blob: 9692307d15012da889cb4817c6aef9f2ac4945ce [file] [log] [blame]
// Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/evp.h>
#include <limits.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/bytestring.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include <openssl/rsa.h>
#include <openssl/span.h>
#include "../internal.h"
#include "../mem_internal.h"
#include "../rsa/internal.h"
#include "internal.h"
namespace {
struct RSA_PKEY_CTX {
// Key gen parameters
int nbits = 2048;
bssl::UniquePtr<BIGNUM> pub_exp;
// RSA padding mode
int pad_mode = RSA_PKCS1_PADDING;
// message digest
const EVP_MD *md = nullptr;
// message digest for MGF1
const EVP_MD *mgf1md = nullptr;
// PSS salt length
int saltlen = RSA_PSS_SALTLEN_DIGEST;
// restrict_pss_params, if true, indicates that the PSS signing/verifying
// parameters are restricted by the key's parameters. |md| and |mgf1md| may
// not change, and |saltlen| must be at least |md|'s hash length.
bool restrict_pss_params = false;
bssl::Array<uint8_t> oaep_label;
};
static bool is_pss_only(const EVP_PKEY_CTX *ctx) {
return ctx->pmeth->pkey_id == EVP_PKEY_RSA_PSS;
}
static int pkey_rsa_init(EVP_PKEY_CTX *ctx) {
RSA_PKEY_CTX *rctx = bssl::New<RSA_PKEY_CTX>();
if (!rctx) {
return 0;
}
if (is_pss_only(ctx)) {
rctx->pad_mode = RSA_PKCS1_PSS_PADDING;
// Pick up PSS parameters from the key. For now, we only support the SHA-256
// parameter set, so every key is necessarily SHA-256. If we ever support
// other parameters, we will need more state in |EVP_PKEY| and to translate
// that state into defaults here.
if (ctx->pkey != nullptr) {
rctx->md = rctx->mgf1md = EVP_sha256();
rctx->saltlen = EVP_MD_size(rctx->md);
rctx->restrict_pss_params = true;
}
}
ctx->data = rctx;
return 1;
}
static int pkey_rsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) {
RSA_PKEY_CTX *dctx, *sctx;
if (!pkey_rsa_init(dst)) {
return 0;
}
sctx = reinterpret_cast<RSA_PKEY_CTX *>(src->data);
dctx = reinterpret_cast<RSA_PKEY_CTX *>(dst->data);
dctx->nbits = sctx->nbits;
if (sctx->pub_exp) {
dctx->pub_exp.reset(BN_dup(sctx->pub_exp.get()));
if (!dctx->pub_exp) {
return 0;
}
}
dctx->pad_mode = sctx->pad_mode;
dctx->md = sctx->md;
dctx->mgf1md = sctx->mgf1md;
dctx->saltlen = sctx->saltlen;
dctx->restrict_pss_params = sctx->restrict_pss_params;
if (!dctx->oaep_label.CopyFrom(sctx->oaep_label)) {
return 0;
}
return 1;
}
static void pkey_rsa_cleanup(EVP_PKEY_CTX *ctx) {
bssl::Delete(reinterpret_cast<RSA_PKEY_CTX *>(ctx->data));
}
static int pkey_rsa_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen,
const uint8_t *tbs, size_t tbslen) {
RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data);
RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey);
const size_t key_len = EVP_PKEY_size(ctx->pkey.get());
if (!sig) {
*siglen = key_len;
return 1;
}
if (*siglen < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (rctx->md) {
unsigned out_len;
switch (rctx->pad_mode) {
case RSA_PKCS1_PADDING:
if (!RSA_sign(EVP_MD_type(rctx->md), tbs, tbslen, sig, &out_len, rsa)) {
return 0;
}
*siglen = out_len;
return 1;
case RSA_PKCS1_PSS_PADDING:
return RSA_sign_pss_mgf1(rsa, siglen, sig, *siglen, tbs, tbslen,
rctx->md, rctx->mgf1md, rctx->saltlen);
default:
return 0;
}
}
return RSA_sign_raw(rsa, siglen, sig, *siglen, tbs, tbslen, rctx->pad_mode);
}
static int pkey_rsa_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig, size_t siglen,
const uint8_t *tbs, size_t tbslen) {
RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data);
RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey);
if (rctx->md) {
switch (rctx->pad_mode) {
case RSA_PKCS1_PADDING:
return RSA_verify(EVP_MD_type(rctx->md), tbs, tbslen, sig, siglen, rsa);
case RSA_PKCS1_PSS_PADDING:
return RSA_verify_pss_mgf1(rsa, tbs, tbslen, rctx->md, rctx->mgf1md,
rctx->saltlen, sig, siglen);
default:
return 0;
}
}
size_t rslen;
const size_t key_len = EVP_PKEY_size(ctx->pkey.get());
bssl::Array<uint8_t> tbuf;
if (!tbuf.InitForOverwrite(key_len) ||
!RSA_verify_raw(rsa, &rslen, tbuf.data(), tbuf.size(), sig, siglen,
rctx->pad_mode)) {
return 0;
}
if (rslen != tbslen || CRYPTO_memcmp(tbs, tbuf.data(), rslen) != 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_SIGNATURE);
return 0;
}
return 1;
}
static int pkey_rsa_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out,
size_t *out_len, const uint8_t *sig,
size_t sig_len) {
RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data);
RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey);
const size_t key_len = EVP_PKEY_size(ctx->pkey.get());
if (out == NULL) {
*out_len = key_len;
return 1;
}
if (*out_len < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (rctx->md == NULL) {
return RSA_verify_raw(rsa, out_len, out, *out_len, sig, sig_len,
rctx->pad_mode);
}
if (rctx->pad_mode != RSA_PKCS1_PADDING) {
return 0;
}
// Assemble the encoded hash, using a placeholder hash value.
static const uint8_t kDummyHash[EVP_MAX_MD_SIZE] = {0};
const size_t hash_len = EVP_MD_size(rctx->md);
uint8_t *asn1_prefix;
size_t asn1_prefix_len;
int asn1_prefix_allocated;
if (!RSA_add_pkcs1_prefix(&asn1_prefix, &asn1_prefix_len,
&asn1_prefix_allocated, EVP_MD_type(rctx->md),
kDummyHash, hash_len)) {
return 0;
}
bssl::UniquePtr<uint8_t> free_asn1_prefix(asn1_prefix_allocated ? asn1_prefix
: nullptr);
bssl::Array<uint8_t> tbuf;
size_t rslen;
if (!tbuf.InitForOverwrite(key_len) ||
!RSA_verify_raw(rsa, &rslen, tbuf.data(), tbuf.size(), sig, sig_len,
RSA_PKCS1_PADDING) ||
rslen != asn1_prefix_len ||
// Compare all but the hash suffix.
CRYPTO_memcmp(tbuf.data(), asn1_prefix, asn1_prefix_len - hash_len) !=
0) {
return 0;
}
if (out != NULL) {
OPENSSL_memcpy(out, tbuf.data() + rslen - hash_len, hash_len);
}
*out_len = hash_len;
return 1;
}
static int pkey_rsa_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen,
const uint8_t *in, size_t inlen) {
RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data);
RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey);
const size_t key_len = EVP_PKEY_size(ctx->pkey.get());
if (!out) {
*outlen = key_len;
return 1;
}
if (*outlen < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) {
bssl::Array<uint8_t> tbuf;
if (!tbuf.InitForOverwrite(key_len) ||
!RSA_padding_add_PKCS1_OAEP_mgf1(
tbuf.data(), tbuf.size(), in, inlen, rctx->oaep_label.data(),
rctx->oaep_label.size(), rctx->md, rctx->mgf1md) ||
!RSA_encrypt(rsa, outlen, out, *outlen, tbuf.data(), tbuf.size(),
RSA_NO_PADDING)) {
return 0;
}
return 1;
}
return RSA_encrypt(rsa, outlen, out, *outlen, in, inlen, rctx->pad_mode);
}
static int pkey_rsa_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen,
const uint8_t *in, size_t inlen) {
RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data);
RSA *rsa = reinterpret_cast<RSA *>(ctx->pkey->pkey);
const size_t key_len = EVP_PKEY_size(ctx->pkey.get());
if (!out) {
*outlen = key_len;
return 1;
}
if (*outlen < key_len) {
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
return 0;
}
if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) {
bssl::Array<uint8_t> tbuf;
size_t padded_len;
if (!tbuf.InitForOverwrite(key_len) ||
!RSA_decrypt(rsa, &padded_len, tbuf.data(), tbuf.size(), in, inlen,
RSA_NO_PADDING) ||
!RSA_padding_check_PKCS1_OAEP_mgf1(out, outlen, key_len, tbuf.data(),
padded_len, rctx->oaep_label.data(),
rctx->oaep_label.size(), rctx->md,
rctx->mgf1md)) {
return 0;
}
return 1;
}
return RSA_decrypt(rsa, outlen, out, key_len, in, inlen, rctx->pad_mode);
}
static int check_padding_md(const EVP_MD *md, int padding) {
if (!md) {
return 1;
}
if (padding == RSA_NO_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
return 1;
}
static int is_known_padding(int padding_mode) {
switch (padding_mode) {
case RSA_PKCS1_PADDING:
case RSA_NO_PADDING:
case RSA_PKCS1_OAEP_PADDING:
case RSA_PKCS1_PSS_PADDING:
return 1;
default:
return 0;
}
}
static int pkey_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) {
RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data);
switch (type) {
case EVP_PKEY_CTRL_RSA_PADDING:
// PSS keys cannot be switched to other padding types.
if (is_pss_only(ctx) && p1 != RSA_PKCS1_PSS_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE);
return 0;
}
if (!is_known_padding(p1) || !check_padding_md(rctx->md, p1) ||
(p1 == RSA_PKCS1_PSS_PADDING &&
0 == (ctx->operation & (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY))) ||
(p1 == RSA_PKCS1_OAEP_PADDING &&
0 == (ctx->operation & EVP_PKEY_OP_TYPE_CRYPT))) {
OPENSSL_PUT_ERROR(EVP, EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE);
return 0;
}
if (p1 == RSA_PKCS1_OAEP_PADDING && rctx->md == NULL) {
rctx->md = EVP_sha1();
}
rctx->pad_mode = p1;
return 1;
case EVP_PKEY_CTRL_GET_RSA_PADDING:
*(int *)p2 = rctx->pad_mode;
return 1;
case EVP_PKEY_CTRL_RSA_PSS_SALTLEN:
case EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN:
if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN);
return 0;
}
if (type == EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN) {
*(int *)p2 = rctx->saltlen;
} else {
// Negative salt lengths are special values.
if (p1 < 0) {
if (p1 != RSA_PSS_SALTLEN_DIGEST && p1 != RSA_PSS_SALTLEN_AUTO) {
return 0;
}
// All our PSS restrictions accept saltlen == hashlen, so allow
// |RSA_PSS_SALTLEN_DIGEST|. Reject |RSA_PSS_SALTLEN_AUTO| for
// simplicity.
if (rctx->restrict_pss_params && p1 != RSA_PSS_SALTLEN_DIGEST) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN);
return 0;
}
} else if (rctx->restrict_pss_params &&
static_cast<size_t>(p1) < EVP_MD_size(rctx->md)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN);
return 0;
}
rctx->saltlen = p1;
}
return 1;
case EVP_PKEY_CTRL_RSA_KEYGEN_BITS:
if (p1 < 256) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_KEYBITS);
return 0;
}
rctx->nbits = p1;
return 1;
case EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP:
if (!p2) {
return 0;
}
rctx->pub_exp.reset(reinterpret_cast<BIGNUM *>(p2));
return 1;
case EVP_PKEY_CTRL_RSA_OAEP_MD:
case EVP_PKEY_CTRL_GET_RSA_OAEP_MD:
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
if (type == EVP_PKEY_CTRL_GET_RSA_OAEP_MD) {
*(const EVP_MD **)p2 = rctx->md;
} else {
rctx->md = reinterpret_cast<EVP_MD *>(p2);
}
return 1;
case EVP_PKEY_CTRL_MD: {
const EVP_MD *md = reinterpret_cast<EVP_MD *>(p2);
if (!check_padding_md(md, rctx->pad_mode)) {
return 0;
}
if (rctx->restrict_pss_params &&
EVP_MD_type(rctx->md) != EVP_MD_type(md)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_DIGEST_TYPE);
return 0;
}
rctx->md = md;
return 1;
}
case EVP_PKEY_CTRL_GET_MD:
*(const EVP_MD **)p2 = rctx->md;
return 1;
case EVP_PKEY_CTRL_RSA_MGF1_MD:
case EVP_PKEY_CTRL_GET_RSA_MGF1_MD:
if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING &&
rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_MGF1_MD);
return 0;
}
if (type == EVP_PKEY_CTRL_GET_RSA_MGF1_MD) {
if (rctx->mgf1md) {
*(const EVP_MD **)p2 = rctx->mgf1md;
} else {
*(const EVP_MD **)p2 = rctx->md;
}
} else {
const EVP_MD *md = reinterpret_cast<EVP_MD *>(p2);
if (rctx->restrict_pss_params &&
EVP_MD_type(rctx->mgf1md) != EVP_MD_type(md)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_MGF1_MD);
return 0;
}
rctx->mgf1md = md;
}
return 1;
case EVP_PKEY_CTRL_RSA_OAEP_LABEL: {
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
// |EVP_PKEY_CTRL_RSA_OAEP_LABEL| takes ownership of |label|'s underlying
// buffer (via |Reset|), but only on success.
auto *label = reinterpret_cast<bssl::Span<uint8_t> *>(p2);
rctx->oaep_label.Reset(label->data(), label->size());
return 1;
}
case EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL:
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
return 0;
}
*reinterpret_cast<CBS *>(p2) = CBS(rctx->oaep_label);
return 1;
default:
OPENSSL_PUT_ERROR(EVP, EVP_R_COMMAND_NOT_SUPPORTED);
return 0;
}
}
static int pkey_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) {
RSA_PKEY_CTX *rctx = reinterpret_cast<RSA_PKEY_CTX *>(ctx->data);
if (!rctx->pub_exp) {
rctx->pub_exp.reset(BN_new());
if (!rctx->pub_exp || !BN_set_word(rctx->pub_exp.get(), RSA_F4)) {
return 0;
}
}
bssl::UniquePtr<RSA> rsa(RSA_new());
if (!rsa) {
return 0;
}
if (!RSA_generate_key_ex(rsa.get(), rctx->nbits, rctx->pub_exp.get(),
nullptr)) {
return 0;
}
EVP_PKEY_assign_RSA(pkey, rsa.release());
return 1;
}
} // namespace
const EVP_PKEY_CTX_METHOD rsa_pkey_meth = {
EVP_PKEY_RSA,
pkey_rsa_init,
pkey_rsa_copy,
pkey_rsa_cleanup,
pkey_rsa_keygen,
pkey_rsa_sign,
/*sign_message=*/nullptr,
pkey_rsa_verify,
/*verify_message=*/nullptr,
pkey_rsa_verify_recover,
pkey_rsa_encrypt,
pkey_rsa_decrypt,
/*derive=*/nullptr,
/*paramgen=*/nullptr,
pkey_rsa_ctrl,
};
const EVP_PKEY_CTX_METHOD rsa_pss_sha256_pkey_meth = {
EVP_PKEY_RSA_PSS,
pkey_rsa_init,
pkey_rsa_copy,
pkey_rsa_cleanup,
// In OpenSSL, |EVP_PKEY_RSA_PSS| supports key generation and fills in PSS
// parameters based on a separate set of keygen-targetted setters:
// |EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen|,
// |EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md|, and
// |EVP_PKEY_CTX_rsa_pss_key_digest|. We do not currently implement this
// because we only support one parameter set.
/*keygen=*/nullptr,
pkey_rsa_sign,
/*sign_message=*/nullptr,
pkey_rsa_verify,
/*verify_message=*/nullptr,
/*verify_recover=*/nullptr,
/*encrypt=*/nullptr,
/*decrypt=*/nullptr,
/*derive=*/nullptr,
/*paramgen=*/nullptr,
pkey_rsa_ctrl,
};
static int rsa_or_rsa_pss_ctrl(EVP_PKEY_CTX *ctx, int optype, int cmd, int p1,
void *p2) {
if (!ctx || !ctx->pmeth || !ctx->pmeth->ctrl) {
OPENSSL_PUT_ERROR(EVP, EVP_R_COMMAND_NOT_SUPPORTED);
return 0;
}
if (ctx->pmeth->pkey_id != EVP_PKEY_RSA &&
ctx->pmeth->pkey_id != EVP_PKEY_RSA_PSS) {
OPENSSL_PUT_ERROR(EVP, EVP_R_OPERATION_NOT_SUPPORTED_FOR_THIS_KEYTYPE);
return 0;
}
return EVP_PKEY_CTX_ctrl(ctx, /*keytype=*/-1, optype, cmd, p1, p2);
}
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding) {
return rsa_or_rsa_pss_ctrl(ctx, -1, EVP_PKEY_CTRL_RSA_PADDING, padding,
nullptr);
}
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *out_padding) {
return rsa_or_rsa_pss_ctrl(ctx, -1, EVP_PKEY_CTRL_GET_RSA_PADDING, 0,
out_padding);
}
int EVP_PKEY_CTX_set_rsa_pss_keygen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) {
// We currently do not support keygen with |EVP_PKEY_RSA_PSS|.
return 0;
}
int EVP_PKEY_CTX_set_rsa_pss_keygen_saltlen(EVP_PKEY_CTX *ctx, int salt_len) {
// We currently do not support keygen with |EVP_PKEY_RSA_PSS|.
return 0;
}
int EVP_PKEY_CTX_set_rsa_pss_keygen_mgf1_md(EVP_PKEY_CTX *ctx,
const EVP_MD *md) {
// We currently do not support keygen with |EVP_PKEY_RSA_PSS|.
return 0;
}
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int salt_len) {
return rsa_or_rsa_pss_ctrl(ctx, (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY),
EVP_PKEY_CTRL_RSA_PSS_SALTLEN, salt_len, nullptr);
}
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *out_salt_len) {
return rsa_or_rsa_pss_ctrl(ctx, (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY),
EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0,
out_salt_len);
}
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits) {
return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
EVP_PKEY_CTRL_RSA_KEYGEN_BITS, bits, nullptr);
}
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *e) {
return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_KEYGEN,
EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, e);
}
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)md);
}
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) {
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void *)out_md);
}
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) {
return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void *)md);
}
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) {
return rsa_or_rsa_pss_ctrl(ctx, EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void *)out_md);
}
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, uint8_t *label,
size_t label_len) {
bssl::Span span(label, label_len);
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_RSA_OAEP_LABEL, 0, &span);
}
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx,
const uint8_t **out_label) {
CBS label;
if (!EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL, 0, &label)) {
return -1;
}
if (CBS_len(&label) > INT_MAX) {
OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW);
return -1;
}
*out_label = CBS_data(&label);
return (int)CBS_len(&label);
}