blob: f496fe9a7d28746170edd8ecb81296d10c293eed [file] [log] [blame]
/* Copyright 2016 Brian Smith.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/bn.h>
#include <assert.h>
#include "internal.h"
#include "../../internal.h"
static uint64_t bn_neg_inv_mod_r_u64(uint64_t n);
static_assert(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2,
"BN_MONT_CTX_N0_LIMBS value is invalid");
static_assert(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == sizeof(uint64_t),
"uint64_t is insufficient precision for n0");
// LG_LITTLE_R is log_2(r).
#define LG_LITTLE_R (BN_MONT_CTX_N0_LIMBS * BN_BITS2)
uint64_t bn_mont_n0(const BIGNUM *n) {
// These conditions are checked by the caller, |BN_MONT_CTX_set| or
// |BN_MONT_CTX_new_consttime|.
assert(!BN_is_zero(n));
assert(!BN_is_negative(n));
assert(BN_is_odd(n));
// r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) and LG_LITTLE_R == lg(r). This
// ensures that we can do integer division by |r| by simply ignoring
// |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, we can calculate values modulo
// |r| by just looking at the lowest |BN_MONT_CTX_N0_LIMBS| limbs. This is
// what makes Montgomery multiplication efficient.
//
// As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography
// with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a
// multi-limb Montgomery multiplication of |a * b (mod n)|, given the
// unreduced product |t == a * b|, we repeatedly calculate:
//
// t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph).
// t2 := t1*n0*n
// t3 := t + t2
// t := t3 / r copy all limbs of |t3| except the lowest to |t|.
//
// In the last step, it would only make sense to ignore the lowest limb of
// |t3| if it were zero. The middle steps ensure that this is the case:
//
// t3 == 0 (mod r)
// t + t2 == 0 (mod r)
// t + t1*n0*n == 0 (mod r)
// t1*n0*n == -t (mod r)
// t*n0*n == -t (mod r)
// n0*n == -1 (mod r)
// n0 == -1/n (mod r)
//
// Thus, in each iteration of the loop, we multiply by the constant factor
// |n0|, the negative inverse of n (mod r).
// n_mod_r = n % r. As explained above, this is done by taking the lowest
// |BN_MONT_CTX_N0_LIMBS| limbs of |n|.
uint64_t n_mod_r = n->d[0];
#if BN_MONT_CTX_N0_LIMBS == 2
if (n->width > 1) {
n_mod_r |= (uint64_t)n->d[1] << BN_BITS2;
}
#endif
return bn_neg_inv_mod_r_u64(n_mod_r);
}
// bn_neg_inv_r_mod_n_u64 calculates the -1/n mod r; i.e. it calculates |v|
// such that u*r - v*n == 1. |r| is the constant defined in |bn_mont_n0|. |n|
// must be odd.
//
// This is derived from |xbinGCD| in Henry S. Warren, Jr.'s "Montgomery
// Multiplication" (http://www.hackersdelight.org/MontgomeryMultiplication.pdf).
// It is very similar to the MODULAR-INVERSE function in Stephen R. Dussé's and
// Burton S. Kaliski Jr.'s "A Cryptographic Library for the Motorola DSP56000"
// (http://link.springer.com/chapter/10.1007%2F3-540-46877-3_21).
//
// This is inspired by Joppe W. Bos's "Constant Time Modular Inversion"
// (http://www.joppebos.com/files/CTInversion.pdf) so that the inversion is
// constant-time with respect to |n|. We assume uint64_t additions,
// subtractions, shifts, and bitwise operations are all constant time, which
// may be a large leap of faith on 32-bit targets. We avoid division and
// multiplication, which tend to be the most problematic in terms of timing
// leaks.
//
// Most GCD implementations return values such that |u*r + v*n == 1|, so the
// caller would have to negate the resultant |v| for the purpose of Montgomery
// multiplication. This implementation does the negation implicitly by doing
// the computations as a difference instead of a sum.
static uint64_t bn_neg_inv_mod_r_u64(uint64_t n) {
assert(n % 2 == 1);
// alpha == 2**(lg r - 1) == r / 2.
static const uint64_t alpha = UINT64_C(1) << (LG_LITTLE_R - 1);
const uint64_t beta = n;
uint64_t u = 1;
uint64_t v = 0;
// The invariant maintained from here on is:
// 2**(lg r - i) == u*2*alpha - v*beta.
for (size_t i = 0; i < LG_LITTLE_R; ++i) {
#if BN_BITS2 == 64 && defined(BN_ULLONG)
assert((BN_ULLONG)(1) << (LG_LITTLE_R - i) ==
((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
#endif
// Delete a common factor of 2 in u and v if |u| is even. Otherwise, set
// |u = (u + beta) / 2| and |v = (v / 2) + alpha|.
uint64_t u_is_odd = UINT64_C(0) - (u & 1); // Either 0xff..ff or 0.
// The addition can overflow, so use Dietz's method for it.
//
// Dietz calculates (x+y)/2 by (x⊕y)>>1 + x&y. This is valid for all
// (unsigned) x and y, even when x+y overflows. Evidence for 32-bit values
// (embedded in 64 bits to so that overflow can be ignored):
//
// (declare-fun x () (_ BitVec 64))
// (declare-fun y () (_ BitVec 64))
// (assert (let (
// (one (_ bv1 64))
// (thirtyTwo (_ bv32 64)))
// (and
// (bvult x (bvshl one thirtyTwo))
// (bvult y (bvshl one thirtyTwo))
// (not (=
// (bvadd (bvlshr (bvxor x y) one) (bvand x y))
// (bvlshr (bvadd x y) one)))
// )))
// (check-sat)
uint64_t beta_if_u_is_odd = beta & u_is_odd; // Either |beta| or 0.
u = ((u ^ beta_if_u_is_odd) >> 1) + (u & beta_if_u_is_odd);
uint64_t alpha_if_u_is_odd = alpha & u_is_odd; // Either |alpha| or 0.
v = (v >> 1) + alpha_if_u_is_odd;
}
// The invariant now shows that u*r - v*n == 1 since r == 2 * alpha.
#if BN_BITS2 == 64 && defined(BN_ULLONG)
assert(1 == ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta));
#endif
return v;
}
int bn_mont_ctx_set_RR_consttime(BN_MONT_CTX *mont, BN_CTX *ctx) {
assert(!BN_is_zero(&mont->N));
assert(!BN_is_negative(&mont->N));
assert(BN_is_odd(&mont->N));
assert(bn_minimal_width(&mont->N) == mont->N.width);
unsigned n_bits = BN_num_bits(&mont->N);
assert(n_bits != 0);
if (n_bits == 1) {
BN_zero(&mont->RR);
return bn_resize_words(&mont->RR, mont->N.width);
}
unsigned lgBigR = mont->N.width * BN_BITS2;
assert(lgBigR >= n_bits);
// RR is R, or 2^lgBigR, in the Montgomery domain. We can compute 2 in the
// Montgomery domain, 2R or 2^(lgBigR+1), and then use Montgomery
// square-and-multiply to exponentiate.
//
// The multiply steps take 2^n R to 2^(n+1) R. It is faster to double
// the value instead. The square steps take 2^n R to 2^(2n) R. This is
// equivalent to doubling n times. When n is below some threshold, doubling is
// faster. When above, squaring is faster.
//
// We double to this threshold, then switch to Montgomery squaring. From
// benchmarking various 32-bit and 64-bit architectures, the word count seems
// to work well as a threshold. (Doubling scales linearly and Montgomery
// reduction scales quadratically, so the threshold should scale roughly
// linearly.)
unsigned threshold = mont->N.width;
unsigned iters;
for (iters = 0; iters < sizeof(lgBigR) * 8; iters++) {
if ((lgBigR >> iters) <= threshold) {
break;
}
}
// Compute 2^(lgBigR >> iters) R, or 2^((lgBigR >> iters) + lgBigR), by
// doubling. The first n_bits - 1 doubles can be skipped because we don't need
// to reduce.
if (!BN_set_bit(&mont->RR, n_bits - 1) ||
!bn_mod_lshift_consttime(&mont->RR, &mont->RR,
(lgBigR >> iters) + lgBigR - (n_bits - 1),
&mont->N, ctx)) {
return 0;
}
for (unsigned i = iters - 1; i < iters; i--) {
if (!BN_mod_mul_montgomery(&mont->RR, &mont->RR, &mont->RR, mont, ctx)) {
return 0;
}
if ((lgBigR & (1u << i)) != 0 &&
!bn_mod_lshift1_consttime(&mont->RR, &mont->RR, &mont->N, ctx)) {
return 0;
}
}
return bn_resize_words(&mont->RR, mont->N.width);
}