| /* Copyright (c) 2023, Google Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| //! Elliptic Curve Diffie-Hellman operations. |
| //! |
| //! This module implements ECDH over the NIST curves P-256 and P-384. |
| //! |
| //! ``` |
| //! use bssl_crypto::{ecdh, ec::P256}; |
| //! |
| //! let alice_private_key = ecdh::PrivateKey::<P256>::generate(); |
| //! let alice_public_key_serialized = alice_private_key.to_x962_uncompressed(); |
| //! |
| //! // Somehow, Alice's public key is sent to Bob. |
| //! let bob_private_key = ecdh::PrivateKey::<P256>::generate(); |
| //! let alice_public_key = |
| //! ecdh::PublicKey::<P256>::from_x962_uncompressed( |
| //! alice_public_key_serialized.as_ref()) |
| //! .unwrap(); |
| //! let shared_key1 = bob_private_key.compute_shared_key(&alice_public_key); |
| //! |
| //! // Likewise, Alice gets Bob's public key and computes the same shared key. |
| //! let bob_public_key = bob_private_key.to_public_key(); |
| //! let shared_key2 = alice_private_key.compute_shared_key(&bob_public_key); |
| //! assert_eq!(shared_key1, shared_key2); |
| //! ``` |
| |
| use crate::{ec, sealed, with_output_vec, Buffer}; |
| use alloc::vec::Vec; |
| use core::marker::PhantomData; |
| |
| /// An ECDH public key over the given curve. |
| pub struct PublicKey<C: ec::Curve> { |
| point: ec::Point, |
| marker: PhantomData<C>, |
| } |
| |
| impl<C: ec::Curve> PublicKey<C> { |
| /// Parse a public key in uncompressed X9.62 format. (This is the common |
| /// format for elliptic curve points beginning with an 0x04 byte.) |
| pub fn from_x962_uncompressed(x962: &[u8]) -> Option<Self> { |
| let point = ec::Point::from_x962_uncompressed(C::group(sealed::Sealed), x962)?; |
| Some(Self { |
| point, |
| marker: PhantomData, |
| }) |
| } |
| |
| /// Serialize this key as uncompressed X9.62 format. |
| pub fn to_x962_uncompressed(&self) -> Buffer { |
| self.point.to_x962_uncompressed() |
| } |
| } |
| |
| /// An ECDH private key over the given curve. |
| pub struct PrivateKey<C: ec::Curve> { |
| key: ec::Key, |
| marker: PhantomData<C>, |
| } |
| |
| impl<C: ec::Curve> PrivateKey<C> { |
| /// Generate a random private key. |
| pub fn generate() -> Self { |
| Self { |
| key: ec::Key::generate(C::group(sealed::Sealed)), |
| marker: PhantomData, |
| } |
| } |
| |
| /// Parse a `PrivateKey` from a zero-padded, big-endian representation of the secret scalar. |
| pub fn from_big_endian(scalar: &[u8]) -> Option<Self> { |
| let key = ec::Key::from_big_endian(C::group(sealed::Sealed), scalar)?; |
| Some(Self { |
| key, |
| marker: PhantomData, |
| }) |
| } |
| |
| /// Return the private scalar as zero-padded, big-endian bytes. |
| pub fn to_big_endian(&self) -> Buffer { |
| self.key.to_big_endian() |
| } |
| |
| /// Parse an ECPrivateKey structure (from RFC 5915). The key must be on the |
| /// specified curve. |
| pub fn from_der_ec_private_key(der: &[u8]) -> Option<Self> { |
| let key = ec::Key::from_der_ec_private_key(C::group(sealed::Sealed), der)?; |
| Some(Self { |
| key, |
| marker: PhantomData, |
| }) |
| } |
| |
| /// Serialize this private key as an ECPrivateKey structure (from RFC 5915). |
| pub fn to_der_ec_private_key(&self) -> Buffer { |
| self.key.to_der_ec_private_key() |
| } |
| |
| /// Parse a PrivateKeyInfo structure (from RFC 5208). The key must be on the |
| /// specified curve. |
| pub fn from_der_private_key_info(der: &[u8]) -> Option<Self> { |
| let key = ec::Key::from_der_private_key_info(C::group(sealed::Sealed), der)?; |
| Some(Self { |
| key, |
| marker: PhantomData, |
| }) |
| } |
| |
| /// Serialize this private key as a PrivateKeyInfo structure (from RFC 5208). |
| pub fn to_der_private_key_info(&self) -> Buffer { |
| self.key.to_der_private_key_info() |
| } |
| |
| /// Serialize the _public_ part of this key in uncompressed X9.62 format. |
| pub fn to_x962_uncompressed(&self) -> Buffer { |
| self.key.to_x962_uncompressed() |
| } |
| |
| /// Compute the shared key between this private key and the given public key. |
| /// The result should be used with a key derivation function that includes |
| /// the two public keys. |
| pub fn compute_shared_key(&self, other_public_key: &PublicKey<C>) -> Vec<u8> { |
| // 384 bits is the largest curve supported. The buffer is sized to be |
| // larger than this so that truncation of the output can be noticed. |
| let max_output = 384 / 8 + 1; |
| unsafe { |
| with_output_vec(max_output, |out_buf| { |
| // Safety: |
| // - `out_buf` points to at least `max_output` bytes, as |
| // required. |
| // - The `EC_POINT` and `EC_KEY` pointers are valid by construction. |
| let num_out_bytes = bssl_sys::ECDH_compute_key( |
| out_buf as *mut core::ffi::c_void, |
| max_output, |
| other_public_key.point.as_ffi_ptr(), |
| self.key.as_ffi_ptr(), |
| None, |
| ); |
| // Out of memory is not handled by this crate. |
| assert!(num_out_bytes > 0); |
| let num_out_bytes = num_out_bytes as usize; |
| // If the buffer was completely filled then it was probably |
| // truncated, which should never happen. |
| assert!(num_out_bytes < max_output); |
| num_out_bytes |
| }) |
| } |
| } |
| |
| /// Return the public key corresponding to this private key. |
| pub fn to_public_key(&self) -> PublicKey<C> { |
| PublicKey { |
| point: self.key.to_point(), |
| marker: PhantomData, |
| } |
| } |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use super::*; |
| use crate::ec::{P256, P384}; |
| |
| fn check_curve<C: ec::Curve>() { |
| let alice_private_key = PrivateKey::<C>::generate(); |
| let alice_public_key = alice_private_key.to_public_key(); |
| let alice_private_key = |
| PrivateKey::<C>::from_big_endian(alice_private_key.to_big_endian().as_ref()).unwrap(); |
| let alice_private_key = PrivateKey::<C>::from_der_ec_private_key( |
| alice_private_key.to_der_ec_private_key().as_ref(), |
| ) |
| .unwrap(); |
| |
| let bob_private_key = PrivateKey::<C>::generate(); |
| let bob_public_key = bob_private_key.to_public_key(); |
| |
| let shared_key1 = alice_private_key.compute_shared_key(&bob_public_key); |
| let shared_key2 = bob_private_key.compute_shared_key(&alice_public_key); |
| |
| assert_eq!(shared_key1, shared_key2); |
| } |
| |
| #[test] |
| fn p256() { |
| check_curve::<P256>(); |
| } |
| |
| #[test] |
| fn p384() { |
| check_curve::<P384>(); |
| } |
| } |