| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| /* This implementation of poly1305 is by Andrew Moon |
| * (https://github.com/floodyberry/poly1305-donna) and released as public |
| * domain. */ |
| |
| #include <openssl/poly1305.h> |
| |
| #include <string.h> |
| |
| #include <openssl/cpu.h> |
| |
| |
| #if defined(OPENSSL_WINDOWS) || !defined(OPENSSL_X86_64) |
| |
| #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) |
| /* We can assume little-endian. */ |
| static uint32_t U8TO32_LE(const uint8_t *m) { |
| uint32_t r; |
| memcpy(&r, m, sizeof(r)); |
| return r; |
| } |
| |
| static void U32TO8_LE(uint8_t *m, uint32_t v) { memcpy(m, &v, sizeof(v)); } |
| #else |
| static uint32_t U8TO32_LE(const uint8_t *m) { |
| return (uint32_t)m[0] | (uint32_t)m[1] << 8 | (uint32_t)m[2] << 16 | |
| (uint32_t)m[3] << 24; |
| } |
| |
| static void U32TO8_LE(uint8_t *m, uint32_t v) { |
| m[0] = v; |
| m[1] = v >> 8; |
| m[2] = v >> 16; |
| m[3] = v >> 24; |
| } |
| #endif |
| |
| #if defined(OPENSSL_ARM) |
| void CRYPTO_poly1305_init_neon(poly1305_state *state, const uint8_t key[32]); |
| |
| void CRYPTO_poly1305_update_neon(poly1305_state *state, const uint8_t *in, |
| size_t in_len); |
| |
| void CRYPTO_poly1305_finish_neon(poly1305_state *state, uint8_t mac[16]); |
| #endif |
| |
| static uint64_t mul32x32_64(uint32_t a, uint32_t b) { return (uint64_t)a * b; } |
| |
| struct poly1305_state_st { |
| uint32_t r0, r1, r2, r3, r4; |
| uint32_t s1, s2, s3, s4; |
| uint32_t h0, h1, h2, h3, h4; |
| uint8_t buf[16]; |
| unsigned int buf_used; |
| uint8_t key[16]; |
| }; |
| |
| /* poly1305_blocks updates |state| given some amount of input data. This |
| * function may only be called with a |len| that is not a multiple of 16 at the |
| * end of the data. Otherwise the input must be buffered into 16 byte blocks. */ |
| static void poly1305_update(struct poly1305_state_st *state, const uint8_t *in, |
| size_t len) { |
| uint32_t t0, t1, t2, t3; |
| uint64_t t[5]; |
| uint32_t b; |
| uint64_t c; |
| size_t j; |
| uint8_t mp[16]; |
| |
| if (len < 16) { |
| goto poly1305_donna_atmost15bytes; |
| } |
| |
| poly1305_donna_16bytes: |
| t0 = U8TO32_LE(in); |
| t1 = U8TO32_LE(in + 4); |
| t2 = U8TO32_LE(in + 8); |
| t3 = U8TO32_LE(in + 12); |
| |
| in += 16; |
| len -= 16; |
| |
| state->h0 += t0 & 0x3ffffff; |
| state->h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff; |
| state->h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff; |
| state->h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff; |
| state->h4 += (t3 >> 8) | (1 << 24); |
| |
| poly1305_donna_mul: |
| t[0] = mul32x32_64(state->h0, state->r0) + mul32x32_64(state->h1, state->s4) + |
| mul32x32_64(state->h2, state->s3) + mul32x32_64(state->h3, state->s2) + |
| mul32x32_64(state->h4, state->s1); |
| t[1] = mul32x32_64(state->h0, state->r1) + mul32x32_64(state->h1, state->r0) + |
| mul32x32_64(state->h2, state->s4) + mul32x32_64(state->h3, state->s3) + |
| mul32x32_64(state->h4, state->s2); |
| t[2] = mul32x32_64(state->h0, state->r2) + mul32x32_64(state->h1, state->r1) + |
| mul32x32_64(state->h2, state->r0) + mul32x32_64(state->h3, state->s4) + |
| mul32x32_64(state->h4, state->s3); |
| t[3] = mul32x32_64(state->h0, state->r3) + mul32x32_64(state->h1, state->r2) + |
| mul32x32_64(state->h2, state->r1) + mul32x32_64(state->h3, state->r0) + |
| mul32x32_64(state->h4, state->s4); |
| t[4] = mul32x32_64(state->h0, state->r4) + mul32x32_64(state->h1, state->r3) + |
| mul32x32_64(state->h2, state->r2) + mul32x32_64(state->h3, state->r1) + |
| mul32x32_64(state->h4, state->r0); |
| |
| state->h0 = (uint32_t)t[0] & 0x3ffffff; |
| c = (t[0] >> 26); |
| t[1] += c; |
| state->h1 = (uint32_t)t[1] & 0x3ffffff; |
| b = (uint32_t)(t[1] >> 26); |
| t[2] += b; |
| state->h2 = (uint32_t)t[2] & 0x3ffffff; |
| b = (uint32_t)(t[2] >> 26); |
| t[3] += b; |
| state->h3 = (uint32_t)t[3] & 0x3ffffff; |
| b = (uint32_t)(t[3] >> 26); |
| t[4] += b; |
| state->h4 = (uint32_t)t[4] & 0x3ffffff; |
| b = (uint32_t)(t[4] >> 26); |
| state->h0 += b * 5; |
| |
| if (len >= 16) |
| goto poly1305_donna_16bytes; |
| |
| /* final bytes */ |
| poly1305_donna_atmost15bytes: |
| if (!len) |
| return; |
| |
| for (j = 0; j < len; j++) |
| mp[j] = in[j]; |
| mp[j++] = 1; |
| for (; j < 16; j++) |
| mp[j] = 0; |
| len = 0; |
| |
| t0 = U8TO32_LE(mp + 0); |
| t1 = U8TO32_LE(mp + 4); |
| t2 = U8TO32_LE(mp + 8); |
| t3 = U8TO32_LE(mp + 12); |
| |
| state->h0 += t0 & 0x3ffffff; |
| state->h1 += ((((uint64_t)t1 << 32) | t0) >> 26) & 0x3ffffff; |
| state->h2 += ((((uint64_t)t2 << 32) | t1) >> 20) & 0x3ffffff; |
| state->h3 += ((((uint64_t)t3 << 32) | t2) >> 14) & 0x3ffffff; |
| state->h4 += (t3 >> 8); |
| |
| goto poly1305_donna_mul; |
| } |
| |
| void CRYPTO_poly1305_init(poly1305_state *statep, const uint8_t key[32]) { |
| struct poly1305_state_st *state = (struct poly1305_state_st *)statep; |
| uint32_t t0, t1, t2, t3; |
| |
| #if defined(OPENSSL_ARM) |
| if (CRYPTO_is_NEON_capable()) { |
| CRYPTO_poly1305_init_neon(statep, key); |
| return; |
| } |
| #endif |
| |
| t0 = U8TO32_LE(key + 0); |
| t1 = U8TO32_LE(key + 4); |
| t2 = U8TO32_LE(key + 8); |
| t3 = U8TO32_LE(key + 12); |
| |
| /* precompute multipliers */ |
| state->r0 = t0 & 0x3ffffff; |
| t0 >>= 26; |
| t0 |= t1 << 6; |
| state->r1 = t0 & 0x3ffff03; |
| t1 >>= 20; |
| t1 |= t2 << 12; |
| state->r2 = t1 & 0x3ffc0ff; |
| t2 >>= 14; |
| t2 |= t3 << 18; |
| state->r3 = t2 & 0x3f03fff; |
| t3 >>= 8; |
| state->r4 = t3 & 0x00fffff; |
| |
| state->s1 = state->r1 * 5; |
| state->s2 = state->r2 * 5; |
| state->s3 = state->r3 * 5; |
| state->s4 = state->r4 * 5; |
| |
| /* init state */ |
| state->h0 = 0; |
| state->h1 = 0; |
| state->h2 = 0; |
| state->h3 = 0; |
| state->h4 = 0; |
| |
| state->buf_used = 0; |
| memcpy(state->key, key + 16, sizeof(state->key)); |
| } |
| |
| void CRYPTO_poly1305_update(poly1305_state *statep, const uint8_t *in, |
| size_t in_len) { |
| unsigned int i; |
| struct poly1305_state_st *state = (struct poly1305_state_st *)statep; |
| |
| #if defined(OPENSSL_ARM) |
| if (CRYPTO_is_NEON_capable()) { |
| CRYPTO_poly1305_update_neon(statep, in, in_len); |
| return; |
| } |
| #endif |
| |
| if (state->buf_used) { |
| unsigned int todo = 16 - state->buf_used; |
| if (todo > in_len) |
| todo = in_len; |
| for (i = 0; i < todo; i++) |
| state->buf[state->buf_used + i] = in[i]; |
| state->buf_used += todo; |
| in_len -= todo; |
| in += todo; |
| |
| if (state->buf_used == 16) { |
| poly1305_update(state, state->buf, 16); |
| state->buf_used = 0; |
| } |
| } |
| |
| if (in_len >= 16) { |
| size_t todo = in_len & ~0xf; |
| poly1305_update(state, in, todo); |
| in += todo; |
| in_len &= 0xf; |
| } |
| |
| if (in_len) { |
| for (i = 0; i < in_len; i++) |
| state->buf[i] = in[i]; |
| state->buf_used = in_len; |
| } |
| } |
| |
| void CRYPTO_poly1305_finish(poly1305_state *statep, uint8_t mac[16]) { |
| struct poly1305_state_st *state = (struct poly1305_state_st *)statep; |
| uint64_t f0, f1, f2, f3; |
| uint32_t g0, g1, g2, g3, g4; |
| uint32_t b, nb; |
| |
| #if defined(OPENSSL_ARM) |
| if (CRYPTO_is_NEON_capable()) { |
| CRYPTO_poly1305_finish_neon(statep, mac); |
| return; |
| } |
| #endif |
| |
| if (state->buf_used) |
| poly1305_update(state, state->buf, state->buf_used); |
| |
| b = state->h0 >> 26; |
| state->h0 = state->h0 & 0x3ffffff; |
| state->h1 += b; |
| b = state->h1 >> 26; |
| state->h1 = state->h1 & 0x3ffffff; |
| state->h2 += b; |
| b = state->h2 >> 26; |
| state->h2 = state->h2 & 0x3ffffff; |
| state->h3 += b; |
| b = state->h3 >> 26; |
| state->h3 = state->h3 & 0x3ffffff; |
| state->h4 += b; |
| b = state->h4 >> 26; |
| state->h4 = state->h4 & 0x3ffffff; |
| state->h0 += b * 5; |
| |
| g0 = state->h0 + 5; |
| b = g0 >> 26; |
| g0 &= 0x3ffffff; |
| g1 = state->h1 + b; |
| b = g1 >> 26; |
| g1 &= 0x3ffffff; |
| g2 = state->h2 + b; |
| b = g2 >> 26; |
| g2 &= 0x3ffffff; |
| g3 = state->h3 + b; |
| b = g3 >> 26; |
| g3 &= 0x3ffffff; |
| g4 = state->h4 + b - (1 << 26); |
| |
| b = (g4 >> 31) - 1; |
| nb = ~b; |
| state->h0 = (state->h0 & nb) | (g0 & b); |
| state->h1 = (state->h1 & nb) | (g1 & b); |
| state->h2 = (state->h2 & nb) | (g2 & b); |
| state->h3 = (state->h3 & nb) | (g3 & b); |
| state->h4 = (state->h4 & nb) | (g4 & b); |
| |
| f0 = ((state->h0) | (state->h1 << 26)) + (uint64_t)U8TO32_LE(&state->key[0]); |
| f1 = ((state->h1 >> 6) | (state->h2 << 20)) + |
| (uint64_t)U8TO32_LE(&state->key[4]); |
| f2 = ((state->h2 >> 12) | (state->h3 << 14)) + |
| (uint64_t)U8TO32_LE(&state->key[8]); |
| f3 = ((state->h3 >> 18) | (state->h4 << 8)) + |
| (uint64_t)U8TO32_LE(&state->key[12]); |
| |
| U32TO8_LE(&mac[0], f0); |
| f1 += (f0 >> 32); |
| U32TO8_LE(&mac[4], f1); |
| f2 += (f1 >> 32); |
| U32TO8_LE(&mac[8], f2); |
| f3 += (f2 >> 32); |
| U32TO8_LE(&mac[12], f3); |
| } |
| |
| #endif /* OPENSSL_WINDOWS || !OPENSSL_X86_64 */ |