blob: 2c52ac085c716a585c8676e2996e017726c25ccf [file] [log] [blame]
#!/usr/bin/env perl
#
# ====================================================================
# Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# July 2004
#
# 2.22x RC4 tune-up:-) It should be noted though that my hand [as in
# "hand-coded assembler"] doesn't stand for the whole improvement
# coefficient. It turned out that eliminating RC4_CHAR from config
# line results in ~40% improvement (yes, even for C implementation).
# Presumably it has everything to do with AMD cache architecture and
# RAW or whatever penalties. Once again! The module *requires* config
# line *without* RC4_CHAR! As for coding "secret," I bet on partial
# register arithmetics. For example instead of 'inc %r8; and $255,%r8'
# I simply 'inc %r8b'. Even though optimization manual discourages
# to operate on partial registers, it turned out to be the best bet.
# At least for AMD... How IA32E would perform remains to be seen...
# November 2004
#
# As was shown by Marc Bevand reordering of couple of load operations
# results in even higher performance gain of 3.3x:-) At least on
# Opteron... For reference, 1x in this case is RC4_CHAR C-code
# compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock.
# Latter means that if you want to *estimate* what to expect from
# *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz.
# November 2004
#
# Intel P4 EM64T core was found to run the AMD64 code really slow...
# The only way to achieve comparable performance on P4 was to keep
# RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to
# compose blended code, which would perform even within 30% marginal
# on either AMD and Intel platforms, I implement both cases. See
# rc4_skey.c for further details...
# April 2005
#
# P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing
# those with add/sub results in 50% performance improvement of folded
# loop...
# May 2005
#
# As was shown by Zou Nanhai loop unrolling can improve Intel EM64T
# performance by >30% [unlike P4 32-bit case that is]. But this is
# provided that loads are reordered even more aggressively! Both code
# pathes, AMD64 and EM64T, reorder loads in essentially same manner
# as my IA-64 implementation. On Opteron this resulted in modest 5%
# improvement [I had to test it], while final Intel P4 performance
# achieves respectful 432MBps on 2.8GHz processor now. For reference.
# If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than
# RC4_INT code-path. While if executed on Opteron, it's only 25%
# slower than the RC4_INT one [meaning that if CPU ยต-arch detection
# is not implemented, then this final RC4_CHAR code-path should be
# preferred, as it provides better *all-round* performance].
# March 2007
#
# Intel Core2 was observed to perform poorly on both code paths:-( It
# apparently suffers from some kind of partial register stall, which
# occurs in 64-bit mode only [as virtually identical 32-bit loop was
# observed to outperform 64-bit one by almost 50%]. Adding two movzb to
# cloop1 boosts its performance by 80%! This loop appears to be optimal
# fit for Core2 and therefore the code was modified to skip cloop8 on
# this CPU.
# May 2010
#
# Intel Westmere was observed to perform suboptimally. Adding yet
# another movzb to cloop1 improved performance by almost 50%! Core2
# performance is improved too, but nominally...
# May 2011
#
# The only code path that was not modified is P4-specific one. Non-P4
# Intel code path optimization is heavily based on submission by Maxim
# Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used
# some of the ideas even in attempt to optmize the original RC4_INT
# code path... Current performance in cycles per processed byte (less
# is better) and improvement coefficients relative to previous
# version of this module are:
#
# Opteron 5.3/+0%(*)
# P4 6.5
# Core2 6.2/+15%(**)
# Westmere 4.2/+60%
# Sandy Bridge 4.2/+120%
# Atom 9.3/+80%
#
# (*) But corresponding loop has less instructions, which should have
# positive effect on upcoming Bulldozer, which has one less ALU.
# For reference, Intel code runs at 6.8 cpb rate on Opteron.
# (**) Note that Core2 result is ~15% lower than corresponding result
# for 32-bit code, meaning that it's possible to improve it,
# but more than likely at the cost of the others (see rc4-586.pl
# to get the idea)...
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
$dat="%rdi"; # arg1
$len="%rsi"; # arg2
$inp="%rdx"; # arg3
$out="%rcx"; # arg4
{
$code=<<___;
.text
.extern OPENSSL_ia32cap_P
.globl asm_RC4
.type asm_RC4,\@function,4
.align 16
asm_RC4:
or $len,$len
jne .Lentry
ret
.Lentry:
push %rbx
push %r12
push %r13
.Lprologue:
mov $len,%r11
mov $inp,%r12
mov $out,%r13
___
my $len="%r11"; # reassign input arguments
my $inp="%r12";
my $out="%r13";
my @XX=("%r10","%rsi");
my @TX=("%rax","%rbx");
my $YY="%rcx";
my $TY="%rdx";
$code.=<<___;
xor $XX[0],$XX[0]
xor $YY,$YY
lea 8($dat),$dat
mov -8($dat),$XX[0]#b
mov -4($dat),$YY#b
cmpl \$-1,256($dat)
je .LRC4_CHAR
mov OPENSSL_ia32cap_P(%rip),%r8d
xor $TX[1],$TX[1]
inc $XX[0]#b
sub $XX[0],$TX[1]
sub $inp,$out
movl ($dat,$XX[0],4),$TX[0]#d
test \$-16,$len
jz .Lloop1
bt \$30,%r8d # Intel CPU?
jc .Lintel
and \$7,$TX[1]
lea 1($XX[0]),$XX[1]
jz .Loop8
sub $TX[1],$len
.Loop8_warmup:
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl $TY#d,($dat,$XX[0],4)
add $TY#b,$TX[0]#b
inc $XX[0]#b
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
movb $TY#b,($out,$inp)
lea 1($inp),$inp
dec $TX[1]
jnz .Loop8_warmup
lea 1($XX[0]),$XX[1]
jmp .Loop8
.align 16
.Loop8:
___
for ($i=0;$i<8;$i++) {
$code.=<<___ if ($i==7);
add \$8,$XX[1]#b
___
$code.=<<___;
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d
ror \$8,%r8 # ror is redundant when $i=0
movl $TY#d,4*$i($dat,$XX[0],4)
add $TX[0]#b,$TY#b
movb ($dat,$TY,4),%r8b
___
push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers
}
$code.=<<___;
add \$8,$XX[0]#b
ror \$8,%r8
sub \$8,$len
xor ($inp),%r8
mov %r8,($out,$inp)
lea 8($inp),$inp
test \$-8,$len
jnz .Loop8
cmp \$0,$len
jne .Lloop1
jmp .Lexit
.align 16
.Lintel:
test \$-32,$len
jz .Lloop1
and \$15,$TX[1]
jz .Loop16_is_hot
sub $TX[1],$len
.Loop16_warmup:
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl $TY#d,($dat,$XX[0],4)
add $TY#b,$TX[0]#b
inc $XX[0]#b
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
movb $TY#b,($out,$inp)
lea 1($inp),$inp
dec $TX[1]
jnz .Loop16_warmup
mov $YY,$TX[1]
xor $YY,$YY
mov $TX[1]#b,$YY#b
.Loop16_is_hot:
lea ($dat,$XX[0],4),$XX[1]
___
sub RC4_loop {
my $i=shift;
my $j=$i<0?0:$i;
my $xmm="%xmm".($j&1);
$code.=" add \$16,$XX[0]#b\n" if ($i==15);
$code.=" movdqu ($inp),%xmm2\n" if ($i==15);
$code.=" add $TX[0]#b,$YY#b\n" if ($i<=0);
$code.=" movl ($dat,$YY,4),$TY#d\n";
$code.=" pxor %xmm0,%xmm2\n" if ($i==0);
$code.=" psllq \$8,%xmm1\n" if ($i==0);
$code.=" pxor $xmm,$xmm\n" if ($i<=1);
$code.=" movl $TX[0]#d,($dat,$YY,4)\n";
$code.=" add $TY#b,$TX[0]#b\n";
$code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15);
$code.=" movz $TX[0]#b,$TX[0]#d\n";
$code.=" movl $TY#d,4*$j($XX[1])\n";
$code.=" pxor %xmm1,%xmm2\n" if ($i==0);
$code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15);
$code.=" add $TX[1]#b,$YY#b\n" if ($i<15);
$code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n";
$code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0);
$code.=" lea 16($inp),$inp\n" if ($i==0);
$code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15);
}
RC4_loop(-1);
$code.=<<___;
jmp .Loop16_enter
.align 16
.Loop16:
___
for ($i=0;$i<16;$i++) {
$code.=".Loop16_enter:\n" if ($i==1);
RC4_loop($i);
push(@TX,shift(@TX)); # "rotate" registers
}
$code.=<<___;
mov $YY,$TX[1]
xor $YY,$YY # keyword to partial register
sub \$16,$len
mov $TX[1]#b,$YY#b
test \$-16,$len
jnz .Loop16
psllq \$8,%xmm1
pxor %xmm0,%xmm2
pxor %xmm1,%xmm2
movdqu %xmm2,($out,$inp)
lea 16($inp),$inp
cmp \$0,$len
jne .Lloop1
jmp .Lexit
.align 16
.Lloop1:
add $TX[0]#b,$YY#b
movl ($dat,$YY,4),$TY#d
movl $TX[0]#d,($dat,$YY,4)
movl $TY#d,($dat,$XX[0],4)
add $TY#b,$TX[0]#b
inc $XX[0]#b
movl ($dat,$TX[0],4),$TY#d
movl ($dat,$XX[0],4),$TX[0]#d
xorb ($inp),$TY#b
movb $TY#b,($out,$inp)
lea 1($inp),$inp
dec $len
jnz .Lloop1
jmp .Lexit
.align 16
.LRC4_CHAR:
add \$1,$XX[0]#b
movzb ($dat,$XX[0]),$TX[0]#d
test \$-8,$len
jz .Lcloop1
jmp .Lcloop8
.align 16
.Lcloop8:
mov ($inp),%r8d
mov 4($inp),%r9d
___
# unroll 2x4-wise, because 64-bit rotates kill Intel P4...
for ($i=0;$i<4;$i++) {
$code.=<<___;
add $TX[0]#b,$YY#b
lea 1($XX[0]),$XX[1]
movzb ($dat,$YY),$TY#d
movzb $XX[1]#b,$XX[1]#d
movzb ($dat,$XX[1]),$TX[1]#d
movb $TX[0]#b,($dat,$YY)
cmp $XX[1],$YY
movb $TY#b,($dat,$XX[0])
jne .Lcmov$i # Intel cmov is sloooow...
mov $TX[0],$TX[1]
.Lcmov$i:
add $TX[0]#b,$TY#b
xor ($dat,$TY),%r8b
ror \$8,%r8d
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
for ($i=4;$i<8;$i++) {
$code.=<<___;
add $TX[0]#b,$YY#b
lea 1($XX[0]),$XX[1]
movzb ($dat,$YY),$TY#d
movzb $XX[1]#b,$XX[1]#d
movzb ($dat,$XX[1]),$TX[1]#d
movb $TX[0]#b,($dat,$YY)
cmp $XX[1],$YY
movb $TY#b,($dat,$XX[0])
jne .Lcmov$i # Intel cmov is sloooow...
mov $TX[0],$TX[1]
.Lcmov$i:
add $TX[0]#b,$TY#b
xor ($dat,$TY),%r9b
ror \$8,%r9d
___
push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers
}
$code.=<<___;
lea -8($len),$len
mov %r8d,($out)
lea 8($inp),$inp
mov %r9d,4($out)
lea 8($out),$out
test \$-8,$len
jnz .Lcloop8
cmp \$0,$len
jne .Lcloop1
jmp .Lexit
___
$code.=<<___;
.align 16
.Lcloop1:
add $TX[0]#b,$YY#b
movzb $YY#b,$YY#d
movzb ($dat,$YY),$TY#d
movb $TX[0]#b,($dat,$YY)
movb $TY#b,($dat,$XX[0])
add $TX[0]#b,$TY#b
add \$1,$XX[0]#b
movzb $TY#b,$TY#d
movzb $XX[0]#b,$XX[0]#d
movzb ($dat,$TY),$TY#d
movzb ($dat,$XX[0]),$TX[0]#d
xorb ($inp),$TY#b
lea 1($inp),$inp
movb $TY#b,($out)
lea 1($out),$out
sub \$1,$len
jnz .Lcloop1
jmp .Lexit
.align 16
.Lexit:
sub \$1,$XX[0]#b
movl $XX[0]#d,-8($dat)
movl $YY#d,-4($dat)
mov (%rsp),%r13
mov 8(%rsp),%r12
mov 16(%rsp),%rbx
add \$24,%rsp
.Lepilogue:
ret
.size asm_RC4,.-asm_RC4
___
}
$idx="%r8";
$ido="%r9";
$code.=<<___;
.globl asm_RC4_set_key
.type asm_RC4_set_key,\@function,3
.align 16
asm_RC4_set_key:
lea 8($dat),$dat
lea ($inp,$len),$inp
neg $len
mov $len,%rcx
xor %eax,%eax
xor $ido,$ido
xor %r10,%r10
xor %r11,%r11
mov OPENSSL_ia32cap_P(%rip),$idx#d
bt \$20,$idx#d # RC4_CHAR?
jc .Lc1stloop
jmp .Lw1stloop
.align 16
.Lw1stloop:
mov %eax,($dat,%rax,4)
add \$1,%al
jnc .Lw1stloop
xor $ido,$ido
xor $idx,$idx
.align 16
.Lw2ndloop:
mov ($dat,$ido,4),%r10d
add ($inp,$len,1),$idx#b
add %r10b,$idx#b
add \$1,$len
mov ($dat,$idx,4),%r11d
cmovz %rcx,$len
mov %r10d,($dat,$idx,4)
mov %r11d,($dat,$ido,4)
add \$1,$ido#b
jnc .Lw2ndloop
jmp .Lexit_key
.align 16
.Lc1stloop:
mov %al,($dat,%rax)
add \$1,%al
jnc .Lc1stloop
xor $ido,$ido
xor $idx,$idx
.align 16
.Lc2ndloop:
mov ($dat,$ido),%r10b
add ($inp,$len),$idx#b
add %r10b,$idx#b
add \$1,$len
mov ($dat,$idx),%r11b
jnz .Lcnowrap
mov %rcx,$len
.Lcnowrap:
mov %r10b,($dat,$idx)
mov %r11b,($dat,$ido)
add \$1,$ido#b
jnc .Lc2ndloop
movl \$-1,256($dat)
.align 16
.Lexit_key:
xor %eax,%eax
mov %eax,-8($dat)
mov %eax,-4($dat)
ret
.size asm_RC4_set_key,.-asm_RC4_set_key
.globl RC4_options
.type RC4_options,\@abi-omnipotent
.align 16
RC4_options:
lea .Lopts(%rip),%rax
mov OPENSSL_ia32cap_P(%rip),%rdx
mov (%rdx),%edx
bt \$20,%edx
jc .L8xchar
bt \$30,%edx
jnc .Ldone
add \$25,%rax
ret
.L8xchar:
add \$12,%rax
.Ldone:
ret
.align 64
.Lopts:
.asciz "rc4(8x,int)"
.asciz "rc4(8x,char)"
.asciz "rc4(16x,int)"
.asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
.align 64
.size RC4_options,.-RC4_options
___
# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
# CONTEXT *context,DISPATCHER_CONTEXT *disp)
if ($win64) {
$rec="%rcx";
$frame="%rdx";
$context="%r8";
$disp="%r9";
$code.=<<___;
.extern __imp_RtlVirtualUnwind
.type stream_se_handler,\@abi-omnipotent
.align 16
stream_se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 120($context),%rax # pull context->Rax
mov 248($context),%rbx # pull context->Rip
lea .Lprologue(%rip),%r10
cmp %r10,%rbx # context->Rip<prologue label
jb .Lin_prologue
mov 152($context),%rax # pull context->Rsp
lea .Lepilogue(%rip),%r10
cmp %r10,%rbx # context->Rip>=epilogue label
jae .Lin_prologue
lea 24(%rax),%rax
mov -8(%rax),%rbx
mov -16(%rax),%r12
mov -24(%rax),%r13
mov %rbx,144($context) # restore context->Rbx
mov %r12,216($context) # restore context->R12
mov %r13,224($context) # restore context->R13
.Lin_prologue:
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rax,152($context) # restore context->Rsp
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
jmp .Lcommon_seh_exit
.size stream_se_handler,.-stream_se_handler
.type key_se_handler,\@abi-omnipotent
.align 16
key_se_handler:
push %rsi
push %rdi
push %rbx
push %rbp
push %r12
push %r13
push %r14
push %r15
pushfq
sub \$64,%rsp
mov 152($context),%rax # pull context->Rsp
mov 8(%rax),%rdi
mov 16(%rax),%rsi
mov %rsi,168($context) # restore context->Rsi
mov %rdi,176($context) # restore context->Rdi
.Lcommon_seh_exit:
mov 40($disp),%rdi # disp->ContextRecord
mov $context,%rsi # context
mov \$154,%ecx # sizeof(CONTEXT)
.long 0xa548f3fc # cld; rep movsq
mov $disp,%rsi
xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
mov 8(%rsi),%rdx # arg2, disp->ImageBase
mov 0(%rsi),%r8 # arg3, disp->ControlPc
mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
mov 40(%rsi),%r10 # disp->ContextRecord
lea 56(%rsi),%r11 # &disp->HandlerData
lea 24(%rsi),%r12 # &disp->EstablisherFrame
mov %r10,32(%rsp) # arg5
mov %r11,40(%rsp) # arg6
mov %r12,48(%rsp) # arg7
mov %rcx,56(%rsp) # arg8, (NULL)
call *__imp_RtlVirtualUnwind(%rip)
mov \$1,%eax # ExceptionContinueSearch
add \$64,%rsp
popfq
pop %r15
pop %r14
pop %r13
pop %r12
pop %rbp
pop %rbx
pop %rdi
pop %rsi
ret
.size key_se_handler,.-key_se_handler
.section .pdata
.align 4
.rva .LSEH_begin_asm_RC4
.rva .LSEH_end_asm_RC4
.rva .LSEH_info_asm_RC4
.rva .LSEH_begin_asm_RC4_set_key
.rva .LSEH_end_asm_RC4_set_key
.rva .LSEH_info_asm_RC4_set_key
.section .xdata
.align 8
.LSEH_info_asm_RC4:
.byte 9,0,0,0
.rva stream_se_handler
.LSEH_info_asm_RC4_set_key:
.byte 9,0,0,0
.rva key_se_handler
___
}
sub reg_part {
my ($reg,$conv)=@_;
if ($reg =~ /%r[0-9]+/) { $reg .= $conv; }
elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; }
elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; }
elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; }
return $reg;
}
$code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem;
$code =~ s/\`([^\`]*)\`/eval $1/gem;
print $code;
close STDOUT;