| /* Copyright (c) 2014, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| |
| #include <string> |
| #include <functional> |
| #include <memory> |
| #include <vector> |
| |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include <openssl/aead.h> |
| #include <openssl/bn.h> |
| #include <openssl/curve25519.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/ec.h> |
| #include <openssl/ecdsa.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| #include <openssl/rsa.h> |
| |
| #if defined(OPENSSL_WINDOWS) |
| OPENSSL_MSVC_PRAGMA(warning(push, 3)) |
| #include <windows.h> |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| #elif defined(OPENSSL_APPLE) |
| #include <sys/time.h> |
| #else |
| #include <time.h> |
| #endif |
| |
| #include "../crypto/internal.h" |
| #include "internal.h" |
| |
| |
| // TimeResults represents the results of benchmarking a function. |
| struct TimeResults { |
| // num_calls is the number of function calls done in the time period. |
| unsigned num_calls; |
| // us is the number of microseconds that elapsed in the time period. |
| unsigned us; |
| |
| void Print(const std::string &description) { |
| printf("Did %u %s operations in %uus (%.1f ops/sec)\n", num_calls, |
| description.c_str(), us, |
| (static_cast<double>(num_calls) / us) * 1000000); |
| } |
| |
| void PrintWithBytes(const std::string &description, size_t bytes_per_call) { |
| printf("Did %u %s operations in %uus (%.1f ops/sec): %.1f MB/s\n", |
| num_calls, description.c_str(), us, |
| (static_cast<double>(num_calls) / us) * 1000000, |
| static_cast<double>(bytes_per_call * num_calls) / us); |
| } |
| }; |
| |
| #if defined(OPENSSL_WINDOWS) |
| static uint64_t time_now() { return GetTickCount64() * 1000; } |
| #elif defined(OPENSSL_APPLE) |
| static uint64_t time_now() { |
| struct timeval tv; |
| uint64_t ret; |
| |
| gettimeofday(&tv, NULL); |
| ret = tv.tv_sec; |
| ret *= 1000000; |
| ret += tv.tv_usec; |
| return ret; |
| } |
| #else |
| static uint64_t time_now() { |
| struct timespec ts; |
| clock_gettime(CLOCK_MONOTONIC, &ts); |
| |
| uint64_t ret = ts.tv_sec; |
| ret *= 1000000; |
| ret += ts.tv_nsec / 1000; |
| return ret; |
| } |
| #endif |
| |
| static uint64_t g_timeout_seconds = 1; |
| |
| static bool TimeFunction(TimeResults *results, std::function<bool()> func) { |
| // total_us is the total amount of time that we'll aim to measure a function |
| // for. |
| const uint64_t total_us = g_timeout_seconds * 1000000; |
| uint64_t start = time_now(), now, delta; |
| unsigned done = 0, iterations_between_time_checks; |
| |
| if (!func()) { |
| return false; |
| } |
| now = time_now(); |
| delta = now - start; |
| if (delta == 0) { |
| iterations_between_time_checks = 250; |
| } else { |
| // Aim for about 100ms between time checks. |
| iterations_between_time_checks = |
| static_cast<double>(100000) / static_cast<double>(delta); |
| if (iterations_between_time_checks > 1000) { |
| iterations_between_time_checks = 1000; |
| } else if (iterations_between_time_checks < 1) { |
| iterations_between_time_checks = 1; |
| } |
| } |
| |
| for (;;) { |
| for (unsigned i = 0; i < iterations_between_time_checks; i++) { |
| if (!func()) { |
| return false; |
| } |
| done++; |
| } |
| |
| now = time_now(); |
| if (now - start > total_us) { |
| break; |
| } |
| } |
| |
| results->us = now - start; |
| results->num_calls = done; |
| return true; |
| } |
| |
| static bool SpeedRSA(const std::string &key_name, RSA *key, |
| const std::string &selected) { |
| if (!selected.empty() && key_name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| std::unique_ptr<uint8_t[]> sig(new uint8_t[RSA_size(key)]); |
| const uint8_t fake_sha256_hash[32] = {0}; |
| unsigned sig_len; |
| |
| TimeResults results; |
| if (!TimeFunction(&results, |
| [key, &sig, &fake_sha256_hash, &sig_len]() -> bool { |
| /* Usually during RSA signing we're using a long-lived |RSA| that has |
| * already had all of its |BN_MONT_CTX|s constructed, so it makes |
| * sense to use |key| directly here. */ |
| return RSA_sign(NID_sha256, fake_sha256_hash, sizeof(fake_sha256_hash), |
| sig.get(), &sig_len, key); |
| })) { |
| fprintf(stderr, "RSA_sign failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| results.Print(key_name + " signing"); |
| |
| if (!TimeFunction(&results, |
| [key, &fake_sha256_hash, &sig, sig_len]() -> bool { |
| /* Usually during RSA verification we have to parse an RSA key from a |
| * certificate or similar, in which case we'd need to construct a new |
| * RSA key, with a new |BN_MONT_CTX| for the public modulus. If we were |
| * to use |key| directly instead, then these costs wouldn't be |
| * accounted for. */ |
| bssl::UniquePtr<RSA> verify_key(RSA_new()); |
| if (!verify_key) { |
| return false; |
| } |
| verify_key->n = BN_dup(key->n); |
| verify_key->e = BN_dup(key->e); |
| if (!verify_key->n || |
| !verify_key->e) { |
| return false; |
| } |
| return RSA_verify(NID_sha256, fake_sha256_hash, |
| sizeof(fake_sha256_hash), sig.get(), sig_len, key); |
| })) { |
| fprintf(stderr, "RSA_verify failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| results.Print(key_name + " verify"); |
| |
| return true; |
| } |
| |
| static uint8_t *align(uint8_t *in, unsigned alignment) { |
| return reinterpret_cast<uint8_t *>( |
| (reinterpret_cast<uintptr_t>(in) + alignment) & |
| ~static_cast<size_t>(alignment - 1)); |
| } |
| |
| static bool SpeedAEADChunk(const EVP_AEAD *aead, const std::string &name, |
| size_t chunk_len, size_t ad_len, |
| evp_aead_direction_t direction) { |
| static const unsigned kAlignment = 16; |
| |
| bssl::ScopedEVP_AEAD_CTX ctx; |
| const size_t key_len = EVP_AEAD_key_length(aead); |
| const size_t nonce_len = EVP_AEAD_nonce_length(aead); |
| const size_t overhead_len = EVP_AEAD_max_overhead(aead); |
| |
| std::unique_ptr<uint8_t[]> key(new uint8_t[key_len]); |
| OPENSSL_memset(key.get(), 0, key_len); |
| std::unique_ptr<uint8_t[]> nonce(new uint8_t[nonce_len]); |
| OPENSSL_memset(nonce.get(), 0, nonce_len); |
| std::unique_ptr<uint8_t[]> in_storage(new uint8_t[chunk_len + kAlignment]); |
| std::unique_ptr<uint8_t[]> out_storage(new uint8_t[chunk_len + overhead_len + kAlignment]); |
| std::unique_ptr<uint8_t[]> in2_storage(new uint8_t[chunk_len + kAlignment]); |
| std::unique_ptr<uint8_t[]> ad(new uint8_t[ad_len]); |
| OPENSSL_memset(ad.get(), 0, ad_len); |
| |
| uint8_t *const in = align(in_storage.get(), kAlignment); |
| OPENSSL_memset(in, 0, chunk_len); |
| uint8_t *const out = align(out_storage.get(), kAlignment); |
| OPENSSL_memset(out, 0, chunk_len + overhead_len); |
| uint8_t *const in2 = align(in2_storage.get(), kAlignment); |
| |
| if (!EVP_AEAD_CTX_init_with_direction(ctx.get(), aead, key.get(), key_len, |
| EVP_AEAD_DEFAULT_TAG_LENGTH, |
| evp_aead_seal)) { |
| fprintf(stderr, "Failed to create EVP_AEAD_CTX.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| TimeResults results; |
| if (direction == evp_aead_seal) { |
| if (!TimeFunction(&results, [chunk_len, overhead_len, nonce_len, ad_len, in, |
| out, &ctx, &nonce, &ad]() -> bool { |
| size_t out_len; |
| return EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, |
| chunk_len + overhead_len, nonce.get(), |
| nonce_len, in, chunk_len, ad.get(), ad_len); |
| })) { |
| fprintf(stderr, "EVP_AEAD_CTX_seal failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| } else { |
| size_t out_len; |
| EVP_AEAD_CTX_seal(ctx.get(), out, &out_len, chunk_len + overhead_len, |
| nonce.get(), nonce_len, in, chunk_len, ad.get(), ad_len); |
| |
| if (!TimeFunction(&results, [chunk_len, nonce_len, ad_len, in2, out, &ctx, |
| &nonce, &ad, out_len]() -> bool { |
| size_t in2_len; |
| return EVP_AEAD_CTX_open(ctx.get(), in2, &in2_len, chunk_len, |
| nonce.get(), nonce_len, out, out_len, |
| ad.get(), ad_len); |
| })) { |
| fprintf(stderr, "EVP_AEAD_CTX_open failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| } |
| |
| results.PrintWithBytes( |
| name + (direction == evp_aead_seal ? " seal" : " open"), chunk_len); |
| return true; |
| } |
| |
| static bool SpeedAEAD(const EVP_AEAD *aead, const std::string &name, |
| size_t ad_len, const std::string &selected) { |
| if (!selected.empty() && name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len, |
| evp_aead_seal) && |
| SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len, |
| evp_aead_seal) && |
| SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len, |
| evp_aead_seal); |
| } |
| |
| #if !defined(OPENSSL_SMALL) |
| static bool SpeedAEADOpen(const EVP_AEAD *aead, const std::string &name, |
| size_t ad_len, const std::string &selected) { |
| if (!selected.empty() && name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| return SpeedAEADChunk(aead, name + " (16 bytes)", 16, ad_len, |
| evp_aead_open) && |
| SpeedAEADChunk(aead, name + " (1350 bytes)", 1350, ad_len, |
| evp_aead_open) && |
| SpeedAEADChunk(aead, name + " (8192 bytes)", 8192, ad_len, |
| evp_aead_open); |
| } |
| #endif /* !SMALL */ |
| |
| static bool SpeedHashChunk(const EVP_MD *md, const std::string &name, |
| size_t chunk_len) { |
| EVP_MD_CTX *ctx = EVP_MD_CTX_create(); |
| uint8_t scratch[8192]; |
| |
| if (chunk_len > sizeof(scratch)) { |
| return false; |
| } |
| |
| TimeResults results; |
| if (!TimeFunction(&results, [ctx, md, chunk_len, &scratch]() -> bool { |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| unsigned int md_len; |
| |
| return EVP_DigestInit_ex(ctx, md, NULL /* ENGINE */) && |
| EVP_DigestUpdate(ctx, scratch, chunk_len) && |
| EVP_DigestFinal_ex(ctx, digest, &md_len); |
| })) { |
| fprintf(stderr, "EVP_DigestInit_ex failed.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| results.PrintWithBytes(name, chunk_len); |
| |
| EVP_MD_CTX_destroy(ctx); |
| |
| return true; |
| } |
| static bool SpeedHash(const EVP_MD *md, const std::string &name, |
| const std::string &selected) { |
| if (!selected.empty() && name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| return SpeedHashChunk(md, name + " (16 bytes)", 16) && |
| SpeedHashChunk(md, name + " (256 bytes)", 256) && |
| SpeedHashChunk(md, name + " (8192 bytes)", 8192); |
| } |
| |
| static bool SpeedRandomChunk(const std::string &name, size_t chunk_len) { |
| uint8_t scratch[8192]; |
| |
| if (chunk_len > sizeof(scratch)) { |
| return false; |
| } |
| |
| TimeResults results; |
| if (!TimeFunction(&results, [chunk_len, &scratch]() -> bool { |
| RAND_bytes(scratch, chunk_len); |
| return true; |
| })) { |
| return false; |
| } |
| |
| results.PrintWithBytes(name, chunk_len); |
| return true; |
| } |
| |
| static bool SpeedRandom(const std::string &selected) { |
| if (!selected.empty() && selected != "RNG") { |
| return true; |
| } |
| |
| return SpeedRandomChunk("RNG (16 bytes)", 16) && |
| SpeedRandomChunk("RNG (256 bytes)", 256) && |
| SpeedRandomChunk("RNG (8192 bytes)", 8192); |
| } |
| |
| static bool SpeedECDHCurve(const std::string &name, int nid, |
| const std::string &selected) { |
| if (!selected.empty() && name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| TimeResults results; |
| if (!TimeFunction(&results, [nid]() -> bool { |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid)); |
| if (!key || |
| !EC_KEY_generate_key(key.get())) { |
| return false; |
| } |
| const EC_GROUP *const group = EC_KEY_get0_group(key.get()); |
| bssl::UniquePtr<EC_POINT> point(EC_POINT_new(group)); |
| bssl::UniquePtr<BN_CTX> ctx(BN_CTX_new()); |
| |
| bssl::UniquePtr<BIGNUM> x(BN_new()); |
| bssl::UniquePtr<BIGNUM> y(BN_new()); |
| |
| if (!point || !ctx || !x || !y || |
| !EC_POINT_mul(group, point.get(), NULL, |
| EC_KEY_get0_public_key(key.get()), |
| EC_KEY_get0_private_key(key.get()), ctx.get()) || |
| !EC_POINT_get_affine_coordinates_GFp(group, point.get(), x.get(), |
| y.get(), ctx.get())) { |
| return false; |
| } |
| |
| return true; |
| })) { |
| return false; |
| } |
| |
| results.Print(name); |
| return true; |
| } |
| |
| static bool SpeedECDSACurve(const std::string &name, int nid, |
| const std::string &selected) { |
| if (!selected.empty() && name.find(selected) == std::string::npos) { |
| return true; |
| } |
| |
| bssl::UniquePtr<EC_KEY> key(EC_KEY_new_by_curve_name(nid)); |
| if (!key || |
| !EC_KEY_generate_key(key.get())) { |
| return false; |
| } |
| |
| uint8_t signature[256]; |
| if (ECDSA_size(key.get()) > sizeof(signature)) { |
| return false; |
| } |
| uint8_t digest[20]; |
| OPENSSL_memset(digest, 42, sizeof(digest)); |
| unsigned sig_len; |
| |
| TimeResults results; |
| if (!TimeFunction(&results, [&key, &signature, &digest, &sig_len]() -> bool { |
| return ECDSA_sign(0, digest, sizeof(digest), signature, &sig_len, |
| key.get()) == 1; |
| })) { |
| return false; |
| } |
| |
| results.Print(name + " signing"); |
| |
| if (!TimeFunction(&results, [&key, &signature, &digest, sig_len]() -> bool { |
| return ECDSA_verify(0, digest, sizeof(digest), signature, sig_len, |
| key.get()) == 1; |
| })) { |
| return false; |
| } |
| |
| results.Print(name + " verify"); |
| |
| return true; |
| } |
| |
| static bool SpeedECDH(const std::string &selected) { |
| return SpeedECDHCurve("ECDH P-224", NID_secp224r1, selected) && |
| SpeedECDHCurve("ECDH P-256", NID_X9_62_prime256v1, selected) && |
| SpeedECDHCurve("ECDH P-384", NID_secp384r1, selected) && |
| SpeedECDHCurve("ECDH P-521", NID_secp521r1, selected); |
| } |
| |
| static bool SpeedECDSA(const std::string &selected) { |
| return SpeedECDSACurve("ECDSA P-224", NID_secp224r1, selected) && |
| SpeedECDSACurve("ECDSA P-256", NID_X9_62_prime256v1, selected) && |
| SpeedECDSACurve("ECDSA P-384", NID_secp384r1, selected) && |
| SpeedECDSACurve("ECDSA P-521", NID_secp521r1, selected); |
| } |
| |
| static bool Speed25519(const std::string &selected) { |
| if (!selected.empty() && selected.find("25519") == std::string::npos) { |
| return true; |
| } |
| |
| TimeResults results; |
| |
| uint8_t public_key[32], private_key[64]; |
| |
| if (!TimeFunction(&results, [&public_key, &private_key]() -> bool { |
| ED25519_keypair(public_key, private_key); |
| return true; |
| })) { |
| return false; |
| } |
| |
| results.Print("Ed25519 key generation"); |
| |
| static const uint8_t kMessage[] = {0, 1, 2, 3, 4, 5}; |
| uint8_t signature[64]; |
| |
| if (!TimeFunction(&results, [&private_key, &signature]() -> bool { |
| return ED25519_sign(signature, kMessage, sizeof(kMessage), |
| private_key) == 1; |
| })) { |
| return false; |
| } |
| |
| results.Print("Ed25519 signing"); |
| |
| if (!TimeFunction(&results, [&public_key, &signature]() -> bool { |
| return ED25519_verify(kMessage, sizeof(kMessage), signature, |
| public_key) == 1; |
| })) { |
| fprintf(stderr, "Ed25519 verify failed.\n"); |
| return false; |
| } |
| |
| results.Print("Ed25519 verify"); |
| |
| if (!TimeFunction(&results, []() -> bool { |
| uint8_t out[32], in[32]; |
| OPENSSL_memset(in, 0, sizeof(in)); |
| X25519_public_from_private(out, in); |
| return true; |
| })) { |
| fprintf(stderr, "Curve25519 base-point multiplication failed.\n"); |
| return false; |
| } |
| |
| results.Print("Curve25519 base-point multiplication"); |
| |
| if (!TimeFunction(&results, []() -> bool { |
| uint8_t out[32], in1[32], in2[32]; |
| OPENSSL_memset(in1, 0, sizeof(in1)); |
| OPENSSL_memset(in2, 0, sizeof(in2)); |
| in1[0] = 1; |
| in2[0] = 9; |
| return X25519(out, in1, in2) == 1; |
| })) { |
| fprintf(stderr, "Curve25519 arbitrary point multiplication failed.\n"); |
| return false; |
| } |
| |
| results.Print("Curve25519 arbitrary point multiplication"); |
| |
| return true; |
| } |
| |
| static bool SpeedSPAKE2(const std::string &selected) { |
| if (!selected.empty() && selected.find("SPAKE2") == std::string::npos) { |
| return true; |
| } |
| |
| TimeResults results; |
| |
| static const uint8_t kAliceName[] = {'A'}; |
| static const uint8_t kBobName[] = {'B'}; |
| static const uint8_t kPassword[] = "password"; |
| bssl::UniquePtr<SPAKE2_CTX> alice(SPAKE2_CTX_new(spake2_role_alice, |
| kAliceName, sizeof(kAliceName), kBobName, |
| sizeof(kBobName))); |
| uint8_t alice_msg[SPAKE2_MAX_MSG_SIZE]; |
| size_t alice_msg_len; |
| |
| if (!SPAKE2_generate_msg(alice.get(), alice_msg, &alice_msg_len, |
| sizeof(alice_msg), |
| kPassword, sizeof(kPassword))) { |
| fprintf(stderr, "SPAKE2_generate_msg failed.\n"); |
| return false; |
| } |
| |
| if (!TimeFunction(&results, [&alice_msg, alice_msg_len]() -> bool { |
| bssl::UniquePtr<SPAKE2_CTX> bob(SPAKE2_CTX_new(spake2_role_bob, |
| kBobName, sizeof(kBobName), kAliceName, |
| sizeof(kAliceName))); |
| uint8_t bob_msg[SPAKE2_MAX_MSG_SIZE], bob_key[64]; |
| size_t bob_msg_len, bob_key_len; |
| if (!SPAKE2_generate_msg(bob.get(), bob_msg, &bob_msg_len, |
| sizeof(bob_msg), kPassword, |
| sizeof(kPassword)) || |
| !SPAKE2_process_msg(bob.get(), bob_key, &bob_key_len, |
| sizeof(bob_key), alice_msg, alice_msg_len)) { |
| return false; |
| } |
| |
| return true; |
| })) { |
| fprintf(stderr, "SPAKE2 failed.\n"); |
| } |
| |
| results.Print("SPAKE2 over Ed25519"); |
| |
| return true; |
| } |
| |
| static const struct argument kArguments[] = { |
| { |
| "-filter", kOptionalArgument, |
| "A filter on the speed tests to run", |
| }, |
| { |
| "-timeout", kOptionalArgument, |
| "The number of seconds to run each test for (default is 1)", |
| }, |
| { |
| "", kOptionalArgument, "", |
| }, |
| }; |
| |
| bool Speed(const std::vector<std::string> &args) { |
| std::map<std::string, std::string> args_map; |
| if (!ParseKeyValueArguments(&args_map, args, kArguments)) { |
| PrintUsage(kArguments); |
| return false; |
| } |
| |
| std::string selected; |
| if (args_map.count("-filter") != 0) { |
| selected = args_map["-filter"]; |
| } |
| |
| if (args_map.count("-timeout") != 0) { |
| g_timeout_seconds = atoi(args_map["-timeout"].c_str()); |
| } |
| |
| bssl::UniquePtr<RSA> key( |
| RSA_private_key_from_bytes(kDERRSAPrivate2048, kDERRSAPrivate2048Len)); |
| if (key == nullptr) { |
| fprintf(stderr, "Failed to parse RSA key.\n"); |
| ERR_print_errors_fp(stderr); |
| return false; |
| } |
| |
| if (!SpeedRSA("RSA 2048", key.get(), selected)) { |
| return false; |
| } |
| |
| key.reset( |
| RSA_private_key_from_bytes(kDERRSAPrivate4096, kDERRSAPrivate4096Len)); |
| if (key == nullptr) { |
| fprintf(stderr, "Failed to parse 4096-bit RSA key.\n"); |
| ERR_print_errors_fp(stderr); |
| return 1; |
| } |
| |
| if (!SpeedRSA("RSA 4096", key.get(), selected)) { |
| return false; |
| } |
| |
| key.reset(); |
| |
| // kTLSADLen is the number of bytes of additional data that TLS passes to |
| // AEADs. |
| static const size_t kTLSADLen = 13; |
| // kLegacyADLen is the number of bytes that TLS passes to the "legacy" AEADs. |
| // These are AEADs that weren't originally defined as AEADs, but which we use |
| // via the AEAD interface. In order for that to work, they have some TLS |
| // knowledge in them and construct a couple of the AD bytes internally. |
| static const size_t kLegacyADLen = kTLSADLen - 2; |
| |
| if (!SpeedAEAD(EVP_aead_aes_128_gcm(), "AES-128-GCM", kTLSADLen, selected) || |
| !SpeedAEAD(EVP_aead_aes_256_gcm(), "AES-256-GCM", kTLSADLen, selected) || |
| !SpeedAEAD(EVP_aead_chacha20_poly1305(), "ChaCha20-Poly1305", kTLSADLen, |
| selected) || |
| !SpeedAEAD(EVP_aead_des_ede3_cbc_sha1_tls(), "DES-EDE3-CBC-SHA1", |
| kLegacyADLen, selected) || |
| !SpeedAEAD(EVP_aead_aes_128_cbc_sha1_tls(), "AES-128-CBC-SHA1", |
| kLegacyADLen, selected) || |
| !SpeedAEAD(EVP_aead_aes_256_cbc_sha1_tls(), "AES-256-CBC-SHA1", |
| kLegacyADLen, selected) || |
| #if !defined(OPENSSL_SMALL) |
| !SpeedAEAD(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, |
| selected) || |
| !SpeedAEAD(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, |
| selected) || |
| !SpeedAEADOpen(EVP_aead_aes_128_gcm_siv(), "AES-128-GCM-SIV", kTLSADLen, |
| selected) || |
| !SpeedAEADOpen(EVP_aead_aes_256_gcm_siv(), "AES-256-GCM-SIV", kTLSADLen, |
| selected) || |
| #endif |
| !SpeedHash(EVP_sha1(), "SHA-1", selected) || |
| !SpeedHash(EVP_sha256(), "SHA-256", selected) || |
| !SpeedHash(EVP_sha512(), "SHA-512", selected) || |
| !SpeedRandom(selected) || |
| !SpeedECDH(selected) || |
| !SpeedECDSA(selected) || |
| !Speed25519(selected) || |
| !SpeedSPAKE2(selected)) { |
| return false; |
| } |
| |
| return true; |
| } |