| |
| TEST(EachTest, DescribesItselfCorrectly) { |
| Matcher<vector<int>> m = Each(1); |
| EXPECT_EQ("only contains elements that is equal to 1", Describe(m)); |
| |
| Matcher<vector<int>> m2 = Not(m); |
| EXPECT_EQ("contains some element that isn't equal to 1", Describe(m2)); |
| } |
| |
| TEST(EachTest, MatchesVectorWhenAllElementsMatch) { |
| vector<int> some_vector; |
| EXPECT_THAT(some_vector, Each(1)); |
| some_vector.push_back(3); |
| EXPECT_THAT(some_vector, Not(Each(1))); |
| EXPECT_THAT(some_vector, Each(3)); |
| some_vector.push_back(1); |
| some_vector.push_back(2); |
| EXPECT_THAT(some_vector, Not(Each(3))); |
| EXPECT_THAT(some_vector, Each(Lt(3.5))); |
| |
| vector<std::string> another_vector; |
| another_vector.push_back("fee"); |
| EXPECT_THAT(another_vector, Each(std::string("fee"))); |
| another_vector.push_back("fie"); |
| another_vector.push_back("foe"); |
| another_vector.push_back("fum"); |
| EXPECT_THAT(another_vector, Not(Each(std::string("fee")))); |
| } |
| |
| TEST(EachTest, MatchesMapWhenAllElementsMatch) { |
| map<const char*, int> my_map; |
| const char* bar = "a string"; |
| my_map[bar] = 2; |
| EXPECT_THAT(my_map, Each(make_pair(bar, 2))); |
| |
| map<std::string, int> another_map; |
| EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); |
| another_map["fee"] = 1; |
| EXPECT_THAT(another_map, Each(make_pair(std::string("fee"), 1))); |
| another_map["fie"] = 2; |
| another_map["foe"] = 3; |
| another_map["fum"] = 4; |
| EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fee"), 1)))); |
| EXPECT_THAT(another_map, Not(Each(make_pair(std::string("fum"), 1)))); |
| EXPECT_THAT(another_map, Each(Pair(_, Gt(0)))); |
| } |
| |
| TEST(EachTest, AcceptsMatcher) { |
| const int a[] = {1, 2, 3}; |
| EXPECT_THAT(a, Each(Gt(0))); |
| EXPECT_THAT(a, Not(Each(Gt(1)))); |
| } |
| |
| TEST(EachTest, WorksForNativeArrayAsTuple) { |
| const int a[] = {1, 2}; |
| const int* const pointer = a; |
| EXPECT_THAT(std::make_tuple(pointer, 2), Each(Gt(0))); |
| EXPECT_THAT(std::make_tuple(pointer, 2), Not(Each(Gt(1)))); |
| } |
| |
| TEST(EachTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(Each(Pointee(Gt(0))))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| } |
| |
| // For testing Pointwise(). |
| class IsHalfOfMatcher { |
| public: |
| template <typename T1, typename T2> |
| bool MatchAndExplain(const std::tuple<T1, T2>& a_pair, |
| MatchResultListener* listener) const { |
| if (std::get<0>(a_pair) == std::get<1>(a_pair) / 2) { |
| *listener << "where the second is " << std::get<1>(a_pair); |
| return true; |
| } else { |
| *listener << "where the second/2 is " << std::get<1>(a_pair) / 2; |
| return false; |
| } |
| } |
| |
| void DescribeTo(ostream* os) const { |
| *os << "are a pair where the first is half of the second"; |
| } |
| |
| void DescribeNegationTo(ostream* os) const { |
| *os << "are a pair where the first isn't half of the second"; |
| } |
| }; |
| |
| PolymorphicMatcher<IsHalfOfMatcher> IsHalfOf() { |
| return MakePolymorphicMatcher(IsHalfOfMatcher()); |
| } |
| |
| TEST(PointwiseTest, DescribesSelf) { |
| vector<int> rhs; |
| rhs.push_back(1); |
| rhs.push_back(2); |
| rhs.push_back(3); |
| const Matcher<const vector<int>&> m = Pointwise(IsHalfOf(), rhs); |
| EXPECT_EQ( |
| "contains 3 values, where each value and its corresponding value " |
| "in { 1, 2, 3 } are a pair where the first is half of the second", |
| Describe(m)); |
| EXPECT_EQ( |
| "doesn't contain exactly 3 values, or contains a value x at some " |
| "index i where x and the i-th value of { 1, 2, 3 } are a pair " |
| "where the first isn't half of the second", |
| DescribeNegation(m)); |
| } |
| |
| TEST(PointwiseTest, MakesCopyOfRhs) { |
| list<signed char> rhs; |
| rhs.push_back(2); |
| rhs.push_back(4); |
| |
| int lhs[] = {1, 2}; |
| const Matcher<const int(&)[2]> m = Pointwise(IsHalfOf(), rhs); |
| EXPECT_THAT(lhs, m); |
| |
| // Changing rhs now shouldn't affect m, which made a copy of rhs. |
| rhs.push_back(6); |
| EXPECT_THAT(lhs, m); |
| } |
| |
| TEST(PointwiseTest, WorksForLhsNativeArray) { |
| const int lhs[] = {1, 2, 3}; |
| vector<int> rhs; |
| rhs.push_back(2); |
| rhs.push_back(4); |
| rhs.push_back(6); |
| EXPECT_THAT(lhs, Pointwise(Lt(), rhs)); |
| EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); |
| } |
| |
| TEST(PointwiseTest, WorksForRhsNativeArray) { |
| const int rhs[] = {1, 2, 3}; |
| vector<int> lhs; |
| lhs.push_back(2); |
| lhs.push_back(4); |
| lhs.push_back(6); |
| EXPECT_THAT(lhs, Pointwise(Gt(), rhs)); |
| EXPECT_THAT(lhs, Not(Pointwise(Lt(), rhs))); |
| } |
| |
| // Test is effective only with sanitizers. |
| TEST(PointwiseTest, WorksForVectorOfBool) { |
| vector<bool> rhs(3, false); |
| rhs[1] = true; |
| vector<bool> lhs = rhs; |
| EXPECT_THAT(lhs, Pointwise(Eq(), rhs)); |
| rhs[0] = true; |
| EXPECT_THAT(lhs, Not(Pointwise(Eq(), rhs))); |
| } |
| |
| TEST(PointwiseTest, WorksForRhsInitializerList) { |
| const vector<int> lhs{2, 4, 6}; |
| EXPECT_THAT(lhs, Pointwise(Gt(), {1, 2, 3})); |
| EXPECT_THAT(lhs, Not(Pointwise(Lt(), {3, 3, 7}))); |
| } |
| |
| TEST(PointwiseTest, RejectsWrongSize) { |
| const double lhs[2] = {1, 2}; |
| const int rhs[1] = {0}; |
| EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs))); |
| EXPECT_EQ("which contains 2 values", Explain(Pointwise(Gt(), rhs), lhs)); |
| |
| const int rhs2[3] = {0, 1, 2}; |
| EXPECT_THAT(lhs, Not(Pointwise(Gt(), rhs2))); |
| } |
| |
| TEST(PointwiseTest, RejectsWrongContent) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {2, 6, 4}; |
| EXPECT_THAT(lhs, Not(Pointwise(IsHalfOf(), rhs))); |
| EXPECT_EQ( |
| "where the value pair (2, 6) at index #1 don't match, " |
| "where the second/2 is 3", |
| Explain(Pointwise(IsHalfOf(), rhs), lhs)); |
| } |
| |
| TEST(PointwiseTest, AcceptsCorrectContent) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {2, 4, 6}; |
| EXPECT_THAT(lhs, Pointwise(IsHalfOf(), rhs)); |
| EXPECT_EQ("", Explain(Pointwise(IsHalfOf(), rhs), lhs)); |
| } |
| |
| TEST(PointwiseTest, AllowsMonomorphicInnerMatcher) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {2, 4, 6}; |
| const Matcher<std::tuple<const double&, const int&>> m1 = IsHalfOf(); |
| EXPECT_THAT(lhs, Pointwise(m1, rhs)); |
| EXPECT_EQ("", Explain(Pointwise(m1, rhs), lhs)); |
| |
| // This type works as a std::tuple<const double&, const int&> can be |
| // implicitly cast to std::tuple<double, int>. |
| const Matcher<std::tuple<double, int>> m2 = IsHalfOf(); |
| EXPECT_THAT(lhs, Pointwise(m2, rhs)); |
| EXPECT_EQ("", Explain(Pointwise(m2, rhs), lhs)); |
| } |
| |
| MATCHER(PointeeEquals, "Points to an equal value") { |
| return ExplainMatchResult(::testing::Pointee(::testing::get<1>(arg)), |
| ::testing::get<0>(arg), result_listener); |
| } |
| |
| TEST(PointwiseTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(Pointwise(PointeeEquals(), std::vector<int>{1, 2}))); |
| helper.Call(MakeUniquePtrs({1, 2})); |
| } |
| |
| TEST(UnorderedPointwiseTest, DescribesSelf) { |
| vector<int> rhs; |
| rhs.push_back(1); |
| rhs.push_back(2); |
| rhs.push_back(3); |
| const Matcher<const vector<int>&> m = UnorderedPointwise(IsHalfOf(), rhs); |
| EXPECT_EQ( |
| "has 3 elements and there exists some permutation of elements such " |
| "that:\n" |
| " - element #0 and 1 are a pair where the first is half of the second, " |
| "and\n" |
| " - element #1 and 2 are a pair where the first is half of the second, " |
| "and\n" |
| " - element #2 and 3 are a pair where the first is half of the second", |
| Describe(m)); |
| EXPECT_EQ( |
| "doesn't have 3 elements, or there exists no permutation of elements " |
| "such that:\n" |
| " - element #0 and 1 are a pair where the first is half of the second, " |
| "and\n" |
| " - element #1 and 2 are a pair where the first is half of the second, " |
| "and\n" |
| " - element #2 and 3 are a pair where the first is half of the second", |
| DescribeNegation(m)); |
| } |
| |
| TEST(UnorderedPointwiseTest, MakesCopyOfRhs) { |
| list<signed char> rhs; |
| rhs.push_back(2); |
| rhs.push_back(4); |
| |
| int lhs[] = {2, 1}; |
| const Matcher<const int(&)[2]> m = UnorderedPointwise(IsHalfOf(), rhs); |
| EXPECT_THAT(lhs, m); |
| |
| // Changing rhs now shouldn't affect m, which made a copy of rhs. |
| rhs.push_back(6); |
| EXPECT_THAT(lhs, m); |
| } |
| |
| TEST(UnorderedPointwiseTest, WorksForLhsNativeArray) { |
| const int lhs[] = {1, 2, 3}; |
| vector<int> rhs; |
| rhs.push_back(4); |
| rhs.push_back(6); |
| rhs.push_back(2); |
| EXPECT_THAT(lhs, UnorderedPointwise(Lt(), rhs)); |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); |
| } |
| |
| TEST(UnorderedPointwiseTest, WorksForRhsNativeArray) { |
| const int rhs[] = {1, 2, 3}; |
| vector<int> lhs; |
| lhs.push_back(4); |
| lhs.push_back(2); |
| lhs.push_back(6); |
| EXPECT_THAT(lhs, UnorderedPointwise(Gt(), rhs)); |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), rhs))); |
| } |
| |
| TEST(UnorderedPointwiseTest, WorksForRhsInitializerList) { |
| const vector<int> lhs{2, 4, 6}; |
| EXPECT_THAT(lhs, UnorderedPointwise(Gt(), {5, 1, 3})); |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(Lt(), {1, 1, 7}))); |
| } |
| |
| TEST(UnorderedPointwiseTest, RejectsWrongSize) { |
| const double lhs[2] = {1, 2}; |
| const int rhs[1] = {0}; |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs))); |
| EXPECT_EQ("which has 2 elements", |
| Explain(UnorderedPointwise(Gt(), rhs), lhs)); |
| |
| const int rhs2[3] = {0, 1, 2}; |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(Gt(), rhs2))); |
| } |
| |
| TEST(UnorderedPointwiseTest, RejectsWrongContent) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {2, 6, 6}; |
| EXPECT_THAT(lhs, Not(UnorderedPointwise(IsHalfOf(), rhs))); |
| EXPECT_EQ( |
| "where the following elements don't match any matchers:\n" |
| "element #1: 2", |
| Explain(UnorderedPointwise(IsHalfOf(), rhs), lhs)); |
| } |
| |
| TEST(UnorderedPointwiseTest, AcceptsCorrectContentInSameOrder) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {2, 4, 6}; |
| EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); |
| } |
| |
| TEST(UnorderedPointwiseTest, AcceptsCorrectContentInDifferentOrder) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {6, 4, 2}; |
| EXPECT_THAT(lhs, UnorderedPointwise(IsHalfOf(), rhs)); |
| } |
| |
| TEST(UnorderedPointwiseTest, AllowsMonomorphicInnerMatcher) { |
| const double lhs[3] = {1, 2, 3}; |
| const int rhs[3] = {4, 6, 2}; |
| const Matcher<std::tuple<const double&, const int&>> m1 = IsHalfOf(); |
| EXPECT_THAT(lhs, UnorderedPointwise(m1, rhs)); |
| |
| // This type works as a std::tuple<const double&, const int&> can be |
| // implicitly cast to std::tuple<double, int>. |
| const Matcher<std::tuple<double, int>> m2 = IsHalfOf(); |
| EXPECT_THAT(lhs, UnorderedPointwise(m2, rhs)); |
| } |
| |
| TEST(UnorderedPointwiseTest, WorksWithMoveOnly) { |
| ContainerHelper helper; |
| EXPECT_CALL(helper, Call(UnorderedPointwise(PointeeEquals(), |
| std::vector<int>{1, 2}))); |
| helper.Call(MakeUniquePtrs({2, 1})); |
| } |
| |
| TEST(PointeeTest, WorksOnMoveOnlyType) { |
| std::unique_ptr<int> p(new int(3)); |
| EXPECT_THAT(p, Pointee(Eq(3))); |
| EXPECT_THAT(p, Not(Pointee(Eq(2)))); |
| } |
| |
| class PredicateFormatterFromMatcherTest : public ::testing::Test { |
| protected: |
| enum Behavior { kInitialSuccess, kAlwaysFail, kFlaky }; |
| |
| // A matcher that can return different results when used multiple times on the |
| // same input. No real matcher should do this; but this lets us test that we |
| // detect such behavior and fail appropriately. |
| class MockMatcher : public MatcherInterface<Behavior> { |
| public: |
| bool MatchAndExplain(Behavior behavior, |
| MatchResultListener* listener) const override { |
| *listener << "[MatchAndExplain]"; |
| switch (behavior) { |
| case kInitialSuccess: |
| // The first call to MatchAndExplain should use a "not interested" |
| // listener; so this is expected to return |true|. There should be no |
| // subsequent calls. |
| return !listener->IsInterested(); |
| |
| case kAlwaysFail: |
| return false; |
| |
| case kFlaky: |
| // The first call to MatchAndExplain should use a "not interested" |
| // listener; so this will return |false|. Subsequent calls should have |
| // an "interested" listener; so this will return |true|, thus |
| // simulating a flaky matcher. |
| return listener->IsInterested(); |
| } |
| |
| GTEST_LOG_(FATAL) << "This should never be reached"; |
| return false; |
| } |
| |
| void DescribeTo(ostream* os) const override { *os << "[DescribeTo]"; } |
| |
| void DescribeNegationTo(ostream* os) const override { |
| *os << "[DescribeNegationTo]"; |
| } |
| }; |
| |
| AssertionResult RunPredicateFormatter(Behavior behavior) { |
| auto matcher = MakeMatcher(new MockMatcher); |
| PredicateFormatterFromMatcher<Matcher<Behavior>> predicate_formatter( |
| matcher); |
| return predicate_formatter("dummy-name", behavior); |
| } |
| }; |
| |
| TEST_F(PredicateFormatterFromMatcherTest, ShortCircuitOnSuccess) { |
| AssertionResult result = RunPredicateFormatter(kInitialSuccess); |
| EXPECT_TRUE(result); // Implicit cast to bool. |
| std::string expect; |
| EXPECT_EQ(expect, result.message()); |
| } |
| |
| TEST_F(PredicateFormatterFromMatcherTest, NoShortCircuitOnFailure) { |
| AssertionResult result = RunPredicateFormatter(kAlwaysFail); |
| EXPECT_FALSE(result); // Implicit cast to bool. |
| std::string expect = |
| "Value of: dummy-name\nExpected: [DescribeTo]\n" |
| " Actual: 1" + |
| OfType(internal::GetTypeName<Behavior>()) + ", [MatchAndExplain]"; |
| EXPECT_EQ(expect, result.message()); |
| } |
| |
| TEST_F(PredicateFormatterFromMatcherTest, DetectsFlakyShortCircuit) { |
| AssertionResult result = RunPredicateFormatter(kFlaky); |
| EXPECT_FALSE(result); // Implicit cast to bool. |
| std::string expect = |
| "Value of: dummy-name\nExpected: [DescribeTo]\n" |
| " The matcher failed on the initial attempt; but passed when rerun to " |
| "generate the explanation.\n" |
| " Actual: 2" + |
| OfType(internal::GetTypeName<Behavior>()) + ", [MatchAndExplain]"; |
| EXPECT_EQ(expect, result.message()); |
| } |
| |
| // Tests for ElementsAre(). |
| |
| TEST(ElementsAreTest, CanDescribeExpectingNoElement) { |
| Matcher<const vector<int>&> m = ElementsAre(); |
| EXPECT_EQ("is empty", Describe(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeExpectingOneElement) { |
| Matcher<vector<int>> m = ElementsAre(Gt(5)); |
| EXPECT_EQ("has 1 element that is > 5", Describe(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeExpectingManyElements) { |
| Matcher<list<std::string>> m = ElementsAre(StrEq("one"), "two"); |
| EXPECT_EQ( |
| "has 2 elements where\n" |
| "element #0 is equal to \"one\",\n" |
| "element #1 is equal to \"two\"", |
| Describe(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeNegationOfExpectingNoElement) { |
| Matcher<vector<int>> m = ElementsAre(); |
| EXPECT_EQ("isn't empty", DescribeNegation(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeNegationOfExpectingOneElement) { |
| Matcher<const list<int>&> m = ElementsAre(Gt(5)); |
| EXPECT_EQ( |
| "doesn't have 1 element, or\n" |
| "element #0 isn't > 5", |
| DescribeNegation(m)); |
| } |
| |
| TEST(ElementsAreTest, CanDescribeNegationOfExpectingManyElements) { |
| Matcher<const list<std::string>&> m = ElementsAre("one", "two"); |
| EXPECT_EQ( |
| "doesn't have 2 elements, or\n" |
| "element #0 isn't equal to \"one\", or\n" |
| "element #1 isn't equal to \"two\"", |
| DescribeNegation(m)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotExplainTrivialMatch) { |
| Matcher<const list<int>&> m = ElementsAre(1, Ne(2)); |
| |
| list<int> test_list; |
| test_list.push_back(1); |
| test_list.push_back(3); |
| EXPECT_EQ("", Explain(m, test_list)); // No need to explain anything. |
| } |
| |
| TEST_P(ElementsAreTestP, ExplainsNonTrivialMatch) { |
| Matcher<const vector<int>&> m = |
| ElementsAre(GreaterThan(1), 0, GreaterThan(2)); |
| |
| const int a[] = {10, 0, 100}; |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| EXPECT_EQ( |
| "whose element #0 matches, which is 9 more than 1,\n" |
| "and whose element #2 matches, which is 98 more than 2", |
| Explain(m, test_vector)); |
| } |
| |
| TEST(ElementsAreTest, CanExplainMismatchWrongSize) { |
| Matcher<const list<int>&> m = ElementsAre(1, 3); |
| |
| list<int> test_list; |
| // No need to explain when the container is empty. |
| EXPECT_EQ("", Explain(m, test_list)); |
| |
| test_list.push_back(1); |
| EXPECT_EQ("which has 1 element", Explain(m, test_list)); |
| } |
| |
| TEST_P(ElementsAreTestP, CanExplainMismatchRightSize) { |
| Matcher<const vector<int>&> m = ElementsAre(1, GreaterThan(5)); |
| |
| vector<int> v; |
| v.push_back(2); |
| v.push_back(1); |
| EXPECT_EQ("whose element #0 doesn't match", Explain(m, v)); |
| |
| v[0] = 1; |
| EXPECT_EQ("whose element #1 doesn't match, which is 4 less than 5", |
| Explain(m, v)); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementVector) { |
| vector<std::string> test_vector; |
| test_vector.push_back("test string"); |
| |
| EXPECT_THAT(test_vector, ElementsAre(StrEq("test string"))); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementList) { |
| list<std::string> test_list; |
| test_list.push_back("test string"); |
| |
| EXPECT_THAT(test_list, ElementsAre("test string")); |
| } |
| |
| TEST(ElementsAreTest, MatchesThreeElementVector) { |
| vector<std::string> test_vector; |
| test_vector.push_back("one"); |
| test_vector.push_back("two"); |
| test_vector.push_back("three"); |
| |
| EXPECT_THAT(test_vector, ElementsAre("one", StrEq("two"), _)); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementEqMatcher) { |
| vector<int> test_vector; |
| test_vector.push_back(4); |
| |
| EXPECT_THAT(test_vector, ElementsAre(Eq(4))); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementAnyMatcher) { |
| vector<int> test_vector; |
| test_vector.push_back(4); |
| |
| EXPECT_THAT(test_vector, ElementsAre(_)); |
| } |
| |
| TEST(ElementsAreTest, MatchesOneElementValue) { |
| vector<int> test_vector; |
| test_vector.push_back(4); |
| |
| EXPECT_THAT(test_vector, ElementsAre(4)); |
| } |
| |
| TEST(ElementsAreTest, MatchesThreeElementsMixedMatchers) { |
| vector<int> test_vector; |
| test_vector.push_back(1); |
| test_vector.push_back(2); |
| test_vector.push_back(3); |
| |
| EXPECT_THAT(test_vector, ElementsAre(1, Eq(2), _)); |
| } |
| |
| TEST(ElementsAreTest, MatchesTenElementVector) { |
| const int a[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| |
| EXPECT_THAT(test_vector, |
| // The element list can contain values and/or matchers |
| // of different types. |
| ElementsAre(0, Ge(0), _, 3, 4, Ne(2), Eq(6), 7, 8, _)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotMatchWrongSize) { |
| vector<std::string> test_vector; |
| test_vector.push_back("test string"); |
| test_vector.push_back("test string"); |
| |
| Matcher<vector<std::string>> m = ElementsAre(StrEq("test string")); |
| EXPECT_FALSE(m.Matches(test_vector)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotMatchWrongValue) { |
| vector<std::string> test_vector; |
| test_vector.push_back("other string"); |
| |
| Matcher<vector<std::string>> m = ElementsAre(StrEq("test string")); |
| EXPECT_FALSE(m.Matches(test_vector)); |
| } |
| |
| TEST(ElementsAreTest, DoesNotMatchWrongOrder) { |
| vector<std::string> test_vector; |
| test_vector.push_back("one"); |
| test_vector.push_back("three"); |
| test_vector.push_back("two"); |
| |
| Matcher<vector<std::string>> m = |
| ElementsAre(StrEq("one"), StrEq("two"), StrEq("three")); |
| EXPECT_FALSE(m.Matches(test_vector)); |
| } |
| |
| TEST(ElementsAreTest, WorksForNestedContainer) { |
| constexpr std::array<const char*, 2> strings = {{"Hi", "world"}}; |
| |
| vector<list<char>> nested; |
| for (const auto& s : strings) { |
| nested.emplace_back(s, s + strlen(s)); |
| } |
| |
| EXPECT_THAT(nested, ElementsAre(ElementsAre('H', Ne('e')), |
| ElementsAre('w', 'o', _, _, 'd'))); |
| EXPECT_THAT(nested, Not(ElementsAre(ElementsAre('H', 'e'), |
| ElementsAre('w', 'o', _, _, 'd')))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithByRefElementMatchers) { |
| int a[] = {0, 1, 2}; |
| vector<int> v(std::begin(a), std::end(a)); |
| |
| EXPECT_THAT(v, ElementsAre(Ref(v[0]), Ref(v[1]), Ref(v[2]))); |
| EXPECT_THAT(v, Not(ElementsAre(Ref(v[0]), Ref(v[1]), Ref(a[2])))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithContainerPointerUsingPointee) { |
| int a[] = {0, 1, 2}; |
| vector<int> v(std::begin(a), std::end(a)); |
| |
| EXPECT_THAT(&v, Pointee(ElementsAre(0, 1, _))); |
| EXPECT_THAT(&v, Not(Pointee(ElementsAre(0, _, 3)))); |
| } |
| |
| TEST(ElementsAreTest, WorksWithNativeArrayPassedByReference) { |
| int array[] = {0, 1, 2}; |
| EXPECT_THAT(array, ElementsAre(0, 1, _)); |
| EXPECT_THAT(array, Not(ElementsAre(1, _, _))); |
| EXPECT_THAT(array, Not(ElementsAre(0, _))); |
| } |
| |
| class NativeArrayPassedAsPointerAndSize { |
| public: |
| NativeArrayPassedAsPointerAndSize() = default; |
| |
| MOCK_METHOD(void, Helper, (int* array, int size)); |
| |
| private: |
| NativeArrayPassedAsPointerAndSize(const NativeArrayPassedAsPointerAndSize&) = |
| delete; |
| NativeArrayPassedAsPointerAndSize& operator=( |
| const NativeArrayPassedAsPointerAndSize&) = delete; |
| }; |
| |
| TEST(ElementsAreTest, WorksWithNativeArrayPassedAsPointerAndSize) { |
| int array[] = {0, 1}; |
| ::std::tuple<int*, size_t> array_as_tuple(array, 2); |
| EXPECT_THAT(array_as_tuple, ElementsAre(0, 1)); |
| EXPECT_THAT(array_as_tuple, Not(ElementsAre(0))); |
| |
| NativeArrayPassedAsPointerAndSize helper; |
| EXPECT_CALL(helper, Helper(_, _)).With(ElementsAre(0, 1)); |
| helper.Helper(array, 2); |
| } |
| |
| TEST(ElementsAreTest, WorksWithTwoDimensionalNativeArray) { |
| const char a2[][3] = {"hi", "lo"}; |
| EXPECT_THAT(a2, ElementsAre(ElementsAre('h', 'i', '\0'), |
| ElementsAre('l', 'o', '\0'))); |
| EXPECT_THAT(a2, ElementsAre(StrEq("hi"), StrEq("lo"))); |
| EXPECT_THAT(a2, ElementsAre(Not(ElementsAre('h', 'o', '\0')), |
| ElementsAre('l', 'o', '\0'))); |
| } |
| |
| TEST(ElementsAreTest, AcceptsStringLiteral) { |
| std::string array[] = {"hi", "one", "two"}; |
| EXPECT_THAT(array, ElementsAre("hi", "one", "two")); |
| EXPECT_THAT(array, Not(ElementsAre("hi", "one", "too"))); |
| } |
| |
| // Declared here with the size unknown. Defined AFTER the following test. |
| extern const char kHi[]; |
| |
| TEST(ElementsAreTest, AcceptsArrayWithUnknownSize) { |
| // The size of kHi is not known in this test, but ElementsAre() should |
| // still accept it. |
| |
| std::string array1[] = {"hi"}; |
| EXPECT_THAT(array1, ElementsAre(kHi)); |
| |
| std::string array2[] = {"ho"}; |
| EXPECT_THAT(array2, Not(ElementsAre(kHi))); |
| } |
| |
| const char kHi[] = "hi"; |
| |
| TEST(ElementsAreTest, MakesCopyOfArguments) { |
| int x = 1; |
| int y = 2; |
| // This should make a copy of x and y. |
| ::testing::internal::ElementsAreMatcher<std::tuple<int, int>> |
| polymorphic_matcher = ElementsAre(x, y); |
| // Changing x and y now shouldn't affect the meaning of the above matcher. |
| x = y = 0; |
| const int array1[] = {1, 2}; |
| EXPECT_THAT(array1, polymorphic_matcher); |
| const int array2[] = {0, 0}; |
| EXPECT_THAT(array2, Not(polymorphic_matcher)); |
| } |
| |
| // Tests for ElementsAreArray(). Since ElementsAreArray() shares most |
| // of the implementation with ElementsAre(), we don't test it as |
| // thoroughly here. |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithValueArray) { |
| const int a[] = {1, 2, 3}; |
| |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(a)); |
| |
| test_vector[2] = 0; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(a))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithArraySize) { |
| std::array<const char*, 3> a = {{"one", "two", "three"}}; |
| |
| vector<std::string> test_vector(std::begin(a), std::end(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(a.data(), a.size())); |
| |
| const char** p = a.data(); |
| test_vector[0] = "1"; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(p, a.size()))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithoutArraySize) { |
| const char* a[] = {"one", "two", "three"}; |
| |
| vector<std::string> test_vector(std::begin(a), std::end(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(a)); |
| |
| test_vector[0] = "1"; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(a))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherArray) { |
| const Matcher<std::string> kMatcherArray[] = {StrEq("one"), StrEq("two"), |
| StrEq("three")}; |
| |
| vector<std::string> test_vector; |
| test_vector.push_back("one"); |
| test_vector.push_back("two"); |
| test_vector.push_back("three"); |
| EXPECT_THAT(test_vector, ElementsAreArray(kMatcherArray)); |
| |
| test_vector.push_back("three"); |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(kMatcherArray))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithVector) { |
| const int a[] = {1, 2, 3}; |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| const vector<int> expected(std::begin(a), std::end(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(expected)); |
| test_vector.push_back(4); |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(expected))); |
| } |
| |
| TEST(ElementsAreArrayTest, TakesInitializerList) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| EXPECT_THAT(a, ElementsAreArray({1, 2, 3, 4, 5})); |
| EXPECT_THAT(a, Not(ElementsAreArray({1, 2, 3, 5, 4}))); |
| EXPECT_THAT(a, Not(ElementsAreArray({1, 2, 3, 4, 6}))); |
| } |
| |
| TEST(ElementsAreArrayTest, TakesInitializerListOfCStrings) { |
| const std::string a[5] = {"a", "b", "c", "d", "e"}; |
| EXPECT_THAT(a, ElementsAreArray({"a", "b", "c", "d", "e"})); |
| EXPECT_THAT(a, Not(ElementsAreArray({"a", "b", "c", "e", "d"}))); |
| EXPECT_THAT(a, Not(ElementsAreArray({"a", "b", "c", "d", "ef"}))); |
| } |
| |
| TEST(ElementsAreArrayTest, TakesInitializerListOfSameTypedMatchers) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| EXPECT_THAT(a, ElementsAreArray({Eq(1), Eq(2), Eq(3), Eq(4), Eq(5)})); |
| EXPECT_THAT(a, Not(ElementsAreArray({Eq(1), Eq(2), Eq(3), Eq(4), Eq(6)}))); |
| } |
| |
| TEST(ElementsAreArrayTest, TakesInitializerListOfDifferentTypedMatchers) { |
| const int a[5] = {1, 2, 3, 4, 5}; |
| // The compiler cannot infer the type of the initializer list if its |
| // elements have different types. We must explicitly specify the |
| // unified element type in this case. |
| EXPECT_THAT( |
| a, ElementsAreArray<Matcher<int>>({Eq(1), Ne(-2), Ge(3), Le(4), Eq(5)})); |
| EXPECT_THAT(a, Not(ElementsAreArray<Matcher<int>>( |
| {Eq(1), Ne(-2), Ge(3), Le(4), Eq(6)}))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithMatcherVector) { |
| const int a[] = {1, 2, 3}; |
| const Matcher<int> kMatchers[] = {Eq(1), Eq(2), Eq(3)}; |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| const vector<Matcher<int>> expected(std::begin(kMatchers), |
| std::end(kMatchers)); |
| EXPECT_THAT(test_vector, ElementsAreArray(expected)); |
| test_vector.push_back(4); |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(expected))); |
| } |
| |
| TEST(ElementsAreArrayTest, CanBeCreatedWithIteratorRange) { |
| const int a[] = {1, 2, 3}; |
| const vector<int> test_vector(std::begin(a), std::end(a)); |
| const vector<int> expected(std::begin(a), std::end(a)); |
| EXPECT_THAT(test_vector, ElementsAreArray(expected.begin(), expected.end())); |
| // Pointers are iterators, too. |
| EXPECT_THAT(test_vector, ElementsAreArray(std::begin(a), std::end(a))); |
| // The empty range of NULL pointers should also be okay. |
| int* const null_int = nullptr; |
| EXPECT_THAT(test_vector, Not(ElementsAreArray(null_int, null_int))); |
| EXPECT_THAT((vector<int>()), ElementsAreArray(null_int, null_int)); |
| } |
| |
| // Since ElementsAre() and ElementsAreArray() share much of the |
| // implementation, we only do a test for native arrays here. |
| TEST(ElementsAreArrayTest, WorksWithNativeArray) { |
| ::std::string a[] = {"hi", "ho"}; |
| ::std::string b[] = {"hi", "ho"}; |
| |
| EXPECT_THAT(a, ElementsAreArray(b)); |
| EXPECT_THAT(a, ElementsAreArray(b, 2)); |
| EXPECT_THAT(a, Not(ElementsAreArray(b, 1))); |
| } |
| |
| TEST(ElementsAreArrayTest, SourceLifeSpan) { |
| const int a[] = {1, 2, 3}; |
| vector<int> test_vector(std::begin(a), std::end(a)); |
| vector<int> expect(std::begin(a), std::end(a)); |
| ElementsAreArrayMatcher<int> matcher_maker = |
| ElementsAreArray(expect.begin(), expect.end()); |
| EXPECT_THAT(test_vector, matcher_maker); |
| // Changing in place the values that initialized matcher_maker should not |
| // affect matcher_maker anymore. It should have made its own copy of them. |
| for (int& i : expect) { |
| i += 10; |
| } |
| EXPECT_THAT(test_vector, matcher_maker); |
| test_vector.push_back(3); |
| EXPECT_THAT(test_vector, Not(matcher_maker)); |
| } |
| |
| // Tests Contains(). |
| |
| INSTANTIATE_GTEST_MATCHER_TEST_P(ContainsTest); |
| |
| TEST(ContainsTest, ListMatchesWhenElementIsInContainer) { |
| list<int> some_list; |
| some_list.push_back(3); |
| some_list.push_back(1); |
| some_list.push_back(2); |
| some_list.push_back(3); |
| EXPECT_THAT(some_list, Contains(1)); |
| EXPECT_THAT(some_list, Contains(Gt(2.5))); |
| EXPECT_THAT(some_list, Contains(Eq(2.0f))); |
| |
| list<std::string> another_list; |
| another_list.push_back("fee"); |
| another_list.push_back("fie"); |
| another_list.push_back("foe"); |
| another_list.push_back("fum"); |
| EXPECT_THAT(another_list, Contains(std::string("fee"))); |
| } |
| |
| TEST(ContainsTest, ListDoesNotMatchWhenElementIsNotInContainer) { |
| list<int> some_list; |
| some_list.push_back(3); |
| some_list.push_back(1); |
| EXPECT_THAT(some_list, Not(Contains(4))); |
| } |
| |
| TEST(ContainsTest, SetMatchesWhenElementIsInContainer) { |
| set<int> some_set; |
| some_set.insert(3); |
| some_set.insert(1); |
| some_set.insert(2); |
| EXPECT_THAT(some_set, Contains(Eq(1.0))); |
| EXPECT_THAT(some_set, Contains(Eq(3.0f))); |
| EXPECT_THAT(some_set, Contains(2)); |
| |
| set<std::string> another_set; |
| another_set.insert("fee"); |
| another_set.insert("fie"); |
| another_set.insert("foe"); |
| another_set.insert("fum"); |
| EXPECT_THAT(another_set, Contains(Eq(std::string("fum")))); |
| } |
| |
| TEST(ContainsTest, SetDoesNotMatchWhenElementIsNotInContainer) { |
| set<int> some_set; |
| some_set.insert(3); |
| some_set.insert(1); |
| EXPECT_THAT(some_set, Not(Contains(4))); |
| |
| set<std::string> c_string_set; |
| c_string_set.insert("hello"); |
| EXPECT_THAT(c_string_set, Not(Contains(std::string("goodbye")))); |
| } |
| |
| TEST_P(ContainsTestP, ExplainsMatchResultCorrectly) { |
| const int a[2] = {1, 2}; |
| Matcher<const int(&)[2]> m = Contains(2); |
| EXPECT_EQ("whose element #1 matches", Explain(m, a)); |
| |
| m = Contains(3); |
| EXPECT_EQ("", Explain(m, a)); |
| |
| m = Contains(GreaterThan(0)); |
| EXPECT_EQ("whose element #0 matches, which is 1 more than 0", Explain(m, a)); |
| |
| m = Contains(GreaterThan(10)); |
| EXPECT_EQ("", Explain(m, a)); |
| } |
| |
| TEST(ContainsTest, DescribesItselfCorrectly) { |
| Matcher<vector<int>> m = Contains(1); |
| EXPECT_EQ("contains at least one element that is equal to 1", Describe(m)); |
| |
| Matcher<vector<int>> m2 = Not(m); |
| EXPECT_EQ("doesn't contain any element that is equal to 1", Describe(m2)); |
| } |
| |
| TEST(ContainsTest, MapMatchesWhenElementIsInContainer) { |
| map<std::string, int> my_map; |
| const char* bar = "a string"; |
| my_map[bar] = 2; |
| EXPECT_THAT(my_map, Contains(pair<const char* const, int>(bar, 2))); |
| |
| map<std::string, int> another_map; |
| another_map["fee"] = 1; |
| another_map["fie"] = 2; |
| another_map["foe"] = 3; |
| another_map["fum"] = 4; |
| EXPECT_THAT(another_map, |
| Contains(pair<const std::string, int>(std::string("fee"), 1))); |
| EXPECT_THAT(another_map, Contains(pair<const std::string, int>("fie", 2))); |
| } |
| |
| TEST(ContainsTest, MapDoesNotMatchWhenElementIsNotInContainer) { |
| map<int, int> some_map; |
| some_map[1] = 11; |
| some_map[2] = 22; |
| EXPECT_THAT(some_map, Not(Contains(pair<const int, int>(2, 23)))); |
| } |
| |
| TEST(ContainsTest, ArrayMatchesWhenElementIsInContainer) { |
| const char* string_array[] = {"fee", "fie", "foe", "fum"}; |
| EXPECT_THAT(string_array, Contains(Eq(std::string("fum")))); |
| } |
| |
| TEST(ContainsTest, ArrayDoesNotMatchWhenElementIsNotInContainer) { |
| int int_array[] = {1, 2, 3, 4}; |
| EXPECT_THAT(int_array, Not(Contains(5))); |
| } |
| |
| TEST(ContainsTest, AcceptsMatcher) { |
| const int a[] = {1, 2, 3}; |
| EXPECT_THAT(a, Contains(Gt(2))); |
| EXPECT_THAT(a, Not(Contains(Gt(4)))); |
| } |
| |
| TEST(ContainsTest, WorksForNativeArrayAsTuple) { |
| const int a[] = {1, 2}; |
| const int* const pointer = a; |
| EXPECT_THAT(std::make_tuple(pointer, 2), Contains(1)); |
| EXPECT_THAT(std::make_tuple(pointer, 2), Not(Contains(Gt(3)))); |
| } |
| |
| TEST(ContainsTest, WorksForTwoDimensionalNativeArray) { |
| int a[][3] = {{1, 2, 3}, {4, 5, 6}}; |
| EXPECT_THAT(a, Contains(ElementsAre(4, 5, 6))); |
| EXPECT_THAT(a, Contains(Contains(5))); |
| EXPECT_THAT(a, Not(Contains(ElementsAre(3, 4, 5)))); |
| EXPECT_THAT(a, Contains(Not(Contains(5)))); |
| } |
| |
| } // namespace |
| } // namespace gmock_matchers_test |
| } // namespace testing |
| |
| GTEST_DISABLE_MSC_WARNINGS_POP_() // 4244 4100 |