| // Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/evp.h> |
| |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rsa.h> |
| #include <openssl/span.h> |
| |
| #include "../internal.h" |
| #include "../mem_internal.h" |
| #include "../rsa/internal.h" |
| #include "internal.h" |
| |
| |
| namespace { |
| |
| struct RSA_PKEY_CTX { |
| // Key gen parameters |
| int nbits = 2048; |
| bssl::UniquePtr<BIGNUM> pub_exp; |
| // RSA padding mode |
| int pad_mode = RSA_PKCS1_PADDING; |
| // message digest |
| const EVP_MD *md = nullptr; |
| // message digest for MGF1 |
| const EVP_MD *mgf1md = nullptr; |
| // PSS salt length |
| int saltlen = RSA_PSS_SALTLEN_DIGEST; |
| // restrict_pss_params, if true, indicates that the PSS signing/verifying |
| // parameters are restricted by the key's parameters. |md| and |mgf1md| may |
| // not change, and |saltlen| must be at least |md|'s hash length. |
| bool restrict_pss_params = false; |
| bssl::Array<uint8_t> oaep_label; |
| }; |
| |
| static bool is_pss_only(const EVP_PKEY_CTX *ctx) { |
| return ctx->pmeth->pkey_id == EVP_PKEY_RSA_PSS; |
| } |
| |
| static int pkey_rsa_init(EVP_PKEY_CTX *ctx) { |
| RSA_PKEY_CTX *rctx = bssl::New<RSA_PKEY_CTX>(); |
| if (!rctx) { |
| return 0; |
| } |
| |
| if (is_pss_only(ctx)) { |
| rctx->pad_mode = RSA_PKCS1_PSS_PADDING; |
| // Pick up PSS parameters from the key. For now, we only support the SHA-256 |
| // parameter set, so every key is necessarily SHA-256. If we ever support |
| // other parameters, we will need more state in |EVP_PKEY| and to translate |
| // that state into defaults here. |
| if (ctx->pkey != nullptr) { |
| rctx->md = rctx->mgf1md = EVP_sha256(); |
| rctx->saltlen = EVP_MD_size(rctx->md); |
| rctx->restrict_pss_params = true; |
| } |
| } |
| |
| ctx->data = rctx; |
| return 1; |
| } |
| |
| static int pkey_rsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) { |
| RSA_PKEY_CTX *dctx, *sctx; |
| if (!pkey_rsa_init(dst)) { |
| return 0; |
| } |
| sctx = reinterpret_cast<RSA_PKEY_CTX *>(src->data); |
| dctx = reinterpret_cast<RSA_PKEY_CTX *>(dst->data); |
| dctx->nbits = sctx->nbits; |
| if (sctx->pub_exp) { |
| dctx->pub_exp.reset(BN_dup(sctx->pub_exp.get())); |
| if (!dctx->pub_exp) { |
| return 0; |
| } |
| } |
| |
| dctx->pad_mode = sctx->pad_mode; |
| dctx->md = sctx->md; |
| dctx->mgf1md = sctx->mgf1md; |
| dctx->saltlen = sctx->saltlen; |
| dctx->restrict_pss_params = sctx->restrict_pss_params; |
| if (!dctx->oaep_label.CopyFrom(sctx->oaep_label)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void pkey_rsa_cleanup(EVP_PKEY_CTX *ctx) { |
| bssl::Delete(reinterpret_cast<RSA_PKEY_CTX *>(ctx->data)); |
| } |
| |
| static int pkey_rsa_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen, |
| const uint8_t *tbs, size_t tbslen) { |
| RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); |
| RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey); |
| const size_t key_len = EVP_PKEY_size(ctx->pkey.get()); |
| |
| if (!sig) { |
| *siglen = key_len; |
| return 1; |
| } |
| |
| if (*siglen < key_len) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (rctx->md) { |
| unsigned out_len; |
| switch (rctx->pad_mode) { |
| case RSA_PKCS1_PADDING: |
| if (!RSA_sign(EVP_MD_type(rctx->md), tbs, tbslen, sig, &out_len, rsa)) { |
| return 0; |
| } |
| *siglen = out_len; |
| return 1; |
| |
| case RSA_PKCS1_PSS_PADDING: |
| return RSA_sign_pss_mgf1(rsa, siglen, sig, *siglen, tbs, tbslen, |
| rctx->md, rctx->mgf1md, rctx->saltlen); |
| |
| default: |
| return 0; |
| } |
| } |
| |
| return RSA_sign_raw(rsa, siglen, sig, *siglen, tbs, tbslen, rctx->pad_mode); |
| } |
| |
| static int pkey_rsa_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t siglen, |
| const uint8_t *tbs, size_t tbslen) { |
| RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); |
| RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey); |
| |
| if (rctx->md) { |
| switch (rctx->pad_mode) { |
| case RSA_PKCS1_PADDING: |
| return RSA_verify(EVP_MD_type(rctx->md), tbs, tbslen, sig, siglen, rsa); |
| |
| case RSA_PKCS1_PSS_PADDING: |
| return RSA_verify_pss_mgf1(rsa, tbs, tbslen, rctx->md, rctx->mgf1md, |
| rctx->saltlen, sig, siglen); |
| |
| default: |
| return 0; |
| } |
| } |
| |
| size_t rslen; |
| const size_t key_len = EVP_PKEY_size(ctx->pkey.get()); |
| bssl::Array<uint8_t> tbuf; |
| if (!tbuf.InitForOverwrite(key_len) || |
| !RSA_verify_raw(rsa, &rslen, tbuf.data(), tbuf.size(), sig, siglen, |
| rctx->pad_mode)) { |
| return 0; |
| } |
| if (rslen != tbslen || CRYPTO_memcmp(tbs, tbuf.data(), rslen) != 0) { |
| OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int pkey_rsa_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out, |
| size_t *out_len, const uint8_t *sig, |
| size_t sig_len) { |
| RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); |
| RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey); |
| const size_t key_len = EVP_PKEY_size(ctx->pkey.get()); |
| |
| if (out == NULL) { |
| *out_len = key_len; |
| return 1; |
| } |
| |
| if (*out_len < key_len) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (rctx->md == NULL) { |
| return RSA_verify_raw(rsa, out_len, out, *out_len, sig, sig_len, |
| rctx->pad_mode); |
| } |
| |
| if (rctx->pad_mode != RSA_PKCS1_PADDING) { |
| return 0; |
| } |
| |
| // Assemble the encoded hash, using a placeholder hash value. |
| static const uint8_t kDummyHash[EVP_MAX_MD_SIZE] = {0}; |
| const size_t hash_len = EVP_MD_size(rctx->md); |
| uint8_t *asn1_prefix; |
| size_t asn1_prefix_len; |
| int asn1_prefix_allocated; |
| if (!RSA_add_pkcs1_prefix(&asn1_prefix, &asn1_prefix_len, |
| &asn1_prefix_allocated, EVP_MD_type(rctx->md), |
| kDummyHash, hash_len)) { |
| return 0; |
| } |
| bssl::UniquePtr<uint8_t> free_asn1_prefix(asn1_prefix_allocated ? asn1_prefix |
| : nullptr); |
| |
| bssl::Array<uint8_t> tbuf; |
| size_t rslen; |
| if (!tbuf.InitForOverwrite(key_len) || |
| !RSA_verify_raw(rsa, &rslen, tbuf.data(), tbuf.size(), sig, sig_len, |
| RSA_PKCS1_PADDING) || |
| rslen != asn1_prefix_len || |
| // Compare all but the hash suffix. |
| CRYPTO_memcmp(tbuf.data(), asn1_prefix, asn1_prefix_len - hash_len) != |
| 0) { |
| return 0; |
| } |
| |
| if (out != NULL) { |
| OPENSSL_memcpy(out, tbuf.data() + rslen - hash_len, hash_len); |
| } |
| *out_len = hash_len; |
| |
| return 1; |
| } |
| |
| static int pkey_rsa_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen, |
| const uint8_t *in, size_t inlen) { |
| RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); |
| RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey); |
| const size_t key_len = EVP_PKEY_size(ctx->pkey.get()); |
| |
| if (!out) { |
| *outlen = key_len; |
| return 1; |
| } |
| |
| if (*outlen < key_len) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) { |
| bssl::Array<uint8_t> tbuf; |
| if (!tbuf.InitForOverwrite(key_len) || |
| !RSA_padding_add_PKCS1_OAEP_mgf1( |
| tbuf.data(), tbuf.size(), in, inlen, rctx->oaep_label.data(), |
| rctx->oaep_label.size(), rctx->md, rctx->mgf1md) || |
| !RSA_encrypt(rsa, outlen, out, *outlen, tbuf.data(), tbuf.size(), |
| RSA_NO_PADDING)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| return RSA_encrypt(rsa, outlen, out, *outlen, in, inlen, rctx->pad_mode); |
| } |
| |
| static int pkey_rsa_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen, |
| const uint8_t *in, size_t inlen) { |
| RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); |
| RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey); |
| const size_t key_len = EVP_PKEY_size(ctx->pkey.get()); |
| |
| if (!out) { |
| *outlen = key_len; |
| return 1; |
| } |
| |
| if (*outlen < key_len) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) { |
| bssl::Array<uint8_t> tbuf; |
| size_t padded_len; |
| if (!tbuf.InitForOverwrite(key_len) || |
| !RSA_decrypt(rsa, &padded_len, tbuf.data(), tbuf.size(), in, inlen, |
| RSA_NO_PADDING) || |
| !RSA_padding_check_PKCS1_OAEP_mgf1(out, outlen, key_len, tbuf.data(), |
| padded_len, rctx->oaep_label.data(), |
| rctx->oaep_label.size(), rctx->md, |
| rctx->mgf1md)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| return RSA_decrypt(rsa, outlen, out, key_len, in, inlen, rctx->pad_mode); |
| } |
| |
| static int check_padding_md(const EVP_MD *md, int padding) { |
| if (!md) { |
| return 1; |
| } |
| |
| if (padding == RSA_NO_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int is_known_padding(int padding_mode) { |
| switch (padding_mode) { |
| case RSA_PKCS1_PADDING: |
| case RSA_NO_PADDING: |
| case RSA_PKCS1_OAEP_PADDING: |
| case RSA_PKCS1_PSS_PADDING: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| static int pkey_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { |
| RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); |
| switch (type) { |
| case EVP_PKEY_CTRL_RSA_PADDING: |
| // PSS keys cannot be switched to other padding types. |
| if (is_pss_only(ctx) && p1 != RSA_PKCS1_PSS_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE); |
| return 0; |
| } |
| if (!is_known_padding(p1) || !check_padding_md(rctx->md, p1) || |
| (p1 == RSA_PKCS1_PSS_PADDING && |
| 0 == (ctx->operation & (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY))) || |
| (p1 == RSA_PKCS1_OAEP_PADDING && |
| 0 == (ctx->operation & EVP_PKEY_OP_TYPE_CRYPT))) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE); |
| return 0; |
| } |
| if (p1 == RSA_PKCS1_OAEP_PADDING && rctx->md == NULL) { |
| rctx->md = EVP_sha1(); |
| } |
| rctx->pad_mode = p1; |
| return 1; |
| |
| case EVP_PKEY_CTRL_GET_RSA_PADDING: |
| *(int *)p2 = rctx->pad_mode; |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_PSS_SALTLEN: |
| case EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN: |
| if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN); |
| return 0; |
| } |
| if (type == EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN) { |
| *(int *)p2 = rctx->saltlen; |
| } else { |
| // Negative salt lengths are special values. |
| if (p1 < 0) { |
| if (p1 != RSA_PSS_SALTLEN_DIGEST && p1 != RSA_PSS_SALTLEN_AUTO) { |
| return 0; |
| } |
| // All our PSS restrictions accept saltlen == hashlen, so allow |
| // |RSA_PSS_SALTLEN_DIGEST|. Reject |RSA_PSS_SALTLEN_AUTO| for |
| // simplicity. |
| if (rctx->restrict_pss_params && p1 != RSA_PSS_SALTLEN_DIGEST) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN); |
| return 0; |
| } |
| } else if (rctx->restrict_pss_params && |
| static_cast<size_t>(p1) < EVP_MD_size(rctx->md)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN); |
| return 0; |
| } |
| rctx->saltlen = p1; |
| } |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_KEYGEN_BITS: |
| if (p1 < 256) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_KEYBITS); |
| return 0; |
| } |
| rctx->nbits = p1; |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP: |
| if (!p2) { |
| return 0; |
| } |
| rctx->pub_exp.reset(reinterpret_cast<BIGNUM *>(p2)); |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_OAEP_MD: |
| case EVP_PKEY_CTRL_GET_RSA_OAEP_MD: |
| if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); |
| return 0; |
| } |
| if (type == EVP_PKEY_CTRL_GET_RSA_OAEP_MD) { |
| *(const EVP_MD **)p2 = rctx->md; |
| } else { |
| rctx->md = reinterpret_cast<EVP_MD *>(p2); |
| } |
| return 1; |
| |
| case EVP_PKEY_CTRL_MD: { |
| const EVP_MD *md = reinterpret_cast<EVP_MD *>(p2); |
| if (!check_padding_md(md, rctx->pad_mode)) { |
| return 0; |
| } |
| if (rctx->restrict_pss_params && |
| EVP_MD_type(rctx->md) != EVP_MD_type(md)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_DIGEST_TYPE); |
| return 0; |
| } |
| rctx->md = md; |
| return 1; |
| } |
| |
| case EVP_PKEY_CTRL_GET_MD: |
| *(const EVP_MD **)p2 = rctx->md; |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_MGF1_MD: |
| case EVP_PKEY_CTRL_GET_RSA_MGF1_MD: |
| if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING && |
| rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_MGF1_MD); |
| return 0; |
| } |
| if (type == EVP_PKEY_CTRL_GET_RSA_MGF1_MD) { |
| if (rctx->mgf1md) { |
| *(const EVP_MD **)p2 = rctx->mgf1md; |
| } else { |
| *(const EVP_MD **)p2 = rctx->md; |
| } |
| } else { |
| const EVP_MD *md = reinterpret_cast<EVP_MD *>(p2); |
| if (rctx->restrict_pss_params && |
| EVP_MD_type(rctx->mgf1md) != EVP_MD_type(md)) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_MGF1_MD); |
| return 0; |
| } |
| rctx->mgf1md = md; |
| } |
| return 1; |
| |
| case EVP_PKEY_CTRL_RSA_OAEP_LABEL: { |
| if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); |
| return 0; |
| } |
| // |EVP_PKEY_CTRL_RSA_OAEP_LABEL| takes ownership of |label|'s underlying |
| // buffer (via |Reset|), but only on success. |
| auto *label = reinterpret_cast<bssl::Span<uint8_t> *>(p2); |
| rctx->oaep_label.Reset(label->data(), label->size()); |
| return 1; |
| } |
| |
| case EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL: |
| if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE); |
| return 0; |
| } |
| *reinterpret_cast<CBS *>(p2) = CBS(rctx->oaep_label); |
| return 1; |
| |
| default: |
| OPENSSL_PUT_ERROR(EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| return 0; |
| } |
| } |
| |
| static int pkey_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) { |
| RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data); |
| if (!rctx->pub_exp) { |
| rctx->pub_exp.reset(BN_new()); |
| if (!rctx->pub_exp || !BN_set_word(rctx->pub_exp.get(), RSA_F4)) { |
| return 0; |
| } |
| } |
| bssl::UniquePtr<RSA> rsa(RSA_new()); |
| if (!rsa) { |
| return 0; |
| } |
| |
| if (!RSA_generate_key_ex(rsa.get(), rctx->nbits, rctx->pub_exp.get(), |
| nullptr)) { |
| return 0; |
| } |
| |
| EVP_PKEY_assign_RSA(pkey, rsa.release()); |
| return 1; |
| } |
| |
| } // namespace |
| |
| const EVP_PKEY_CTX_METHOD rsa_pkey_meth = { |
| EVP_PKEY_RSA, |
| pkey_rsa_init, |
| pkey_rsa_copy, |
| pkey_rsa_cleanup, |
| pkey_rsa_keygen, |
| pkey_rsa_sign, |
| /*sign_message=*/nullptr, |
| pkey_rsa_verify, |
| /*verify_message=*/nullptr, |
| pkey_rsa_verify_recover, |
| pkey_rsa_encrypt, |
| pkey_rsa_decrypt, |
| /*derive=*/nullptr, |
| /*paramgen=*/nullptr, |
| pkey_rsa_ctrl, |
| }; |
| |
| const EVP_PKEY_CTX_METHOD rsa_pss_sha256_pkey_meth = { |
| EVP_PKEY_RSA_PSS, |
| pkey_rsa_init, |
| pkey_rsa_copy, |
| pkey_rsa_cleanup, |
| // In OpenSSL, |EVP_PKEY_RSA_PSS| supports key generation and fills in PSS |
| // parameters based on a separate set of keygen-targetted setters: |
| // |EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen|, |
| // |EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md|, and |
| // |EVP_PKEY_CTX_rsa_pss_key_digest|. We do not currently implement this |
| // because we only support one parameter set. |
| /*keygen=*/nullptr, |
| pkey_rsa_sign, |
| /*sign_message=*/nullptr, |
| pkey_rsa_verify, |
| /*verify_message=*/nullptr, |
| /*verify_recover=*/nullptr, |
| /*encrypt=*/nullptr, |
| /*decrypt=*/nullptr, |
| /*derive=*/nullptr, |
| /*paramgen=*/nullptr, |
| pkey_rsa_ctrl, |
| }; |
| |
| static int rsa_or_rsa_pss_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1, |
| void *p2) { |
| if (!ctx || !ctx->pmeth || !ctx->pmeth->ctrl) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_COMMAND_NOT_SUPPORTED); |
| return 0; |
| } |
| if (ctx->pmeth->pkey_id != EVP_PKEY_RSA && |
| ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) { |
| OPENSSL_PUT_ERROR(EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE); |
| return 0; |
| } |
| return EVP_PKEY_CTX_ctrl(ctx, /*keytype=*/-1, optype, cmd, p1, p2); |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding) { |
| return rsa_or_rsa_pss_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING, padding, |
| nullptr); |
| } |
| |
| int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *out_padding) { |
| return rsa_or_rsa_pss_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING, 0, |
| out_padding); |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { |
| // We currently do not support keygen with |EVP_PKEY_RSA_PSS|. |
| return 0; |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int salt_len) { |
| // We currently do not support keygen with |EVP_PKEY_RSA_PSS|. |
| return 0; |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx, |
| const EVP_MD *md) { |
| // We currently do not support keygen with |EVP_PKEY_RSA_PSS|. |
| return 0; |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int salt_len) { |
| return rsa_or_rsa_pss_ctrl(ctx, (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY), |
| EVP_PKEY_CTRL_RSA_PSS_SALTLEN, salt_len, nullptr); |
| } |
| |
| int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *out_salt_len) { |
| return rsa_or_rsa_pss_ctrl(ctx, (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY), |
| EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, |
| out_salt_len); |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits) { |
| return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_KEYGEN, |
| EVP_PKEY_CTRL_RSA_KEYGEN_BITS, bits, nullptr); |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *e) { |
| return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_KEYGEN, |
| EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, e); |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)md); |
| } |
| |
| int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) { |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)out_md); |
| } |
| |
| int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) { |
| return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)md); |
| } |
| |
| int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) { |
| return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)out_md); |
| } |
| |
| int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, uint8_t *label, |
| size_t label_len) { |
| bssl::Span span(label, label_len); |
| return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_RSA_OAEP_LABEL, 0, &span); |
| } |
| |
| int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, |
| const uint8_t **out_label) { |
| CBS label; |
| if (!EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT, |
| EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL, 0, &label)) { |
| return -1; |
| } |
| if (CBS_len(&label) > INT_MAX) { |
| OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW); |
| return -1; |
| } |
| *out_label = CBS_data(&label); |
| return (int)CBS_len(&label); |
| } |