| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/bn.h> |
| |
| #include <assert.h> |
| |
| #include <openssl/err.h> |
| |
| #include "internal.h" |
| |
| |
| static BN_ULONG word_is_odd_mask(BN_ULONG a) { return (BN_ULONG)0 - (a & 1); } |
| |
| static void maybe_rshift1_words(BN_ULONG *a, BN_ULONG mask, BN_ULONG *tmp, |
| size_t num) { |
| bn_rshift1_words(tmp, a, num); |
| bn_select_words(a, mask, tmp, a, num); |
| } |
| |
| static void maybe_rshift1_words_carry(BN_ULONG *a, BN_ULONG carry, |
| BN_ULONG mask, BN_ULONG *tmp, |
| size_t num) { |
| maybe_rshift1_words(a, mask, tmp, num); |
| if (num != 0) { |
| carry &= mask; |
| a[num - 1] |= carry << (BN_BITS2-1); |
| } |
| } |
| |
| static BN_ULONG maybe_add_words(BN_ULONG *a, BN_ULONG mask, const BN_ULONG *b, |
| BN_ULONG *tmp, size_t num) { |
| BN_ULONG carry = bn_add_words(tmp, a, b, num); |
| bn_select_words(a, mask, tmp, a, num); |
| return carry & mask; |
| } |
| |
| static int bn_gcd_consttime(BIGNUM *r, unsigned *out_shift, const BIGNUM *x, |
| const BIGNUM *y, BN_CTX *ctx) { |
| size_t width = x->width > y->width ? x->width : y->width; |
| if (width == 0) { |
| *out_shift = 0; |
| BN_zero(r); |
| return 1; |
| } |
| |
| // This is a constant-time implementation of Stein's algorithm (binary GCD). |
| int ret = 0; |
| BN_CTX_start(ctx); |
| BIGNUM *u = BN_CTX_get(ctx); |
| BIGNUM *v = BN_CTX_get(ctx); |
| BIGNUM *tmp = BN_CTX_get(ctx); |
| if (u == NULL || v == NULL || tmp == NULL || |
| !BN_copy(u, x) || |
| !BN_copy(v, y) || |
| !bn_resize_words(u, width) || |
| !bn_resize_words(v, width) || |
| !bn_resize_words(tmp, width)) { |
| goto err; |
| } |
| |
| // Each loop iteration halves at least one of |u| and |v|. Thus we need at |
| // most the combined bit width of inputs for at least one value to be zero. |
| unsigned x_bits = x->width * BN_BITS2, y_bits = y->width * BN_BITS2; |
| unsigned num_iters = x_bits + y_bits; |
| if (num_iters < x_bits) { |
| OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
| goto err; |
| } |
| |
| unsigned shift = 0; |
| for (unsigned i = 0; i < num_iters; i++) { |
| BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]); |
| |
| // If both |u| and |v| are odd, subtract the smaller from the larger. |
| BN_ULONG u_less_than_v = |
| (BN_ULONG)0 - bn_sub_words(tmp->d, u->d, v->d, width); |
| bn_select_words(u->d, both_odd & ~u_less_than_v, tmp->d, u->d, width); |
| bn_sub_words(tmp->d, v->d, u->d, width); |
| bn_select_words(v->d, both_odd & u_less_than_v, tmp->d, v->d, width); |
| |
| // At least one of |u| and |v| is now even. |
| BN_ULONG u_is_odd = word_is_odd_mask(u->d[0]); |
| BN_ULONG v_is_odd = word_is_odd_mask(v->d[0]); |
| assert(!(u_is_odd & v_is_odd)); |
| |
| // If both are even, the final GCD gains a factor of two. |
| shift += 1 & (~u_is_odd & ~v_is_odd); |
| |
| // Halve any which are even. |
| maybe_rshift1_words(u->d, ~u_is_odd, tmp->d, width); |
| maybe_rshift1_words(v->d, ~v_is_odd, tmp->d, width); |
| } |
| |
| // One of |u| or |v| is zero at this point. The algorithm usually makes |u| |
| // zero, unless |y| was already zero on input. Fix this by combining the |
| // values. |
| assert(BN_is_zero(u) || BN_is_zero(v)); |
| for (size_t i = 0; i < width; i++) { |
| v->d[i] |= u->d[i]; |
| } |
| |
| *out_shift = shift; |
| ret = bn_set_words(r, v->d, width); |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| int BN_gcd(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { |
| unsigned shift; |
| return bn_gcd_consttime(r, &shift, x, y, ctx) && |
| BN_lshift(r, r, shift); |
| } |
| |
| int bn_is_relatively_prime(int *out_relatively_prime, const BIGNUM *x, |
| const BIGNUM *y, BN_CTX *ctx) { |
| int ret = 0; |
| BN_CTX_start(ctx); |
| unsigned shift; |
| BIGNUM *gcd = BN_CTX_get(ctx); |
| if (gcd == NULL || |
| !bn_gcd_consttime(gcd, &shift, x, y, ctx)) { |
| goto err; |
| } |
| |
| // Check that 2^|shift| * |gcd| is one. |
| if (gcd->width == 0) { |
| *out_relatively_prime = 0; |
| } else { |
| BN_ULONG mask = shift | (gcd->d[0] ^ 1); |
| for (int i = 1; i < gcd->width; i++) { |
| mask |= gcd->d[i]; |
| } |
| *out_relatively_prime = mask == 0; |
| } |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
| BN_CTX_start(ctx); |
| unsigned shift; |
| BIGNUM *gcd = BN_CTX_get(ctx); |
| int ret = gcd != NULL && |
| bn_mul_consttime(r, a, b, ctx) && |
| bn_gcd_consttime(gcd, &shift, a, b, ctx) && |
| bn_div_consttime(r, NULL, r, gcd, ctx) && |
| bn_rshift_secret_shift(r, r, shift, ctx); |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, const BIGNUM *a, |
| const BIGNUM *n, BN_CTX *ctx) { |
| *out_no_inverse = 0; |
| if (BN_is_negative(a) || BN_ucmp(a, n) >= 0) { |
| OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
| return 0; |
| } |
| if (BN_is_zero(a)) { |
| if (BN_is_one(n)) { |
| BN_zero(r); |
| return 1; |
| } |
| *out_no_inverse = 1; |
| OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
| return 0; |
| } |
| |
| // This is a constant-time implementation of the extended binary GCD |
| // algorithm. It is adapted from the Handbook of Applied Cryptography, section |
| // 14.4.3, algorithm 14.51, and modified to bound coefficients and avoid |
| // negative numbers. |
| // |
| // For more details and proof of correctness, see |
| // https://github.com/mit-plv/fiat-crypto/pull/333. In particular, see |step| |
| // and |mod_inverse_consttime| for the algorithm in Gallina and see |
| // |mod_inverse_consttime_spec| for the correctness result. |
| |
| if (!BN_is_odd(a) && !BN_is_odd(n)) { |
| *out_no_inverse = 1; |
| OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
| return 0; |
| } |
| |
| // This function exists to compute the RSA private exponent, where |a| is one |
| // word. We'll thus use |a_width| when available. |
| size_t n_width = n->width, a_width = a->width; |
| if (a_width > n_width) { |
| a_width = n_width; |
| } |
| |
| int ret = 0; |
| BN_CTX_start(ctx); |
| BIGNUM *u = BN_CTX_get(ctx); |
| BIGNUM *v = BN_CTX_get(ctx); |
| BIGNUM *A = BN_CTX_get(ctx); |
| BIGNUM *B = BN_CTX_get(ctx); |
| BIGNUM *C = BN_CTX_get(ctx); |
| BIGNUM *D = BN_CTX_get(ctx); |
| BIGNUM *tmp = BN_CTX_get(ctx); |
| BIGNUM *tmp2 = BN_CTX_get(ctx); |
| if (u == NULL || v == NULL || A == NULL || B == NULL || C == NULL || |
| D == NULL || tmp == NULL || tmp2 == NULL || |
| !BN_copy(u, a) || |
| !BN_copy(v, n) || |
| !BN_one(A) || |
| !BN_one(D) || |
| // For convenience, size |u| and |v| equivalently. |
| !bn_resize_words(u, n_width) || |
| !bn_resize_words(v, n_width) || |
| // |A| and |C| are bounded by |m|. |
| !bn_resize_words(A, n_width) || |
| !bn_resize_words(C, n_width) || |
| // |B| and |D| are bounded by |a|. |
| !bn_resize_words(B, a_width) || |
| !bn_resize_words(D, a_width) || |
| // |tmp| and |tmp2| may be used at either size. |
| !bn_resize_words(tmp, n_width) || |
| !bn_resize_words(tmp2, n_width)) { |
| goto err; |
| } |
| |
| // Each loop iteration halves at least one of |u| and |v|. Thus we need at |
| // most the combined bit width of inputs for at least one value to be zero. |
| unsigned a_bits = a_width * BN_BITS2, n_bits = n_width * BN_BITS2; |
| unsigned num_iters = a_bits + n_bits; |
| if (num_iters < a_bits) { |
| OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
| goto err; |
| } |
| |
| // Before and after each loop iteration, the following hold: |
| // |
| // u = A*a - B*n |
| // v = D*n - C*a |
| // 0 < u <= a |
| // 0 <= v <= n |
| // 0 <= A < n |
| // 0 <= B <= a |
| // 0 <= C < n |
| // 0 <= D <= a |
| // |
| // After each loop iteration, u and v only get smaller, and at least one of |
| // them shrinks by at least a factor of two. |
| for (unsigned i = 0; i < num_iters; i++) { |
| BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]); |
| |
| // If both |u| and |v| are odd, subtract the smaller from the larger. |
| BN_ULONG v_less_than_u = |
| (BN_ULONG)0 - bn_sub_words(tmp->d, v->d, u->d, n_width); |
| bn_select_words(v->d, both_odd & ~v_less_than_u, tmp->d, v->d, n_width); |
| bn_sub_words(tmp->d, u->d, v->d, n_width); |
| bn_select_words(u->d, both_odd & v_less_than_u, tmp->d, u->d, n_width); |
| |
| // If we updated one of the values, update the corresponding coefficient. |
| BN_ULONG carry = bn_add_words(tmp->d, A->d, C->d, n_width); |
| carry -= bn_sub_words(tmp2->d, tmp->d, n->d, n_width); |
| bn_select_words(tmp->d, carry, tmp->d, tmp2->d, n_width); |
| bn_select_words(A->d, both_odd & v_less_than_u, tmp->d, A->d, n_width); |
| bn_select_words(C->d, both_odd & ~v_less_than_u, tmp->d, C->d, n_width); |
| |
| bn_add_words(tmp->d, B->d, D->d, a_width); |
| bn_sub_words(tmp2->d, tmp->d, a->d, a_width); |
| bn_select_words(tmp->d, carry, tmp->d, tmp2->d, a_width); |
| bn_select_words(B->d, both_odd & v_less_than_u, tmp->d, B->d, a_width); |
| bn_select_words(D->d, both_odd & ~v_less_than_u, tmp->d, D->d, a_width); |
| |
| // Our loop invariants hold at this point. Additionally, exactly one of |u| |
| // and |v| is now even. |
| BN_ULONG u_is_even = ~word_is_odd_mask(u->d[0]); |
| BN_ULONG v_is_even = ~word_is_odd_mask(v->d[0]); |
| assert(u_is_even != v_is_even); |
| |
| // Halve the even one and adjust the corresponding coefficient. |
| maybe_rshift1_words(u->d, u_is_even, tmp->d, n_width); |
| BN_ULONG A_or_B_is_odd = |
| word_is_odd_mask(A->d[0]) | word_is_odd_mask(B->d[0]); |
| BN_ULONG A_carry = |
| maybe_add_words(A->d, A_or_B_is_odd & u_is_even, n->d, tmp->d, n_width); |
| BN_ULONG B_carry = |
| maybe_add_words(B->d, A_or_B_is_odd & u_is_even, a->d, tmp->d, a_width); |
| maybe_rshift1_words_carry(A->d, A_carry, u_is_even, tmp->d, n_width); |
| maybe_rshift1_words_carry(B->d, B_carry, u_is_even, tmp->d, a_width); |
| |
| maybe_rshift1_words(v->d, v_is_even, tmp->d, n_width); |
| BN_ULONG C_or_D_is_odd = |
| word_is_odd_mask(C->d[0]) | word_is_odd_mask(D->d[0]); |
| BN_ULONG C_carry = |
| maybe_add_words(C->d, C_or_D_is_odd & v_is_even, n->d, tmp->d, n_width); |
| BN_ULONG D_carry = |
| maybe_add_words(D->d, C_or_D_is_odd & v_is_even, a->d, tmp->d, a_width); |
| maybe_rshift1_words_carry(C->d, C_carry, v_is_even, tmp->d, n_width); |
| maybe_rshift1_words_carry(D->d, D_carry, v_is_even, tmp->d, a_width); |
| } |
| |
| assert(BN_is_zero(v)); |
| if (!BN_is_one(u)) { |
| *out_no_inverse = 1; |
| OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
| goto err; |
| } |
| |
| ret = BN_copy(r, A) != NULL; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| int BN_mod_inverse_odd(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, |
| const BIGNUM *n, BN_CTX *ctx) { |
| *out_no_inverse = 0; |
| |
| if (!BN_is_odd(n)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| return 0; |
| } |
| |
| if (BN_is_negative(a) || BN_cmp(a, n) >= 0) { |
| OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
| return 0; |
| } |
| |
| BIGNUM *A, *B, *X, *Y; |
| int ret = 0; |
| int sign; |
| |
| BN_CTX_start(ctx); |
| A = BN_CTX_get(ctx); |
| B = BN_CTX_get(ctx); |
| X = BN_CTX_get(ctx); |
| Y = BN_CTX_get(ctx); |
| if (Y == NULL) { |
| goto err; |
| } |
| |
| BIGNUM *R = out; |
| |
| BN_zero(Y); |
| if (!BN_one(X) || BN_copy(B, a) == NULL || BN_copy(A, n) == NULL) { |
| goto err; |
| } |
| A->neg = 0; |
| sign = -1; |
| // From B = a mod |n|, A = |n| it follows that |
| // |
| // 0 <= B < A, |
| // -sign*X*a == B (mod |n|), |
| // sign*Y*a == A (mod |n|). |
| |
| // Binary inversion algorithm; requires odd modulus. This is faster than the |
| // general algorithm if the modulus is sufficiently small (about 400 .. 500 |
| // bits on 32-bit systems, but much more on 64-bit systems) |
| int shift; |
| |
| while (!BN_is_zero(B)) { |
| // 0 < B < |n|, |
| // 0 < A <= |n|, |
| // (1) -sign*X*a == B (mod |n|), |
| // (2) sign*Y*a == A (mod |n|) |
| |
| // Now divide B by the maximum possible power of two in the integers, |
| // and divide X by the same value mod |n|. |
| // When we're done, (1) still holds. |
| shift = 0; |
| while (!BN_is_bit_set(B, shift)) { |
| // note that 0 < B |
| shift++; |
| |
| if (BN_is_odd(X)) { |
| if (!BN_uadd(X, X, n)) { |
| goto err; |
| } |
| } |
| // now X is even, so we can easily divide it by two |
| if (!BN_rshift1(X, X)) { |
| goto err; |
| } |
| } |
| if (shift > 0) { |
| if (!BN_rshift(B, B, shift)) { |
| goto err; |
| } |
| } |
| |
| // Same for A and Y. Afterwards, (2) still holds. |
| shift = 0; |
| while (!BN_is_bit_set(A, shift)) { |
| // note that 0 < A |
| shift++; |
| |
| if (BN_is_odd(Y)) { |
| if (!BN_uadd(Y, Y, n)) { |
| goto err; |
| } |
| } |
| // now Y is even |
| if (!BN_rshift1(Y, Y)) { |
| goto err; |
| } |
| } |
| if (shift > 0) { |
| if (!BN_rshift(A, A, shift)) { |
| goto err; |
| } |
| } |
| |
| // We still have (1) and (2). |
| // Both A and B are odd. |
| // The following computations ensure that |
| // |
| // 0 <= B < |n|, |
| // 0 < A < |n|, |
| // (1) -sign*X*a == B (mod |n|), |
| // (2) sign*Y*a == A (mod |n|), |
| // |
| // and that either A or B is even in the next iteration. |
| if (BN_ucmp(B, A) >= 0) { |
| // -sign*(X + Y)*a == B - A (mod |n|) |
| if (!BN_uadd(X, X, Y)) { |
| goto err; |
| } |
| // NB: we could use BN_mod_add_quick(X, X, Y, n), but that |
| // actually makes the algorithm slower |
| if (!BN_usub(B, B, A)) { |
| goto err; |
| } |
| } else { |
| // sign*(X + Y)*a == A - B (mod |n|) |
| if (!BN_uadd(Y, Y, X)) { |
| goto err; |
| } |
| // as above, BN_mod_add_quick(Y, Y, X, n) would slow things down |
| if (!BN_usub(A, A, B)) { |
| goto err; |
| } |
| } |
| } |
| |
| if (!BN_is_one(A)) { |
| *out_no_inverse = 1; |
| OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
| goto err; |
| } |
| |
| // The while loop (Euclid's algorithm) ends when |
| // A == gcd(a,n); |
| // we have |
| // sign*Y*a == A (mod |n|), |
| // where Y is non-negative. |
| |
| if (sign < 0) { |
| if (!BN_sub(Y, n, Y)) { |
| goto err; |
| } |
| } |
| // Now Y*a == A (mod |n|). |
| |
| // Y*a == 1 (mod |n|) |
| if (!Y->neg && BN_ucmp(Y, n) < 0) { |
| if (!BN_copy(R, Y)) { |
| goto err; |
| } |
| } else { |
| if (!BN_nnmod(R, Y, n, ctx)) { |
| goto err; |
| } |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| BIGNUM *BN_mod_inverse(BIGNUM *out, const BIGNUM *a, const BIGNUM *n, |
| BN_CTX *ctx) { |
| BIGNUM *new_out = NULL; |
| if (out == NULL) { |
| new_out = BN_new(); |
| if (new_out == NULL) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| out = new_out; |
| } |
| |
| int ok = 0; |
| BIGNUM *a_reduced = NULL; |
| if (a->neg || BN_ucmp(a, n) >= 0) { |
| a_reduced = BN_dup(a); |
| if (a_reduced == NULL) { |
| goto err; |
| } |
| if (!BN_nnmod(a_reduced, a_reduced, n, ctx)) { |
| goto err; |
| } |
| a = a_reduced; |
| } |
| |
| int no_inverse; |
| if (!BN_is_odd(n)) { |
| if (!bn_mod_inverse_consttime(out, &no_inverse, a, n, ctx)) { |
| goto err; |
| } |
| } else if (!BN_mod_inverse_odd(out, &no_inverse, a, n, ctx)) { |
| goto err; |
| } |
| |
| ok = 1; |
| |
| err: |
| if (!ok) { |
| BN_free(new_out); |
| out = NULL; |
| } |
| BN_free(a_reduced); |
| return out; |
| } |
| |
| int BN_mod_inverse_blinded(BIGNUM *out, int *out_no_inverse, const BIGNUM *a, |
| const BN_MONT_CTX *mont, BN_CTX *ctx) { |
| *out_no_inverse = 0; |
| |
| if (BN_is_negative(a) || BN_cmp(a, &mont->N) >= 0) { |
| OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
| return 0; |
| } |
| |
| int ret = 0; |
| BIGNUM blinding_factor; |
| BN_init(&blinding_factor); |
| |
| if (!BN_rand_range_ex(&blinding_factor, 1, &mont->N) || |
| !BN_mod_mul_montgomery(out, &blinding_factor, a, mont, ctx) || |
| !BN_mod_inverse_odd(out, out_no_inverse, out, &mont->N, ctx) || |
| !BN_mod_mul_montgomery(out, &blinding_factor, out, mont, ctx)) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_BN_LIB); |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_free(&blinding_factor); |
| return ret; |
| } |
| |
| int bn_mod_inverse_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, |
| BN_CTX *ctx, const BN_MONT_CTX *mont_p) { |
| BN_CTX_start(ctx); |
| BIGNUM *p_minus_2 = BN_CTX_get(ctx); |
| int ok = p_minus_2 != NULL && |
| BN_copy(p_minus_2, p) && |
| BN_sub_word(p_minus_2, 2) && |
| BN_mod_exp_mont(out, a, p_minus_2, p, ctx, mont_p); |
| BN_CTX_end(ctx); |
| return ok; |
| } |
| |
| int bn_mod_inverse_secret_prime(BIGNUM *out, const BIGNUM *a, const BIGNUM *p, |
| BN_CTX *ctx, const BN_MONT_CTX *mont_p) { |
| BN_CTX_start(ctx); |
| BIGNUM *p_minus_2 = BN_CTX_get(ctx); |
| int ok = p_minus_2 != NULL && |
| BN_copy(p_minus_2, p) && |
| BN_sub_word(p_minus_2, 2) && |
| BN_mod_exp_mont_consttime(out, a, p_minus_2, p, ctx, mont_p); |
| BN_CTX_end(ctx); |
| return ok; |
| } |