| #!/usr/bin/env perl |
| |
| # ==================================================================== |
| # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL |
| # project. The module is, however, dual licensed under OpenSSL and |
| # CRYPTOGAMS licenses depending on where you obtain it. For further |
| # details see http://www.openssl.org/~appro/cryptogams/. |
| # ==================================================================== |
| |
| # sha1_block procedure for ARMv4. |
| # |
| # January 2007. |
| |
| # Size/performance trade-off |
| # ==================================================================== |
| # impl size in bytes comp cycles[*] measured performance |
| # ==================================================================== |
| # thumb 304 3212 4420 |
| # armv4-small 392/+29% 1958/+64% 2250/+96% |
| # armv4-compact 740/+89% 1552/+26% 1840/+22% |
| # armv4-large 1420/+92% 1307/+19% 1370/+34%[***] |
| # full unroll ~5100/+260% ~1260/+4% ~1300/+5% |
| # ==================================================================== |
| # thumb = same as 'small' but in Thumb instructions[**] and |
| # with recurring code in two private functions; |
| # small = detached Xload/update, loops are folded; |
| # compact = detached Xload/update, 5x unroll; |
| # large = interleaved Xload/update, 5x unroll; |
| # full unroll = interleaved Xload/update, full unroll, estimated[!]; |
| # |
| # [*] Manually counted instructions in "grand" loop body. Measured |
| # performance is affected by prologue and epilogue overhead, |
| # i-cache availability, branch penalties, etc. |
| # [**] While each Thumb instruction is twice smaller, they are not as |
| # diverse as ARM ones: e.g., there are only two arithmetic |
| # instructions with 3 arguments, no [fixed] rotate, addressing |
| # modes are limited. As result it takes more instructions to do |
| # the same job in Thumb, therefore the code is never twice as |
| # small and always slower. |
| # [***] which is also ~35% better than compiler generated code. Dual- |
| # issue Cortex A8 core was measured to process input block in |
| # ~990 cycles. |
| |
| # August 2010. |
| # |
| # Rescheduling for dual-issue pipeline resulted in 13% improvement on |
| # Cortex A8 core and in absolute terms ~870 cycles per input block |
| # [or 13.6 cycles per byte]. |
| |
| # February 2011. |
| # |
| # Profiler-assisted and platform-specific optimization resulted in 10% |
| # improvement on Cortex A8 core and 12.2 cycles per byte. |
| |
| # September 2013. |
| # |
| # Add NEON implementation (see sha1-586.pl for background info). On |
| # Cortex A8 it was measured to process one byte in 6.7 cycles or >80% |
| # faster than integer-only code. Because [fully unrolled] NEON code |
| # is ~2.5x larger and there are some redundant instructions executed |
| # when processing last block, improvement is not as big for smallest |
| # blocks, only ~30%. Snapdragon S4 is a tad faster, 6.4 cycles per |
| # byte, which is also >80% faster than integer-only code. Cortex-A15 |
| # is even faster spending 5.6 cycles per byte outperforming integer- |
| # only code by factor of 2. |
| |
| # May 2014. |
| # |
| # Add ARMv8 code path performing at 2.35 cpb on Apple A7. |
| |
| $flavour = shift; |
| if ($flavour=~/\w[\w\-]*\.\w+$/) { $output=$flavour; undef $flavour; } |
| else { while (($output=shift) && ($output!~/\w[\w\-]*\.\w+$/)) {} } |
| |
| if ($flavour && $flavour ne "void") { |
| $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; |
| ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or |
| ( $xlate="${dir}../../../perlasm/arm-xlate.pl" and -f $xlate) or |
| die "can't locate arm-xlate.pl"; |
| |
| open STDOUT,"| \"$^X\" $xlate $flavour $output"; |
| } else { |
| open STDOUT,">$output"; |
| } |
| |
| $ctx="r0"; |
| $inp="r1"; |
| $len="r2"; |
| $a="r3"; |
| $b="r4"; |
| $c="r5"; |
| $d="r6"; |
| $e="r7"; |
| $K="r8"; |
| $t0="r9"; |
| $t1="r10"; |
| $t2="r11"; |
| $t3="r12"; |
| $Xi="r14"; |
| @V=($a,$b,$c,$d,$e); |
| |
| sub Xupdate { |
| my ($a,$b,$c,$d,$e,$opt1,$opt2)=@_; |
| $code.=<<___; |
| ldr $t0,[$Xi,#15*4] |
| ldr $t1,[$Xi,#13*4] |
| ldr $t2,[$Xi,#7*4] |
| add $e,$K,$e,ror#2 @ E+=K_xx_xx |
| ldr $t3,[$Xi,#2*4] |
| eor $t0,$t0,$t1 |
| eor $t2,$t2,$t3 @ 1 cycle stall |
| eor $t1,$c,$d @ F_xx_xx |
| mov $t0,$t0,ror#31 |
| add $e,$e,$a,ror#27 @ E+=ROR(A,27) |
| eor $t0,$t0,$t2,ror#31 |
| str $t0,[$Xi,#-4]! |
| $opt1 @ F_xx_xx |
| $opt2 @ F_xx_xx |
| add $e,$e,$t0 @ E+=X[i] |
| ___ |
| } |
| |
| sub BODY_00_15 { |
| my ($a,$b,$c,$d,$e)=@_; |
| $code.=<<___; |
| #if __ARM_ARCH__<7 |
| ldrb $t1,[$inp,#2] |
| ldrb $t0,[$inp,#3] |
| ldrb $t2,[$inp,#1] |
| add $e,$K,$e,ror#2 @ E+=K_00_19 |
| ldrb $t3,[$inp],#4 |
| orr $t0,$t0,$t1,lsl#8 |
| eor $t1,$c,$d @ F_xx_xx |
| orr $t0,$t0,$t2,lsl#16 |
| add $e,$e,$a,ror#27 @ E+=ROR(A,27) |
| orr $t0,$t0,$t3,lsl#24 |
| #else |
| ldr $t0,[$inp],#4 @ handles unaligned |
| add $e,$K,$e,ror#2 @ E+=K_00_19 |
| eor $t1,$c,$d @ F_xx_xx |
| add $e,$e,$a,ror#27 @ E+=ROR(A,27) |
| #ifdef __ARMEL__ |
| rev $t0,$t0 @ byte swap |
| #endif |
| #endif |
| and $t1,$b,$t1,ror#2 |
| add $e,$e,$t0 @ E+=X[i] |
| eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D) |
| str $t0,[$Xi,#-4]! |
| add $e,$e,$t1 @ E+=F_00_19(B,C,D) |
| ___ |
| } |
| |
| sub BODY_16_19 { |
| my ($a,$b,$c,$d,$e)=@_; |
| &Xupdate(@_,"and $t1,$b,$t1,ror#2"); |
| $code.=<<___; |
| eor $t1,$t1,$d,ror#2 @ F_00_19(B,C,D) |
| add $e,$e,$t1 @ E+=F_00_19(B,C,D) |
| ___ |
| } |
| |
| sub BODY_20_39 { |
| my ($a,$b,$c,$d,$e)=@_; |
| &Xupdate(@_,"eor $t1,$b,$t1,ror#2"); |
| $code.=<<___; |
| add $e,$e,$t1 @ E+=F_20_39(B,C,D) |
| ___ |
| } |
| |
| sub BODY_40_59 { |
| my ($a,$b,$c,$d,$e)=@_; |
| &Xupdate(@_,"and $t1,$b,$t1,ror#2","and $t2,$c,$d"); |
| $code.=<<___; |
| add $e,$e,$t1 @ E+=F_40_59(B,C,D) |
| add $e,$e,$t2,ror#2 |
| ___ |
| } |
| |
| $code=<<___; |
| #include <openssl/arm_arch.h> |
| |
| .text |
| .code 32 |
| |
| .global sha1_block_data_order |
| .type sha1_block_data_order,%function |
| |
| .align 5 |
| sha1_block_data_order: |
| #if __ARM_MAX_ARCH__>=7 |
| sub r3,pc,#8 @ sha1_block_data_order |
| ldr r12,.LOPENSSL_armcap |
| ldr r12,[r3,r12] @ OPENSSL_armcap_P |
| #ifdef __APPLE__ |
| ldr r12,[r12] |
| #endif |
| tst r12,#ARMV8_SHA1 |
| bne .LARMv8 |
| tst r12,#ARMV7_NEON |
| bne .LNEON |
| #endif |
| stmdb sp!,{r4-r12,lr} |
| add $len,$inp,$len,lsl#6 @ $len to point at the end of $inp |
| ldmia $ctx,{$a,$b,$c,$d,$e} |
| .Lloop: |
| ldr $K,.LK_00_19 |
| mov $Xi,sp |
| sub sp,sp,#15*4 |
| mov $c,$c,ror#30 |
| mov $d,$d,ror#30 |
| mov $e,$e,ror#30 @ [6] |
| .L_00_15: |
| ___ |
| for($i=0;$i<5;$i++) { |
| &BODY_00_15(@V); unshift(@V,pop(@V)); |
| } |
| $code.=<<___; |
| teq $Xi,sp |
| bne .L_00_15 @ [((11+4)*5+2)*3] |
| sub sp,sp,#25*4 |
| ___ |
| &BODY_00_15(@V); unshift(@V,pop(@V)); |
| &BODY_16_19(@V); unshift(@V,pop(@V)); |
| &BODY_16_19(@V); unshift(@V,pop(@V)); |
| &BODY_16_19(@V); unshift(@V,pop(@V)); |
| &BODY_16_19(@V); unshift(@V,pop(@V)); |
| $code.=<<___; |
| |
| ldr $K,.LK_20_39 @ [+15+16*4] |
| cmn sp,#0 @ [+3], clear carry to denote 20_39 |
| .L_20_39_or_60_79: |
| ___ |
| for($i=0;$i<5;$i++) { |
| &BODY_20_39(@V); unshift(@V,pop(@V)); |
| } |
| $code.=<<___; |
| teq $Xi,sp @ preserve carry |
| bne .L_20_39_or_60_79 @ [+((12+3)*5+2)*4] |
| bcs .L_done @ [+((12+3)*5+2)*4], spare 300 bytes |
| |
| ldr $K,.LK_40_59 |
| sub sp,sp,#20*4 @ [+2] |
| .L_40_59: |
| ___ |
| for($i=0;$i<5;$i++) { |
| &BODY_40_59(@V); unshift(@V,pop(@V)); |
| } |
| $code.=<<___; |
| teq $Xi,sp |
| bne .L_40_59 @ [+((12+5)*5+2)*4] |
| |
| ldr $K,.LK_60_79 |
| sub sp,sp,#20*4 |
| cmp sp,#0 @ set carry to denote 60_79 |
| b .L_20_39_or_60_79 @ [+4], spare 300 bytes |
| .L_done: |
| add sp,sp,#80*4 @ "deallocate" stack frame |
| ldmia $ctx,{$K,$t0,$t1,$t2,$t3} |
| add $a,$K,$a |
| add $b,$t0,$b |
| add $c,$t1,$c,ror#2 |
| add $d,$t2,$d,ror#2 |
| add $e,$t3,$e,ror#2 |
| stmia $ctx,{$a,$b,$c,$d,$e} |
| teq $inp,$len |
| bne .Lloop @ [+18], total 1307 |
| |
| #if __ARM_ARCH__>=5 |
| ldmia sp!,{r4-r12,pc} |
| #else |
| ldmia sp!,{r4-r12,lr} |
| tst lr,#1 |
| moveq pc,lr @ be binary compatible with V4, yet |
| bx lr @ interoperable with Thumb ISA:-) |
| #endif |
| .size sha1_block_data_order,.-sha1_block_data_order |
| |
| .align 5 |
| .LK_00_19: .word 0x5a827999 |
| .LK_20_39: .word 0x6ed9eba1 |
| .LK_40_59: .word 0x8f1bbcdc |
| .LK_60_79: .word 0xca62c1d6 |
| #if __ARM_MAX_ARCH__>=7 |
| .LOPENSSL_armcap: |
| .word OPENSSL_armcap_P-sha1_block_data_order |
| #endif |
| .asciz "SHA1 block transform for ARMv4/NEON/ARMv8, CRYPTOGAMS by <appro\@openssl.org>" |
| .align 5 |
| ___ |
| ##################################################################### |
| # NEON stuff |
| # |
| {{{ |
| my @V=($a,$b,$c,$d,$e); |
| my ($K_XX_XX,$Ki,$t0,$t1,$Xfer,$saved_sp)=map("r$_",(8..12,14)); |
| my $Xi=4; |
| my @X=map("q$_",(8..11,0..3)); |
| my @Tx=("q12","q13"); |
| my ($K,$zero)=("q14","q15"); |
| my $j=0; |
| |
| sub AUTOLOAD() # thunk [simplified] x86-style perlasm |
| { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./; |
| my $arg = pop; |
| $arg = "#$arg" if ($arg*1 eq $arg); |
| $code .= "\t$opcode\t".join(',',@_,$arg)."\n"; |
| } |
| |
| sub body_00_19 () { |
| ( |
| '($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'. |
| '&bic ($t0,$d,$b)', |
| '&add ($e,$e,$Ki)', # e+=X[i]+K |
| '&and ($t1,$c,$b)', |
| '&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))', |
| '&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27) |
| '&eor ($t1,$t1,$t0)', # F_00_19 |
| '&mov ($b,$b,"ror#2")', # b=ROR(b,2) |
| '&add ($e,$e,$t1);'. # e+=F_00_19 |
| '$j++; unshift(@V,pop(@V));' |
| ) |
| } |
| sub body_20_39 () { |
| ( |
| '($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'. |
| '&eor ($t0,$b,$d)', |
| '&add ($e,$e,$Ki)', # e+=X[i]+K |
| '&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15)) if ($j<79)', |
| '&eor ($t1,$t0,$c)', # F_20_39 |
| '&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27) |
| '&mov ($b,$b,"ror#2")', # b=ROR(b,2) |
| '&add ($e,$e,$t1);'. # e+=F_20_39 |
| '$j++; unshift(@V,pop(@V));' |
| ) |
| } |
| sub body_40_59 () { |
| ( |
| '($a,$b,$c,$d,$e)=@V;'. # '$code.="@ $j\n";'. |
| '&add ($e,$e,$Ki)', # e+=X[i]+K |
| '&and ($t0,$c,$d)', |
| '&ldr ($Ki,sprintf "[sp,#%d]",4*(($j+1)&15))', |
| '&add ($e,$e,$a,"ror#27")', # e+=ROR(A,27) |
| '&eor ($t1,$c,$d)', |
| '&add ($e,$e,$t0)', |
| '&and ($t1,$t1,$b)', |
| '&mov ($b,$b,"ror#2")', # b=ROR(b,2) |
| '&add ($e,$e,$t1);'. # e+=F_40_59 |
| '$j++; unshift(@V,pop(@V));' |
| ) |
| } |
| |
| sub Xupdate_16_31 () |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); |
| my ($a,$b,$c,$d,$e); |
| |
| &vext_8 (@X[0],@X[-4&7],@X[-3&7],8); # compose "X[-14]" in "X[0]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vadd_i32 (@Tx[1],@X[-1&7],$K); |
| eval(shift(@insns)); |
| &vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!") if ($Xi%5==0); |
| eval(shift(@insns)); |
| &vext_8 (@Tx[0],@X[-1&7],$zero,4); # "X[-3]", 3 words |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &veor (@X[0],@X[0],@X[-4&7]); # "X[0]"^="X[-16]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &veor (@Tx[0],@Tx[0],@X[-2&7]); # "X[-3]"^"X[-8]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &veor (@Tx[0],@Tx[0],@X[0]); # "X[0]"^="X[-3]"^"X[-8] |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); # X[]+K xfer |
| &sub ($Xfer,$Xfer,64) if ($Xi%4==0); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vext_8 (@Tx[1],$zero,@Tx[0],4); # "X[0]"<<96, extract one dword |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vadd_i32 (@X[0],@Tx[0],@Tx[0]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vsri_32 (@X[0],@Tx[0],31); # "X[0]"<<<=1 |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vshr_u32 (@Tx[0],@Tx[1],30); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vshl_u32 (@Tx[1],@Tx[1],2); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &veor (@X[0],@X[0],@Tx[0]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &veor (@X[0],@X[0],@Tx[1]); # "X[0]"^=("X[0]">>96)<<<2 |
| |
| foreach (@insns) { eval; } # remaining instructions [if any] |
| |
| $Xi++; push(@X,shift(@X)); # "rotate" X[] |
| } |
| |
| sub Xupdate_32_79 () |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); |
| my ($a,$b,$c,$d,$e); |
| |
| &vext_8 (@Tx[0],@X[-2&7],@X[-1&7],8); # compose "X[-6]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &veor (@X[0],@X[0],@X[-4&7]); # "X[0]"="X[-32]"^"X[-16]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &veor (@X[0],@X[0],@X[-7&7]); # "X[0]"^="X[-28]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vadd_i32 (@Tx[1],@X[-1&7],$K); |
| eval(shift(@insns)); |
| &vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!") if ($Xi%5==0); |
| eval(shift(@insns)); |
| &veor (@Tx[0],@Tx[0],@X[0]); # "X[-6]"^="X[0]" |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vshr_u32 (@X[0],@Tx[0],30); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); # X[]+K xfer |
| &sub ($Xfer,$Xfer,64) if ($Xi%4==0); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vsli_32 (@X[0],@Tx[0],2); # "X[0]"="X[-6]"<<<2 |
| |
| foreach (@insns) { eval; } # remaining instructions [if any] |
| |
| $Xi++; push(@X,shift(@X)); # "rotate" X[] |
| } |
| |
| sub Xuplast_80 () |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); |
| my ($a,$b,$c,$d,$e); |
| |
| &vadd_i32 (@Tx[1],@X[-1&7],$K); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vst1_32 ("{@Tx[1]}","[$Xfer,:128]!"); |
| &sub ($Xfer,$Xfer,64); |
| |
| &teq ($inp,$len); |
| &sub ($K_XX_XX,$K_XX_XX,16); # rewind $K_XX_XX |
| &subeq ($inp,$inp,64); # reload last block to avoid SEGV |
| &vld1_8 ("{@X[-4&7]-@X[-3&7]}","[$inp]!"); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vld1_8 ("{@X[-2&7]-@X[-1&7]}","[$inp]!"); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vld1_32 ("{$K\[]}","[$K_XX_XX,:32]!"); # load K_00_19 |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vrev32_8 (@X[-4&7],@X[-4&7]); |
| |
| foreach (@insns) { eval; } # remaining instructions |
| |
| $Xi=0; |
| } |
| |
| sub Xloop() |
| { use integer; |
| my $body = shift; |
| my @insns = (&$body,&$body,&$body,&$body); |
| my ($a,$b,$c,$d,$e); |
| |
| &vrev32_8 (@X[($Xi-3)&7],@X[($Xi-3)&7]); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vadd_i32 (@X[$Xi&7],@X[($Xi-4)&7],$K); |
| eval(shift(@insns)); |
| eval(shift(@insns)); |
| &vst1_32 ("{@X[$Xi&7]}","[$Xfer,:128]!");# X[]+K xfer to IALU |
| |
| foreach (@insns) { eval; } |
| |
| $Xi++; |
| } |
| |
| $code.=<<___; |
| #if __ARM_MAX_ARCH__>=7 |
| .arch armv7-a |
| .fpu neon |
| |
| .type sha1_block_data_order_neon,%function |
| .align 4 |
| sha1_block_data_order_neon: |
| .LNEON: |
| stmdb sp!,{r4-r12,lr} |
| add $len,$inp,$len,lsl#6 @ $len to point at the end of $inp |
| @ dmb @ errata #451034 on early Cortex A8 |
| @ vstmdb sp!,{d8-d15} @ ABI specification says so |
| mov $saved_sp,sp |
| sub sp,sp,#64 @ alloca |
| adr $K_XX_XX,.LK_00_19 |
| bic sp,sp,#15 @ align for 128-bit stores |
| |
| ldmia $ctx,{$a,$b,$c,$d,$e} @ load context |
| mov $Xfer,sp |
| |
| vld1.8 {@X[-4&7]-@X[-3&7]},[$inp]! @ handles unaligned |
| veor $zero,$zero,$zero |
| vld1.8 {@X[-2&7]-@X[-1&7]},[$inp]! |
| vld1.32 {${K}\[]},[$K_XX_XX,:32]! @ load K_00_19 |
| vrev32.8 @X[-4&7],@X[-4&7] @ yes, even on |
| vrev32.8 @X[-3&7],@X[-3&7] @ big-endian... |
| vrev32.8 @X[-2&7],@X[-2&7] |
| vadd.i32 @X[0],@X[-4&7],$K |
| vrev32.8 @X[-1&7],@X[-1&7] |
| vadd.i32 @X[1],@X[-3&7],$K |
| vst1.32 {@X[0]},[$Xfer,:128]! |
| vadd.i32 @X[2],@X[-2&7],$K |
| vst1.32 {@X[1]},[$Xfer,:128]! |
| vst1.32 {@X[2]},[$Xfer,:128]! |
| ldr $Ki,[sp] @ big RAW stall |
| |
| .Loop_neon: |
| ___ |
| &Xupdate_16_31(\&body_00_19); |
| &Xupdate_16_31(\&body_00_19); |
| &Xupdate_16_31(\&body_00_19); |
| &Xupdate_16_31(\&body_00_19); |
| &Xupdate_32_79(\&body_00_19); |
| &Xupdate_32_79(\&body_20_39); |
| &Xupdate_32_79(\&body_20_39); |
| &Xupdate_32_79(\&body_20_39); |
| &Xupdate_32_79(\&body_20_39); |
| &Xupdate_32_79(\&body_20_39); |
| &Xupdate_32_79(\&body_40_59); |
| &Xupdate_32_79(\&body_40_59); |
| &Xupdate_32_79(\&body_40_59); |
| &Xupdate_32_79(\&body_40_59); |
| &Xupdate_32_79(\&body_40_59); |
| &Xupdate_32_79(\&body_20_39); |
| &Xuplast_80(\&body_20_39); |
| &Xloop(\&body_20_39); |
| &Xloop(\&body_20_39); |
| &Xloop(\&body_20_39); |
| $code.=<<___; |
| ldmia $ctx,{$Ki,$t0,$t1,$Xfer} @ accumulate context |
| add $a,$a,$Ki |
| ldr $Ki,[$ctx,#16] |
| add $b,$b,$t0 |
| add $c,$c,$t1 |
| add $d,$d,$Xfer |
| moveq sp,$saved_sp |
| add $e,$e,$Ki |
| ldrne $Ki,[sp] |
| stmia $ctx,{$a,$b,$c,$d,$e} |
| addne $Xfer,sp,#3*16 |
| bne .Loop_neon |
| |
| @ vldmia sp!,{d8-d15} |
| ldmia sp!,{r4-r12,pc} |
| .size sha1_block_data_order_neon,.-sha1_block_data_order_neon |
| #endif |
| ___ |
| }}} |
| ##################################################################### |
| # ARMv8 stuff |
| # |
| {{{ |
| my ($ABCD,$E,$E0,$E1)=map("q$_",(0..3)); |
| my @MSG=map("q$_",(4..7)); |
| my @Kxx=map("q$_",(8..11)); |
| my ($W0,$W1,$ABCD_SAVE)=map("q$_",(12..14)); |
| |
| $code.=<<___; |
| #if __ARM_MAX_ARCH__>=7 |
| .type sha1_block_data_order_armv8,%function |
| .align 5 |
| sha1_block_data_order_armv8: |
| .LARMv8: |
| vstmdb sp!,{d8-d15} @ ABI specification says so |
| |
| veor $E,$E,$E |
| adr r3,.LK_00_19 |
| vld1.32 {$ABCD},[$ctx]! |
| vld1.32 {$E\[0]},[$ctx] |
| sub $ctx,$ctx,#16 |
| vld1.32 {@Kxx[0]\[]},[r3,:32]! |
| vld1.32 {@Kxx[1]\[]},[r3,:32]! |
| vld1.32 {@Kxx[2]\[]},[r3,:32]! |
| vld1.32 {@Kxx[3]\[]},[r3,:32] |
| |
| .Loop_v8: |
| vld1.8 {@MSG[0]-@MSG[1]},[$inp]! |
| vld1.8 {@MSG[2]-@MSG[3]},[$inp]! |
| vrev32.8 @MSG[0],@MSG[0] |
| vrev32.8 @MSG[1],@MSG[1] |
| |
| vadd.i32 $W0,@Kxx[0],@MSG[0] |
| vrev32.8 @MSG[2],@MSG[2] |
| vmov $ABCD_SAVE,$ABCD @ offload |
| subs $len,$len,#1 |
| |
| vadd.i32 $W1,@Kxx[0],@MSG[1] |
| vrev32.8 @MSG[3],@MSG[3] |
| sha1h $E1,$ABCD @ 0 |
| sha1c $ABCD,$E,$W0 |
| vadd.i32 $W0,@Kxx[$j],@MSG[2] |
| sha1su0 @MSG[0],@MSG[1],@MSG[2] |
| ___ |
| for ($j=0,$i=1;$i<20-3;$i++) { |
| my $f=("c","p","m","p")[$i/5]; |
| $code.=<<___; |
| sha1h $E0,$ABCD @ $i |
| sha1$f $ABCD,$E1,$W1 |
| vadd.i32 $W1,@Kxx[$j],@MSG[3] |
| sha1su1 @MSG[0],@MSG[3] |
| ___ |
| $code.=<<___ if ($i<20-4); |
| sha1su0 @MSG[1],@MSG[2],@MSG[3] |
| ___ |
| ($E0,$E1)=($E1,$E0); ($W0,$W1)=($W1,$W0); |
| push(@MSG,shift(@MSG)); $j++ if ((($i+3)%5)==0); |
| } |
| $code.=<<___; |
| sha1h $E0,$ABCD @ $i |
| sha1p $ABCD,$E1,$W1 |
| vadd.i32 $W1,@Kxx[$j],@MSG[3] |
| |
| sha1h $E1,$ABCD @ 18 |
| sha1p $ABCD,$E0,$W0 |
| |
| sha1h $E0,$ABCD @ 19 |
| sha1p $ABCD,$E1,$W1 |
| |
| vadd.i32 $E,$E,$E0 |
| vadd.i32 $ABCD,$ABCD,$ABCD_SAVE |
| bne .Loop_v8 |
| |
| vst1.32 {$ABCD},[$ctx]! |
| vst1.32 {$E\[0]},[$ctx] |
| |
| vldmia sp!,{d8-d15} |
| ret @ bx lr |
| .size sha1_block_data_order_armv8,.-sha1_block_data_order_armv8 |
| #endif |
| ___ |
| }}} |
| $code.=<<___; |
| #if __ARM_MAX_ARCH__>=7 |
| .comm OPENSSL_armcap_P,4,4 |
| .hidden OPENSSL_armcap_P |
| #endif |
| ___ |
| |
| { my %opcode = ( |
| "sha1c" => 0xf2000c40, "sha1p" => 0xf2100c40, |
| "sha1m" => 0xf2200c40, "sha1su0" => 0xf2300c40, |
| "sha1h" => 0xf3b902c0, "sha1su1" => 0xf3ba0380 ); |
| |
| sub unsha1 { |
| my ($mnemonic,$arg)=@_; |
| |
| if ($arg =~ m/q([0-9]+)(?:,\s*q([0-9]+))?,\s*q([0-9]+)/o) { |
| my $word = $opcode{$mnemonic}|(($1&7)<<13)|(($1&8)<<19) |
| |(($2&7)<<17)|(($2&8)<<4) |
| |(($3&7)<<1) |(($3&8)<<2); |
| # since ARMv7 instructions are always encoded little-endian. |
| # correct solution is to use .inst directive, but older |
| # assemblers don't implement it:-( |
| sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s", |
| $word&0xff,($word>>8)&0xff, |
| ($word>>16)&0xff,($word>>24)&0xff, |
| $mnemonic,$arg; |
| } |
| } |
| } |
| |
| foreach (split($/,$code)) { |
| s/{q([0-9]+)\[\]}/sprintf "{d%d[],d%d[]}",2*$1,2*$1+1/eo or |
| s/{q([0-9]+)\[0\]}/sprintf "{d%d[0]}",2*$1/eo; |
| |
| s/\b(sha1\w+)\s+(q.*)/unsha1($1,$2)/geo; |
| |
| s/\bret\b/bx lr/o or |
| s/\bbx\s+lr\b/.word\t0xe12fff1e/o; # make it possible to compile with -march=armv4 |
| |
| print $_,$/; |
| } |
| |
| close STDOUT; # enforce flush |