| /* ==================================================================== |
| * Copyright (c) 2006 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/evp.h> |
| |
| #include <openssl/bio.h> |
| #include <openssl/bn.h> |
| #include <openssl/dsa.h> |
| #include <openssl/ec.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/mem.h> |
| #include <openssl/rsa.h> |
| |
| #include "../internal.h" |
| #include "../fipsmodule/rsa/internal.h" |
| |
| |
| static int print_hex(BIO *bp, const uint8_t *data, size_t len, int off) { |
| for (size_t i = 0; i < len; i++) { |
| if ((i % 15) == 0) { |
| if (BIO_puts(bp, "\n") <= 0 || // |
| !BIO_indent(bp, off + 4, 128)) { |
| return 0; |
| } |
| } |
| if (BIO_printf(bp, "%02x%s", data[i], (i + 1 == len) ? "" : ":") <= 0) { |
| return 0; |
| } |
| } |
| if (BIO_write(bp, "\n", 1) <= 0) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int bn_print(BIO *bp, const char *name, const BIGNUM *num, int off) { |
| if (num == NULL) { |
| return 1; |
| } |
| |
| if (!BIO_indent(bp, off, 128)) { |
| return 0; |
| } |
| if (BN_is_zero(num)) { |
| if (BIO_printf(bp, "%s 0\n", name) <= 0) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| uint64_t u64; |
| if (BN_get_u64(num, &u64)) { |
| const char *neg = BN_is_negative(num) ? "-" : ""; |
| return BIO_printf(bp, "%s %s%" PRIu64 " (%s0x%" PRIx64 ")\n", name, neg, |
| u64, neg, u64) > 0; |
| } |
| |
| if (BIO_printf(bp, "%s%s", name, |
| (BN_is_negative(num)) ? " (Negative)" : "") <= 0) { |
| return 0; |
| } |
| |
| // Print |num| in hex, adding a leading zero, as in ASN.1, if the high bit |
| // is set. |
| // |
| // TODO(davidben): Do we need to do this? We already print "(Negative)" above |
| // and negative values are never valid in keys anyway. |
| size_t len = BN_num_bytes(num); |
| uint8_t *buf = OPENSSL_malloc(len + 1); |
| if (buf == NULL) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| |
| buf[0] = 0; |
| BN_bn2bin(num, buf + 1); |
| int ret; |
| if (len > 0 && (buf[1] & 0x80) != 0) { |
| // Print the whole buffer. |
| ret = print_hex(bp, buf, len + 1, off); |
| } else { |
| // Skip the leading zero. |
| ret = print_hex(bp, buf + 1, len, off); |
| } |
| OPENSSL_free(buf); |
| return ret; |
| } |
| |
| // RSA keys. |
| |
| static int do_rsa_print(BIO *out, const RSA *rsa, int off, |
| int include_private) { |
| int mod_len = 0; |
| if (rsa->n != NULL) { |
| mod_len = BN_num_bits(rsa->n); |
| } |
| |
| if (!BIO_indent(out, off, 128)) { |
| return 0; |
| } |
| |
| const char *s, *str; |
| if (include_private && rsa->d) { |
| if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) { |
| return 0; |
| } |
| str = "modulus:"; |
| s = "publicExponent:"; |
| } else { |
| if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) { |
| return 0; |
| } |
| str = "Modulus:"; |
| s = "Exponent:"; |
| } |
| if (!bn_print(out, str, rsa->n, off) || |
| !bn_print(out, s, rsa->e, off)) { |
| return 0; |
| } |
| |
| if (include_private) { |
| if (!bn_print(out, "privateExponent:", rsa->d, off) || |
| !bn_print(out, "prime1:", rsa->p, off) || |
| !bn_print(out, "prime2:", rsa->q, off) || |
| !bn_print(out, "exponent1:", rsa->dmp1, off) || |
| !bn_print(out, "exponent2:", rsa->dmq1, off) || |
| !bn_print(out, "coefficient:", rsa->iqmp, off)) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
| return do_rsa_print(bp, pkey->pkey.rsa, indent, 0); |
| } |
| |
| static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
| return do_rsa_print(bp, pkey->pkey.rsa, indent, 1); |
| } |
| |
| |
| // DSA keys. |
| |
| static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) { |
| const BIGNUM *priv_key = NULL; |
| if (ptype == 2) { |
| priv_key = x->priv_key; |
| } |
| |
| const BIGNUM *pub_key = NULL; |
| if (ptype > 0) { |
| pub_key = x->pub_key; |
| } |
| |
| const char *ktype = "DSA-Parameters"; |
| if (ptype == 2) { |
| ktype = "Private-Key"; |
| } else if (ptype == 1) { |
| ktype = "Public-Key"; |
| } |
| |
| if (!BIO_indent(bp, off, 128) || |
| BIO_printf(bp, "%s: (%u bit)\n", ktype, BN_num_bits(x->p)) <= 0 || |
| // |priv_key| and |pub_key| may be NULL, in which case |bn_print| will |
| // silently skip them. |
| !bn_print(bp, "priv:", priv_key, off) || |
| !bn_print(bp, "pub:", pub_key, off) || |
| !bn_print(bp, "P:", x->p, off) || |
| !bn_print(bp, "Q:", x->q, off) || |
| !bn_print(bp, "G:", x->g, off)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
| return do_dsa_print(bp, pkey->pkey.dsa, indent, 0); |
| } |
| |
| static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
| return do_dsa_print(bp, pkey->pkey.dsa, indent, 1); |
| } |
| |
| static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
| return do_dsa_print(bp, pkey->pkey.dsa, indent, 2); |
| } |
| |
| |
| // EC keys. |
| |
| static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, int ktype) { |
| const EC_GROUP *group; |
| if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| |
| const char *ecstr; |
| if (ktype == 2) { |
| ecstr = "Private-Key"; |
| } else if (ktype == 1) { |
| ecstr = "Public-Key"; |
| } else { |
| ecstr = "ECDSA-Parameters"; |
| } |
| |
| if (!BIO_indent(bp, off, 128)) { |
| return 0; |
| } |
| int curve_name = EC_GROUP_get_curve_name(group); |
| if (BIO_printf(bp, "%s: (%s)\n", ecstr, |
| curve_name == NID_undef |
| ? "unknown curve" |
| : EC_curve_nid2nist(curve_name)) <= 0) { |
| return 0; |
| } |
| |
| if (ktype == 2) { |
| const BIGNUM *priv_key = EC_KEY_get0_private_key(x); |
| if (priv_key != NULL && // |
| !bn_print(bp, "priv:", priv_key, off)) { |
| return 0; |
| } |
| } |
| |
| if (ktype > 0 && EC_KEY_get0_public_key(x) != NULL) { |
| uint8_t *pub = NULL; |
| size_t pub_len = EC_KEY_key2buf(x, EC_KEY_get_conv_form(x), &pub, NULL); |
| if (pub_len == 0) { |
| return 0; |
| } |
| int ret = BIO_indent(bp, off, 128) && // |
| BIO_puts(bp, "pub:") > 0 && // |
| print_hex(bp, pub, pub_len, off); |
| OPENSSL_free(pub); |
| if (!ret) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static int eckey_param_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
| return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 0); |
| } |
| |
| static int eckey_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
| return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 1); |
| } |
| |
| |
| static int eckey_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) { |
| return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 2); |
| } |
| |
| |
| typedef struct { |
| int type; |
| int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent); |
| int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent); |
| int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent); |
| } EVP_PKEY_PRINT_METHOD; |
| |
| static EVP_PKEY_PRINT_METHOD kPrintMethods[] = { |
| { |
| EVP_PKEY_RSA, |
| rsa_pub_print, |
| rsa_priv_print, |
| NULL /* param_print */, |
| }, |
| { |
| EVP_PKEY_DSA, |
| dsa_pub_print, |
| dsa_priv_print, |
| dsa_param_print, |
| }, |
| { |
| EVP_PKEY_EC, |
| eckey_pub_print, |
| eckey_priv_print, |
| eckey_param_print, |
| }, |
| }; |
| |
| static size_t kPrintMethodsLen = OPENSSL_ARRAY_SIZE(kPrintMethods); |
| |
| static EVP_PKEY_PRINT_METHOD *find_method(int type) { |
| for (size_t i = 0; i < kPrintMethodsLen; i++) { |
| if (kPrintMethods[i].type == type) { |
| return &kPrintMethods[i]; |
| } |
| } |
| return NULL; |
| } |
| |
| static int print_unsupported(BIO *out, const EVP_PKEY *pkey, int indent, |
| const char *kstr) { |
| BIO_indent(out, indent, 128); |
| BIO_printf(out, "%s algorithm unsupported\n", kstr); |
| return 1; |
| } |
| |
| int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *pctx) { |
| EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
| if (method != NULL && method->pub_print != NULL) { |
| return method->pub_print(out, pkey, indent); |
| } |
| return print_unsupported(out, pkey, indent, "Public Key"); |
| } |
| |
| int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *pctx) { |
| EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
| if (method != NULL && method->priv_print != NULL) { |
| return method->priv_print(out, pkey, indent); |
| } |
| return print_unsupported(out, pkey, indent, "Private Key"); |
| } |
| |
| int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent, |
| ASN1_PCTX *pctx) { |
| EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type); |
| if (method != NULL && method->param_print != NULL) { |
| return method->param_print(out, pkey, indent); |
| } |
| return print_unsupported(out, pkey, indent, "Parameters"); |
| } |