|  | // Copyright 2014 The BoringSSL Authors | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //     https://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  |  | 
|  | #include <openssl/evp.h> | 
|  |  | 
|  | #include <stdint.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include <gtest/gtest.h> | 
|  |  | 
|  | #include <openssl/bytestring.h> | 
|  | #include <openssl/crypto.h> | 
|  | #include <openssl/dh.h> | 
|  | #include <openssl/digest.h> | 
|  | #include <openssl/ec.h> | 
|  | #include <openssl/ec_key.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/pkcs8.h> | 
|  | #include <openssl/rsa.h> | 
|  |  | 
|  | #include "../internal.h" | 
|  | #include "../test/test_util.h" | 
|  |  | 
|  |  | 
|  | // kExampleRSAKeyDER is an RSA private key in ASN.1, DER format. Of course, you | 
|  | // should never use this key anywhere but in an example. | 
|  | static const uint8_t kExampleRSAKeyDER[] = { | 
|  | 0x30, 0x82, 0x02, 0x5c, 0x02, 0x01, 0x00, 0x02, 0x81, 0x81, 0x00, 0xf8, | 
|  | 0xb8, 0x6c, 0x83, 0xb4, 0xbc, 0xd9, 0xa8, 0x57, 0xc0, 0xa5, 0xb4, 0x59, | 
|  | 0x76, 0x8c, 0x54, 0x1d, 0x79, 0xeb, 0x22, 0x52, 0x04, 0x7e, 0xd3, 0x37, | 
|  | 0xeb, 0x41, 0xfd, 0x83, 0xf9, 0xf0, 0xa6, 0x85, 0x15, 0x34, 0x75, 0x71, | 
|  | 0x5a, 0x84, 0xa8, 0x3c, 0xd2, 0xef, 0x5a, 0x4e, 0xd3, 0xde, 0x97, 0x8a, | 
|  | 0xdd, 0xff, 0xbb, 0xcf, 0x0a, 0xaa, 0x86, 0x92, 0xbe, 0xb8, 0x50, 0xe4, | 
|  | 0xcd, 0x6f, 0x80, 0x33, 0x30, 0x76, 0x13, 0x8f, 0xca, 0x7b, 0xdc, 0xec, | 
|  | 0x5a, 0xca, 0x63, 0xc7, 0x03, 0x25, 0xef, 0xa8, 0x8a, 0x83, 0x58, 0x76, | 
|  | 0x20, 0xfa, 0x16, 0x77, 0xd7, 0x79, 0x92, 0x63, 0x01, 0x48, 0x1a, 0xd8, | 
|  | 0x7b, 0x67, 0xf1, 0x52, 0x55, 0x49, 0x4e, 0xd6, 0x6e, 0x4a, 0x5c, 0xd7, | 
|  | 0x7a, 0x37, 0x36, 0x0c, 0xde, 0xdd, 0x8f, 0x44, 0xe8, 0xc2, 0xa7, 0x2c, | 
|  | 0x2b, 0xb5, 0xaf, 0x64, 0x4b, 0x61, 0x07, 0x02, 0x03, 0x01, 0x00, 0x01, | 
|  | 0x02, 0x81, 0x80, 0x74, 0x88, 0x64, 0x3f, 0x69, 0x45, 0x3a, 0x6d, 0xc7, | 
|  | 0x7f, 0xb9, 0xa3, 0xc0, 0x6e, 0xec, 0xdc, 0xd4, 0x5a, 0xb5, 0x32, 0x85, | 
|  | 0x5f, 0x19, 0xd4, 0xf8, 0xd4, 0x3f, 0x3c, 0xfa, 0xc2, 0xf6, 0x5f, 0xee, | 
|  | 0xe6, 0xba, 0x87, 0x74, 0x2e, 0xc7, 0x0c, 0xd4, 0x42, 0xb8, 0x66, 0x85, | 
|  | 0x9c, 0x7b, 0x24, 0x61, 0xaa, 0x16, 0x11, 0xf6, 0xb5, 0xb6, 0xa4, 0x0a, | 
|  | 0xc9, 0x55, 0x2e, 0x81, 0xa5, 0x47, 0x61, 0xcb, 0x25, 0x8f, 0xc2, 0x15, | 
|  | 0x7b, 0x0e, 0x7c, 0x36, 0x9f, 0x3a, 0xda, 0x58, 0x86, 0x1c, 0x5b, 0x83, | 
|  | 0x79, 0xe6, 0x2b, 0xcc, 0xe6, 0xfa, 0x2c, 0x61, 0xf2, 0x78, 0x80, 0x1b, | 
|  | 0xe2, 0xf3, 0x9d, 0x39, 0x2b, 0x65, 0x57, 0x91, 0x3d, 0x71, 0x99, 0x73, | 
|  | 0xa5, 0xc2, 0x79, 0x20, 0x8c, 0x07, 0x4f, 0xe5, 0xb4, 0x60, 0x1f, 0x99, | 
|  | 0xa2, 0xb1, 0x4f, 0x0c, 0xef, 0xbc, 0x59, 0x53, 0x00, 0x7d, 0xb1, 0x02, | 
|  | 0x41, 0x00, 0xfc, 0x7e, 0x23, 0x65, 0x70, 0xf8, 0xce, 0xd3, 0x40, 0x41, | 
|  | 0x80, 0x6a, 0x1d, 0x01, 0xd6, 0x01, 0xff, 0xb6, 0x1b, 0x3d, 0x3d, 0x59, | 
|  | 0x09, 0x33, 0x79, 0xc0, 0x4f, 0xde, 0x96, 0x27, 0x4b, 0x18, 0xc6, 0xd9, | 
|  | 0x78, 0xf1, 0xf4, 0x35, 0x46, 0xe9, 0x7c, 0x42, 0x7a, 0x5d, 0x9f, 0xef, | 
|  | 0x54, 0xb8, 0xf7, 0x9f, 0xc4, 0x33, 0x6c, 0xf3, 0x8c, 0x32, 0x46, 0x87, | 
|  | 0x67, 0x30, 0x7b, 0xa7, 0xac, 0xe3, 0x02, 0x41, 0x00, 0xfc, 0x2c, 0xdf, | 
|  | 0x0c, 0x0d, 0x88, 0xf5, 0xb1, 0x92, 0xa8, 0x93, 0x47, 0x63, 0x55, 0xf5, | 
|  | 0xca, 0x58, 0x43, 0xba, 0x1c, 0xe5, 0x9e, 0xb6, 0x95, 0x05, 0xcd, 0xb5, | 
|  | 0x82, 0xdf, 0xeb, 0x04, 0x53, 0x9d, 0xbd, 0xc2, 0x38, 0x16, 0xb3, 0x62, | 
|  | 0xdd, 0xa1, 0x46, 0xdb, 0x6d, 0x97, 0x93, 0x9f, 0x8a, 0xc3, 0x9b, 0x64, | 
|  | 0x7e, 0x42, 0xe3, 0x32, 0x57, 0x19, 0x1b, 0xd5, 0x6e, 0x85, 0xfa, 0xb8, | 
|  | 0x8d, 0x02, 0x41, 0x00, 0xbc, 0x3d, 0xde, 0x6d, 0xd6, 0x97, 0xe8, 0xba, | 
|  | 0x9e, 0x81, 0x37, 0x17, 0xe5, 0xa0, 0x64, 0xc9, 0x00, 0xb7, 0xe7, 0xfe, | 
|  | 0xf4, 0x29, 0xd9, 0x2e, 0x43, 0x6b, 0x19, 0x20, 0xbd, 0x99, 0x75, 0xe7, | 
|  | 0x76, 0xf8, 0xd3, 0xae, 0xaf, 0x7e, 0xb8, 0xeb, 0x81, 0xf4, 0x9d, 0xfe, | 
|  | 0x07, 0x2b, 0x0b, 0x63, 0x0b, 0x5a, 0x55, 0x90, 0x71, 0x7d, 0xf1, 0xdb, | 
|  | 0xd9, 0xb1, 0x41, 0x41, 0x68, 0x2f, 0x4e, 0x39, 0x02, 0x40, 0x5a, 0x34, | 
|  | 0x66, 0xd8, 0xf5, 0xe2, 0x7f, 0x18, 0xb5, 0x00, 0x6e, 0x26, 0x84, 0x27, | 
|  | 0x14, 0x93, 0xfb, 0xfc, 0xc6, 0x0f, 0x5e, 0x27, 0xe6, 0xe1, 0xe9, 0xc0, | 
|  | 0x8a, 0xe4, 0x34, 0xda, 0xe9, 0xa2, 0x4b, 0x73, 0xbc, 0x8c, 0xb9, 0xba, | 
|  | 0x13, 0x6c, 0x7a, 0x2b, 0x51, 0x84, 0xa3, 0x4a, 0xe0, 0x30, 0x10, 0x06, | 
|  | 0x7e, 0xed, 0x17, 0x5a, 0x14, 0x00, 0xc9, 0xef, 0x85, 0xea, 0x52, 0x2c, | 
|  | 0xbc, 0x65, 0x02, 0x40, 0x51, 0xe3, 0xf2, 0x83, 0x19, 0x9b, 0xc4, 0x1e, | 
|  | 0x2f, 0x50, 0x3d, 0xdf, 0x5a, 0xa2, 0x18, 0xca, 0x5f, 0x2e, 0x49, 0xaf, | 
|  | 0x6f, 0xcc, 0xfa, 0x65, 0x77, 0x94, 0xb5, 0xa1, 0x0a, 0xa9, 0xd1, 0x8a, | 
|  | 0x39, 0x37, 0xf4, 0x0b, 0xa0, 0xd7, 0x82, 0x27, 0x5e, 0xae, 0x17, 0x17, | 
|  | 0xa1, 0x1e, 0x54, 0x34, 0xbf, 0x6e, 0xc4, 0x8e, 0x99, 0x5d, 0x08, 0xf1, | 
|  | 0x2d, 0x86, 0x9d, 0xa5, 0x20, 0x1b, 0xe5, 0xdf, | 
|  | }; | 
|  |  | 
|  | static const uint8_t kExampleDSAKeyDER[] = { | 
|  | 0x30, 0x82, 0x03, 0x56, 0x02, 0x01, 0x00, 0x02, 0x82, 0x01, 0x01, 0x00, | 
|  | 0x9e, 0x12, 0xfa, 0xb3, 0xde, 0x12, 0x21, 0x35, 0x01, 0xdd, 0x82, 0xaa, | 
|  | 0x10, 0xca, 0x2d, 0x10, 0x1d, 0x2d, 0x4e, 0xbf, 0xef, 0x4d, 0x2a, 0x3f, | 
|  | 0x8d, 0xaa, 0x0f, 0xe0, 0xce, 0xda, 0xd8, 0xd6, 0xaf, 0x85, 0x61, 0x6a, | 
|  | 0xa2, 0xf3, 0x25, 0x2c, 0x0a, 0x2b, 0x5a, 0x6d, 0xb0, 0x9e, 0x6f, 0x14, | 
|  | 0x90, 0x0e, 0x0d, 0xdb, 0x83, 0x11, 0x87, 0x6d, 0xd8, 0xf9, 0x66, 0x95, | 
|  | 0x25, 0xf9, 0x9e, 0xd6, 0x59, 0x49, 0xe1, 0x84, 0xd5, 0x06, 0x47, 0x93, | 
|  | 0x27, 0x11, 0x69, 0xa2, 0x28, 0x68, 0x0b, 0x95, 0xec, 0x12, 0xf5, 0x9a, | 
|  | 0x8e, 0x20, 0xb2, 0x1f, 0x2b, 0x58, 0xeb, 0x2a, 0x20, 0x12, 0xd3, 0x5b, | 
|  | 0xde, 0x2e, 0xe3, 0x51, 0x82, 0x2f, 0xe8, 0xf3, 0x2d, 0x0a, 0x33, 0x05, | 
|  | 0x65, 0xdc, 0xce, 0x5c, 0x67, 0x2b, 0x72, 0x59, 0xc1, 0x4b, 0x24, 0x33, | 
|  | 0xd0, 0xb5, 0xb2, 0xca, 0x2b, 0x2d, 0xb0, 0xab, 0x62, 0x6e, 0x8f, 0x13, | 
|  | 0xf4, 0x7f, 0xe0, 0x34, 0x5d, 0x90, 0x4e, 0x72, 0x94, 0xbb, 0x03, 0x8e, | 
|  | 0x9c, 0xe2, 0x1a, 0x9e, 0x58, 0x0b, 0x83, 0x35, 0x62, 0x78, 0x70, 0x6c, | 
|  | 0xfe, 0x76, 0x84, 0x36, 0xc6, 0x9d, 0xe1, 0x49, 0xcc, 0xff, 0x98, 0xb4, | 
|  | 0xaa, 0xb8, 0xcb, 0x4f, 0x63, 0x85, 0xc9, 0xf1, 0x02, 0xce, 0x59, 0x34, | 
|  | 0x6e, 0xae, 0xef, 0x27, 0xe0, 0xad, 0x22, 0x2d, 0x53, 0xd6, 0xe8, 0x9c, | 
|  | 0xc8, 0xcd, 0xe5, 0x77, 0x6d, 0xd0, 0x00, 0x57, 0xb0, 0x3f, 0x2d, 0x88, | 
|  | 0xab, 0x3c, 0xed, 0xba, 0xfd, 0x7b, 0x58, 0x5f, 0x0b, 0x7f, 0x78, 0x35, | 
|  | 0xe1, 0x7a, 0x37, 0x28, 0xbb, 0xf2, 0x5e, 0xa6, 0x25, 0x72, 0xf2, 0x45, | 
|  | 0xdc, 0x11, 0x1f, 0x3c, 0xe3, 0x9c, 0xb6, 0xff, 0xac, 0xc3, 0x1b, 0x0a, | 
|  | 0x27, 0x90, 0xe7, 0xbd, 0xe9, 0x02, 0x24, 0xea, 0x9b, 0x09, 0x31, 0x53, | 
|  | 0x62, 0xaf, 0x3d, 0x2b, 0x02, 0x21, 0x00, 0xf3, 0x81, 0xdc, 0xf5, 0x3e, | 
|  | 0xbf, 0x72, 0x4f, 0x8b, 0x2e, 0x5c, 0xa8, 0x2c, 0x01, 0x0f, 0xb4, 0xb5, | 
|  | 0xed, 0xa9, 0x35, 0x8d, 0x0f, 0xd8, 0x8e, 0xd2, 0x78, 0x58, 0x94, 0x88, | 
|  | 0xb5, 0x4f, 0xc3, 0x02, 0x82, 0x01, 0x00, 0x0c, 0x40, 0x2a, 0x72, 0x5d, | 
|  | 0xcc, 0x3a, 0x62, 0xe0, 0x2b, 0xf4, 0xcf, 0x43, 0xcd, 0x17, 0xf4, 0xa4, | 
|  | 0x93, 0x59, 0x12, 0x20, 0x22, 0x36, 0x69, 0xcf, 0x41, 0x93, 0xed, 0xab, | 
|  | 0x42, 0x3a, 0xd0, 0x8d, 0xfb, 0x55, 0x2e, 0x30, 0x8a, 0x6a, 0x57, 0xa5, | 
|  | 0xff, 0xbc, 0x7c, 0xd0, 0xfb, 0x20, 0x87, 0xf8, 0x1f, 0x8d, 0xf0, 0xcb, | 
|  | 0x08, 0xab, 0x21, 0x33, 0x28, 0x7d, 0x2b, 0x69, 0x68, 0x71, 0x4a, 0x94, | 
|  | 0xf6, 0x33, 0xc9, 0x40, 0x84, 0x5a, 0x48, 0xa3, 0xe1, 0x67, 0x08, 0xdd, | 
|  | 0xe7, 0x61, 0xcc, 0x6a, 0x8e, 0xab, 0x2d, 0x84, 0xdb, 0x21, 0xb6, 0xea, | 
|  | 0x5b, 0x07, 0x68, 0x14, 0x93, 0xcc, 0x9c, 0x31, 0xfb, 0xc3, 0x68, 0xb2, | 
|  | 0x43, 0xf6, 0xdd, 0xf8, 0xc9, 0x32, 0xa8, 0xb4, 0x03, 0x8f, 0x44, 0xe7, | 
|  | 0xb1, 0x5c, 0xa8, 0x76, 0x34, 0x4a, 0x14, 0x78, 0x59, 0xf2, 0xb4, 0x3b, | 
|  | 0x39, 0x45, 0x86, 0x68, 0xad, 0x5e, 0x0a, 0x1a, 0x9a, 0x66, 0x95, 0x46, | 
|  | 0xdd, 0x28, 0x12, 0xe3, 0xb3, 0x61, 0x7a, 0x0a, 0xef, 0x99, 0xd5, 0x8e, | 
|  | 0x3b, 0xb4, 0xcc, 0x87, 0xfd, 0x94, 0x22, 0x5e, 0x01, 0xd2, 0xdc, 0xc4, | 
|  | 0x69, 0xa7, 0x72, 0x68, 0x14, 0x6c, 0x51, 0x91, 0x8f, 0x18, 0xe8, 0xb4, | 
|  | 0xd7, 0x0a, 0xa1, 0xf0, 0xc7, 0x62, 0x3b, 0xcc, 0x52, 0xcf, 0x37, 0x31, | 
|  | 0xd3, 0x86, 0x41, 0xb2, 0xd2, 0x83, 0x0b, 0x7e, 0xec, 0xb2, 0xf0, 0x95, | 
|  | 0x52, 0xff, 0x13, 0x7d, 0x04, 0x6e, 0x49, 0x4e, 0x7f, 0x33, 0xc3, 0x59, | 
|  | 0x00, 0x02, 0xb1, 0x6d, 0x1b, 0x97, 0xd9, 0x36, 0xfd, 0xa2, 0x8f, 0x90, | 
|  | 0xc3, 0xed, 0x3c, 0xa3, 0x53, 0x38, 0x16, 0x8a, 0xc1, 0x6f, 0x77, 0xc3, | 
|  | 0xc5, 0x7a, 0xdc, 0x2e, 0x8f, 0x7c, 0x6c, 0x22, 0x56, 0xe4, 0x1a, 0x5f, | 
|  | 0x65, 0x45, 0x05, 0x90, 0xdb, 0xb5, 0xbc, 0xf0, 0x6d, 0x66, 0x61, 0x02, | 
|  | 0x82, 0x01, 0x00, 0x31, 0x97, 0x31, 0xa1, 0x4e, 0x38, 0x56, 0x88, 0xdb, | 
|  | 0x94, 0x1d, 0xbf, 0x65, 0x5c, 0xda, 0x4b, 0xc2, 0x10, 0xde, 0x74, 0x20, | 
|  | 0x03, 0xce, 0x13, 0x60, 0xf2, 0x25, 0x1d, 0x55, 0x7c, 0x5d, 0x94, 0x82, | 
|  | 0x54, 0x08, 0x53, 0xdb, 0x85, 0x95, 0xbf, 0xdd, 0x5e, 0x50, 0xd5, 0x96, | 
|  | 0xe0, 0x79, 0x51, 0x1b, 0xbf, 0x4d, 0x4e, 0xb9, 0x3a, 0xc5, 0xee, 0xc4, | 
|  | 0x5e, 0x98, 0x75, 0x7b, 0xbe, 0xff, 0x30, 0xe6, 0xd0, 0x7b, 0xa6, 0xf1, | 
|  | 0xbc, 0x29, 0xea, 0xdf, 0xec, 0xf3, 0x8b, 0xfa, 0x83, 0x11, 0x9f, 0x3f, | 
|  | 0xf0, 0x5d, 0x06, 0x51, 0x32, 0xaa, 0x21, 0xfc, 0x26, 0x17, 0xe7, 0x50, | 
|  | 0xc2, 0x16, 0xba, 0xfa, 0x54, 0xb7, 0x7e, 0x1d, 0x2c, 0xa6, 0xa3, 0x41, | 
|  | 0x66, 0x33, 0x94, 0x83, 0xb9, 0xbf, 0xa0, 0x4f, 0xbd, 0xa6, 0xfd, 0x2c, | 
|  | 0x81, 0x58, 0x35, 0x33, 0x39, 0xc0, 0x6d, 0x33, 0x40, 0x56, 0x64, 0x12, | 
|  | 0x5a, 0xcd, 0x35, 0x53, 0x21, 0x78, 0x8f, 0x27, 0x24, 0x37, 0x66, 0x8a, | 
|  | 0xdf, 0x5e, 0x5f, 0x63, 0xfc, 0x8b, 0x2d, 0xef, 0x57, 0xdb, 0x40, 0x25, | 
|  | 0xd5, 0x17, 0x53, 0x0b, 0xe4, 0xa5, 0xae, 0x54, 0xbf, 0x46, 0x4f, 0xa6, | 
|  | 0x79, 0xc3, 0x74, 0xfa, 0x1f, 0x85, 0x34, 0x64, 0x6d, 0xc5, 0x03, 0xeb, | 
|  | 0x72, 0x98, 0x80, 0x7b, 0xc0, 0x8f, 0x35, 0x11, 0xa7, 0x09, 0xeb, 0x51, | 
|  | 0xe0, 0xb0, 0xac, 0x92, 0x14, 0xf2, 0xad, 0x37, 0x95, 0x5a, 0xba, 0x8c, | 
|  | 0xc4, 0xdb, 0xed, 0xc4, 0x4e, 0x8b, 0x8f, 0x84, 0x33, 0x64, 0xf8, 0x57, | 
|  | 0x12, 0xd7, 0x08, 0x7e, 0x90, 0x66, 0xdf, 0x91, 0x50, 0x23, 0xf2, 0x73, | 
|  | 0xc0, 0x6b, 0xb1, 0x15, 0xdd, 0x64, 0xd7, 0xc9, 0x75, 0x17, 0x73, 0x72, | 
|  | 0xda, 0x33, 0xc4, 0x6f, 0xa5, 0x47, 0xa1, 0xcc, 0xd1, 0xc6, 0x62, 0xe5, | 
|  | 0xca, 0xab, 0x5f, 0x2a, 0x8f, 0x6b, 0xcc, 0x02, 0x21, 0x00, 0xb0, 0xc7, | 
|  | 0x68, 0x70, 0x27, 0x43, 0xbc, 0x51, 0x24, 0x29, 0x93, 0xa9, 0x71, 0xa5, | 
|  | 0x28, 0x89, 0x79, 0x54, 0x44, 0xf7, 0xc6, 0x45, 0x22, 0x03, 0xd0, 0xce, | 
|  | 0x84, 0xfe, 0x61, 0x17, 0xd4, 0x6e, | 
|  | }; | 
|  |  | 
|  | static const uint8_t kMsg[] = {1, 2, 3, 4}; | 
|  |  | 
|  | static const uint8_t kSignature[] = { | 
|  | 0xa5, 0xf0, 0x8a, 0x47, 0x5d, 0x3c, 0xb3, 0xcc, 0xa9, 0x79, 0xaf, 0x4d, | 
|  | 0x8c, 0xae, 0x4c, 0x14, 0xef, 0xc2, 0x0b, 0x34, 0x36, 0xde, 0xf4, 0x3e, | 
|  | 0x3d, 0xbb, 0x4a, 0x60, 0x5c, 0xc8, 0x91, 0x28, 0xda, 0xfb, 0x7e, 0x04, | 
|  | 0x96, 0x7e, 0x63, 0x13, 0x90, 0xce, 0xb9, 0xb4, 0x62, 0x7a, 0xfd, 0x09, | 
|  | 0x3d, 0xc7, 0x67, 0x78, 0x54, 0x04, 0xeb, 0x52, 0x62, 0x6e, 0x24, 0x67, | 
|  | 0xb4, 0x40, 0xfc, 0x57, 0x62, 0xc6, 0xf1, 0x67, 0xc1, 0x97, 0x8f, 0x6a, | 
|  | 0xa8, 0xae, 0x44, 0x46, 0x5e, 0xab, 0x67, 0x17, 0x53, 0x19, 0x3a, 0xda, | 
|  | 0x5a, 0xc8, 0x16, 0x3e, 0x86, 0xd5, 0xc5, 0x71, 0x2f, 0xfc, 0x23, 0x48, | 
|  | 0xd9, 0x0b, 0x13, 0xdd, 0x7b, 0x5a, 0x25, 0x79, 0xef, 0xa5, 0x7b, 0x04, | 
|  | 0xed, 0x44, 0xf6, 0x18, 0x55, 0xe4, 0x0a, 0xe9, 0x57, 0x79, 0x5d, 0xd7, | 
|  | 0x55, 0xa7, 0xab, 0x45, 0x02, 0x97, 0x60, 0x42, | 
|  | }; | 
|  |  | 
|  | // kExampleRSAKeyPKCS8 is kExampleRSAKeyDER encoded in a PKCS #8 | 
|  | // PrivateKeyInfo. | 
|  | static const uint8_t kExampleRSAKeyPKCS8[] = { | 
|  | 0x30, 0x82, 0x02, 0x76, 0x02, 0x01, 0x00, 0x30, 0x0d, 0x06, 0x09, 0x2a, | 
|  | 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x04, 0x82, | 
|  | 0x02, 0x60, 0x30, 0x82, 0x02, 0x5c, 0x02, 0x01, 0x00, 0x02, 0x81, 0x81, | 
|  | 0x00, 0xf8, 0xb8, 0x6c, 0x83, 0xb4, 0xbc, 0xd9, 0xa8, 0x57, 0xc0, 0xa5, | 
|  | 0xb4, 0x59, 0x76, 0x8c, 0x54, 0x1d, 0x79, 0xeb, 0x22, 0x52, 0x04, 0x7e, | 
|  | 0xd3, 0x37, 0xeb, 0x41, 0xfd, 0x83, 0xf9, 0xf0, 0xa6, 0x85, 0x15, 0x34, | 
|  | 0x75, 0x71, 0x5a, 0x84, 0xa8, 0x3c, 0xd2, 0xef, 0x5a, 0x4e, 0xd3, 0xde, | 
|  | 0x97, 0x8a, 0xdd, 0xff, 0xbb, 0xcf, 0x0a, 0xaa, 0x86, 0x92, 0xbe, 0xb8, | 
|  | 0x50, 0xe4, 0xcd, 0x6f, 0x80, 0x33, 0x30, 0x76, 0x13, 0x8f, 0xca, 0x7b, | 
|  | 0xdc, 0xec, 0x5a, 0xca, 0x63, 0xc7, 0x03, 0x25, 0xef, 0xa8, 0x8a, 0x83, | 
|  | 0x58, 0x76, 0x20, 0xfa, 0x16, 0x77, 0xd7, 0x79, 0x92, 0x63, 0x01, 0x48, | 
|  | 0x1a, 0xd8, 0x7b, 0x67, 0xf1, 0x52, 0x55, 0x49, 0x4e, 0xd6, 0x6e, 0x4a, | 
|  | 0x5c, 0xd7, 0x7a, 0x37, 0x36, 0x0c, 0xde, 0xdd, 0x8f, 0x44, 0xe8, 0xc2, | 
|  | 0xa7, 0x2c, 0x2b, 0xb5, 0xaf, 0x64, 0x4b, 0x61, 0x07, 0x02, 0x03, 0x01, | 
|  | 0x00, 0x01, 0x02, 0x81, 0x80, 0x74, 0x88, 0x64, 0x3f, 0x69, 0x45, 0x3a, | 
|  | 0x6d, 0xc7, 0x7f, 0xb9, 0xa3, 0xc0, 0x6e, 0xec, 0xdc, 0xd4, 0x5a, 0xb5, | 
|  | 0x32, 0x85, 0x5f, 0x19, 0xd4, 0xf8, 0xd4, 0x3f, 0x3c, 0xfa, 0xc2, 0xf6, | 
|  | 0x5f, 0xee, 0xe6, 0xba, 0x87, 0x74, 0x2e, 0xc7, 0x0c, 0xd4, 0x42, 0xb8, | 
|  | 0x66, 0x85, 0x9c, 0x7b, 0x24, 0x61, 0xaa, 0x16, 0x11, 0xf6, 0xb5, 0xb6, | 
|  | 0xa4, 0x0a, 0xc9, 0x55, 0x2e, 0x81, 0xa5, 0x47, 0x61, 0xcb, 0x25, 0x8f, | 
|  | 0xc2, 0x15, 0x7b, 0x0e, 0x7c, 0x36, 0x9f, 0x3a, 0xda, 0x58, 0x86, 0x1c, | 
|  | 0x5b, 0x83, 0x79, 0xe6, 0x2b, 0xcc, 0xe6, 0xfa, 0x2c, 0x61, 0xf2, 0x78, | 
|  | 0x80, 0x1b, 0xe2, 0xf3, 0x9d, 0x39, 0x2b, 0x65, 0x57, 0x91, 0x3d, 0x71, | 
|  | 0x99, 0x73, 0xa5, 0xc2, 0x79, 0x20, 0x8c, 0x07, 0x4f, 0xe5, 0xb4, 0x60, | 
|  | 0x1f, 0x99, 0xa2, 0xb1, 0x4f, 0x0c, 0xef, 0xbc, 0x59, 0x53, 0x00, 0x7d, | 
|  | 0xb1, 0x02, 0x41, 0x00, 0xfc, 0x7e, 0x23, 0x65, 0x70, 0xf8, 0xce, 0xd3, | 
|  | 0x40, 0x41, 0x80, 0x6a, 0x1d, 0x01, 0xd6, 0x01, 0xff, 0xb6, 0x1b, 0x3d, | 
|  | 0x3d, 0x59, 0x09, 0x33, 0x79, 0xc0, 0x4f, 0xde, 0x96, 0x27, 0x4b, 0x18, | 
|  | 0xc6, 0xd9, 0x78, 0xf1, 0xf4, 0x35, 0x46, 0xe9, 0x7c, 0x42, 0x7a, 0x5d, | 
|  | 0x9f, 0xef, 0x54, 0xb8, 0xf7, 0x9f, 0xc4, 0x33, 0x6c, 0xf3, 0x8c, 0x32, | 
|  | 0x46, 0x87, 0x67, 0x30, 0x7b, 0xa7, 0xac, 0xe3, 0x02, 0x41, 0x00, 0xfc, | 
|  | 0x2c, 0xdf, 0x0c, 0x0d, 0x88, 0xf5, 0xb1, 0x92, 0xa8, 0x93, 0x47, 0x63, | 
|  | 0x55, 0xf5, 0xca, 0x58, 0x43, 0xba, 0x1c, 0xe5, 0x9e, 0xb6, 0x95, 0x05, | 
|  | 0xcd, 0xb5, 0x82, 0xdf, 0xeb, 0x04, 0x53, 0x9d, 0xbd, 0xc2, 0x38, 0x16, | 
|  | 0xb3, 0x62, 0xdd, 0xa1, 0x46, 0xdb, 0x6d, 0x97, 0x93, 0x9f, 0x8a, 0xc3, | 
|  | 0x9b, 0x64, 0x7e, 0x42, 0xe3, 0x32, 0x57, 0x19, 0x1b, 0xd5, 0x6e, 0x85, | 
|  | 0xfa, 0xb8, 0x8d, 0x02, 0x41, 0x00, 0xbc, 0x3d, 0xde, 0x6d, 0xd6, 0x97, | 
|  | 0xe8, 0xba, 0x9e, 0x81, 0x37, 0x17, 0xe5, 0xa0, 0x64, 0xc9, 0x00, 0xb7, | 
|  | 0xe7, 0xfe, 0xf4, 0x29, 0xd9, 0x2e, 0x43, 0x6b, 0x19, 0x20, 0xbd, 0x99, | 
|  | 0x75, 0xe7, 0x76, 0xf8, 0xd3, 0xae, 0xaf, 0x7e, 0xb8, 0xeb, 0x81, 0xf4, | 
|  | 0x9d, 0xfe, 0x07, 0x2b, 0x0b, 0x63, 0x0b, 0x5a, 0x55, 0x90, 0x71, 0x7d, | 
|  | 0xf1, 0xdb, 0xd9, 0xb1, 0x41, 0x41, 0x68, 0x2f, 0x4e, 0x39, 0x02, 0x40, | 
|  | 0x5a, 0x34, 0x66, 0xd8, 0xf5, 0xe2, 0x7f, 0x18, 0xb5, 0x00, 0x6e, 0x26, | 
|  | 0x84, 0x27, 0x14, 0x93, 0xfb, 0xfc, 0xc6, 0x0f, 0x5e, 0x27, 0xe6, 0xe1, | 
|  | 0xe9, 0xc0, 0x8a, 0xe4, 0x34, 0xda, 0xe9, 0xa2, 0x4b, 0x73, 0xbc, 0x8c, | 
|  | 0xb9, 0xba, 0x13, 0x6c, 0x7a, 0x2b, 0x51, 0x84, 0xa3, 0x4a, 0xe0, 0x30, | 
|  | 0x10, 0x06, 0x7e, 0xed, 0x17, 0x5a, 0x14, 0x00, 0xc9, 0xef, 0x85, 0xea, | 
|  | 0x52, 0x2c, 0xbc, 0x65, 0x02, 0x40, 0x51, 0xe3, 0xf2, 0x83, 0x19, 0x9b, | 
|  | 0xc4, 0x1e, 0x2f, 0x50, 0x3d, 0xdf, 0x5a, 0xa2, 0x18, 0xca, 0x5f, 0x2e, | 
|  | 0x49, 0xaf, 0x6f, 0xcc, 0xfa, 0x65, 0x77, 0x94, 0xb5, 0xa1, 0x0a, 0xa9, | 
|  | 0xd1, 0x8a, 0x39, 0x37, 0xf4, 0x0b, 0xa0, 0xd7, 0x82, 0x27, 0x5e, 0xae, | 
|  | 0x17, 0x17, 0xa1, 0x1e, 0x54, 0x34, 0xbf, 0x6e, 0xc4, 0x8e, 0x99, 0x5d, | 
|  | 0x08, 0xf1, 0x2d, 0x86, 0x9d, 0xa5, 0x20, 0x1b, 0xe5, 0xdf, | 
|  | }; | 
|  |  | 
|  | // kExampleECKeyDER is a sample EC private key encoded as an ECPrivateKey | 
|  | // structure. | 
|  | static const uint8_t kExampleECKeyDER[] = { | 
|  | 0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x07, 0x0f, 0x08, 0x72, 0x7a, | 
|  | 0xd4, 0xa0, 0x4a, 0x9c, 0xdd, 0x59, 0xc9, 0x4d, 0x89, 0x68, 0x77, 0x08, | 
|  | 0xb5, 0x6f, 0xc9, 0x5d, 0x30, 0x77, 0x0e, 0xe8, 0xd1, 0xc9, 0xce, 0x0a, | 
|  | 0x8b, 0xb4, 0x6a, 0xa0, 0x0a, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, | 
|  | 0x03, 0x01, 0x07, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, 0xe6, 0x2b, 0x69, | 
|  | 0xe2, 0xbf, 0x65, 0x9f, 0x97, 0xbe, 0x2f, 0x1e, 0x0d, 0x94, 0x8a, 0x4c, | 
|  | 0xd5, 0x97, 0x6b, 0xb7, 0xa9, 0x1e, 0x0d, 0x46, 0xfb, 0xdd, 0xa9, 0xa9, | 
|  | 0x1e, 0x9d, 0xdc, 0xba, 0x5a, 0x01, 0xe7, 0xd6, 0x97, 0xa8, 0x0a, 0x18, | 
|  | 0xf9, 0xc3, 0xc4, 0xa3, 0x1e, 0x56, 0xe2, 0x7c, 0x83, 0x48, 0xdb, 0x16, | 
|  | 0x1a, 0x1c, 0xf5, 0x1d, 0x7e, 0xf1, 0x94, 0x2d, 0x4b, 0xcf, 0x72, 0x22, | 
|  | 0xc1, | 
|  | }; | 
|  |  | 
|  | // kExampleECKeyPKCS8 is a sample EC private key encoded as a PKCS#8 | 
|  | // PrivateKeyInfo. | 
|  | static const uint8_t kExampleECKeyPKCS8[] = { | 
|  | 0x30, 0x81, 0x87, 0x02, 0x01, 0x00, 0x30, 0x13, 0x06, 0x07, 0x2a, 0x86, | 
|  | 0x48, 0xce, 0x3d, 0x02, 0x01, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, | 
|  | 0x03, 0x01, 0x07, 0x04, 0x6d, 0x30, 0x6b, 0x02, 0x01, 0x01, 0x04, 0x20, | 
|  | 0x43, 0x09, 0xc0, 0x67, 0x75, 0x21, 0x47, 0x9d, 0xa8, 0xfa, 0x16, 0xdf, | 
|  | 0x15, 0x73, 0x61, 0x34, 0x68, 0x6f, 0xe3, 0x8e, 0x47, 0x91, 0x95, 0xab, | 
|  | 0x79, 0x4a, 0x72, 0x14, 0xcb, 0xe2, 0x49, 0x4f, 0xa1, 0x44, 0x03, 0x42, | 
|  | 0x00, 0x04, 0xde, 0x09, 0x08, 0x07, 0x03, 0x2e, 0x8f, 0x37, 0x9a, 0xd5, | 
|  | 0xad, 0xe5, 0xc6, 0x9d, 0xd4, 0x63, 0xc7, 0x4a, 0xe7, 0x20, 0xcb, 0x90, | 
|  | 0xa0, 0x1f, 0x18, 0x18, 0x72, 0xb5, 0x21, 0x88, 0x38, 0xc0, 0xdb, 0xba, | 
|  | 0xf6, 0x99, 0xd8, 0xa5, 0x3b, 0x83, 0xe9, 0xe3, 0xd5, 0x61, 0x99, 0x73, | 
|  | 0x42, 0xc6, 0x6c, 0xe8, 0x0a, 0x95, 0x40, 0x41, 0x3b, 0x0d, 0x10, 0xa7, | 
|  | 0x4a, 0x93, 0xdb, 0x5a, 0xe7, 0xec, | 
|  | }; | 
|  |  | 
|  | // kExampleECKeySpecifiedCurvePKCS8 is a sample EC private key encoded as a | 
|  | // PKCS#8 PrivateKeyInfo with P-256's parameters spelled out rather than using | 
|  | // the curve OID. | 
|  | static const uint8_t kExampleECKeySpecifiedCurvePKCS8[] = { | 
|  | 0x30, 0x82, 0x01, 0x79, 0x02, 0x01, 0x00, 0x30, 0x82, 0x01, 0x03, 0x06, | 
|  | 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01, 0x30, 0x81, 0xf7, 0x02, | 
|  | 0x01, 0x01, 0x30, 0x2c, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x01, | 
|  | 0x01, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | 0x30, 0x5b, 0x04, 0x20, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc, | 
|  | 0x04, 0x20, 0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, | 
|  | 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, | 
|  | 0xb0, 0xf6, 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b, 0x03, 0x15, | 
|  | 0x00, 0xc4, 0x9d, 0x36, 0x08, 0x86, 0xe7, 0x04, 0x93, 0x6a, 0x66, 0x78, | 
|  | 0xe1, 0x13, 0x9d, 0x26, 0xb7, 0x81, 0x9f, 0x7e, 0x90, 0x04, 0x41, 0x04, | 
|  | 0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, 0xf8, 0xbc, 0xe6, 0xe5, | 
|  | 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, | 
|  | 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96, 0x4f, 0xe3, 0x42, 0xe2, | 
|  | 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, | 
|  | 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, | 
|  | 0x37, 0xbf, 0x51, 0xf5, 0x02, 0x21, 0x00, 0xff, 0xff, 0xff, 0xff, 0x00, | 
|  | 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xbc, | 
|  | 0xe6, 0xfa, 0xad, 0xa7, 0x17, 0x9e, 0x84, 0xf3, 0xb9, 0xca, 0xc2, 0xfc, | 
|  | 0x63, 0x25, 0x51, 0x02, 0x01, 0x01, 0x04, 0x6d, 0x30, 0x6b, 0x02, 0x01, | 
|  | 0x01, 0x04, 0x20, 0x43, 0x09, 0xc0, 0x67, 0x75, 0x21, 0x47, 0x9d, 0xa8, | 
|  | 0xfa, 0x16, 0xdf, 0x15, 0x73, 0x61, 0x34, 0x68, 0x6f, 0xe3, 0x8e, 0x47, | 
|  | 0x91, 0x95, 0xab, 0x79, 0x4a, 0x72, 0x14, 0xcb, 0xe2, 0x49, 0x4f, 0xa1, | 
|  | 0x44, 0x03, 0x42, 0x00, 0x04, 0xde, 0x09, 0x08, 0x07, 0x03, 0x2e, 0x8f, | 
|  | 0x37, 0x9a, 0xd5, 0xad, 0xe5, 0xc6, 0x9d, 0xd4, 0x63, 0xc7, 0x4a, 0xe7, | 
|  | 0x20, 0xcb, 0x90, 0xa0, 0x1f, 0x18, 0x18, 0x72, 0xb5, 0x21, 0x88, 0x38, | 
|  | 0xc0, 0xdb, 0xba, 0xf6, 0x99, 0xd8, 0xa5, 0x3b, 0x83, 0xe9, 0xe3, 0xd5, | 
|  | 0x61, 0x99, 0x73, 0x42, 0xc6, 0x6c, 0xe8, 0x0a, 0x95, 0x40, 0x41, 0x3b, | 
|  | 0x0d, 0x10, 0xa7, 0x4a, 0x93, 0xdb, 0x5a, 0xe7, 0xec, | 
|  | }; | 
|  |  | 
|  | // kExampleBadECKeyDER is a sample EC private key encoded as an ECPrivateKey | 
|  | // structure. The private key is equal to the order and will fail to import. | 
|  | static const uint8_t kExampleBadECKeyDER[] = { | 
|  | 0x30, 0x66, 0x02, 0x01, 0x00, 0x30, 0x13, 0x06, 0x07, 0x2A, 0x86, 0x48, | 
|  | 0xCE, 0x3D, 0x02, 0x01, 0x06, 0x08, 0x2A, 0x86, 0x48, 0xCE, 0x3D, 0x03, | 
|  | 0x01, 0x07, 0x04, 0x4C, 0x30, 0x4A, 0x02, 0x01, 0x01, 0x04, 0x20, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, 0xF3, | 
|  | 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51, 0xA1, 0x23, 0x03, 0x21, 0x00, | 
|  | 0x00, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, | 
|  | 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, | 
|  | 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51 | 
|  | }; | 
|  |  | 
|  | // kExampleBadECKeyDER2 is a sample EC private key encoded as an ECPrivateKey | 
|  | // structure, but with the curve OID swapped out for 1.1.1.1.1.1.1.1.1. It is | 
|  | // then concatenated with an ECPrivateKey wrapped in a PrivateKeyInfo, | 
|  | // optional public key omitted, and with the private key chopped off. | 
|  | static const uint8_t kExampleBadECKeyDER2[] = { | 
|  | 0x30, 0x77, 0x02, 0x01, 0x01, 0x04, 0x20, 0x07, 0x0f, 0x08, 0x72, 0x7a, | 
|  | 0xd4, 0xa0, 0x4a, 0x9c, 0xdd, 0x59, 0xc9, 0x4d, 0x89, 0x68, 0x77, 0x08, | 
|  | 0xb5, 0x6f, 0xc9, 0x5d, 0x30, 0x77, 0x0e, 0xe8, 0xd1, 0xc9, 0xce, 0x0a, | 
|  | 0x8b, 0xb4, 0x6a, 0xa0, 0x0a, 0x06, 0x08, 0x29, 0x01, 0x01, 0x01, 0x01, | 
|  | 0x01, 0x01, 0x01, 0xa1, 0x44, 0x03, 0x42, 0x00, 0x04, 0xe6, 0x2b, 0x69, | 
|  | 0xe2, 0xbf, 0x65, 0x9f, 0x97, 0xbe, 0x2f, 0x1e, 0x0d, 0x94, 0x8a, 0x4c, | 
|  | 0xd5, 0x97, 0x6b, 0xb7, 0xa9, 0x1e, 0x0d, 0x46, 0xfb, 0xdd, 0xa9, 0xa9, | 
|  | 0x1e, 0x9d, 0xdc, 0xba, 0x5a, 0x01, 0xe7, 0xd6, 0x97, 0xa8, 0x0a, 0x18, | 
|  | 0xf9, 0xc3, 0xc4, 0xa3, 0x1e, 0x56, 0xe2, 0x7c, 0x83, 0x48, 0xdb, 0x16, | 
|  | 0x1a, 0x1c, 0xf5, 0x1d, 0x7e, 0xf1, 0x94, 0x2d, 0x4b, 0xcf, 0x72, 0x22, | 
|  | 0xc1, 0x30, 0x41, 0x02, 0x01, 0x00, 0x30, 0x13, 0x06, 0x07, 0x2a, 0x86, | 
|  | 0x48, 0xce, 0x3d, 0x02, 0x01, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, | 
|  | 0x03, 0x01, 0x07, 0x04, 0x27, 0x30, 0x25, 0x02, 0x01, 0x01, 0x04, 0x20, | 
|  | 0x07, | 
|  | }; | 
|  |  | 
|  | // kInvalidPrivateKey is an invalid private key. See | 
|  | // https://rt.openssl.org/Ticket/Display.html?id=4131. | 
|  | static const uint8_t kInvalidPrivateKey[] = { | 
|  | 0x30, 0x39, 0x02, 0x01, 0x02, 0x30, 0x09, 0x06, 0x01, 0x38, 0x08, | 
|  | 0x04, 0x69, 0x30, 0x30, 0x80, 0x30, 0x19, 0x01, 0x02, 0x9f, 0xf8, | 
|  | 0x8b, 0x29, 0x80, 0x30, 0xb0, 0x1b, 0x06, 0x09, 0x22, 0xbe, 0x08, | 
|  | 0x04, 0xe9, 0x30, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x3a, 0x01, 0x80, | 
|  | 0x09, 0x30, 0x80, 0x06, 0x01, 0x02, 0x30, 0x80, 0x30, 0x01, 0x3b, | 
|  | 0x02, 0x00, 0x00, 0x04, 0x20, 0x30, 0x82, 0x04, 0xe9, 0x30, 0xc3, | 
|  | 0xe8, 0x30, 0x01, 0x05, 0x30, 0x80, 0x30, 0x01, 0x3b, 0x01, 0x04, | 
|  | 0x02, 0x02, 0xff, 0x00, 0x30, 0x29, 0x02, 0x11, 0x03, 0x29, 0x29, | 
|  | 0x02, 0x00, 0x99, 0x30, 0x80, 0x06, 0x21, 0x02, 0x24, 0x04, 0xe8, | 
|  | 0x30, 0x01, 0x01, 0x04, 0x30, 0x80, 0x1b, 0x06, 0x09, 0x2a, 0x86, | 
|  | 0x48, 0x30, 0x01, 0xaa, 0x02, 0x86, 0xc0, 0x30, 0xdf, 0xe9, 0x80, | 
|  | }; | 
|  |  | 
|  | static bssl::UniquePtr<EVP_PKEY> LoadExampleRSAKey() { | 
|  | bssl::UniquePtr<RSA> rsa(RSA_private_key_from_bytes(kExampleRSAKeyDER, | 
|  | sizeof(kExampleRSAKeyDER))); | 
|  | if (!rsa) { | 
|  | return nullptr; | 
|  | } | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
|  | if (!pkey || !EVP_PKEY_set1_RSA(pkey.get(), rsa.get())) { | 
|  | return nullptr; | 
|  | } | 
|  | return pkey; | 
|  | } | 
|  |  | 
|  | TEST(EVPExtraTest, DigestSignInit) { | 
|  | bssl::UniquePtr<EVP_PKEY> pkey = LoadExampleRSAKey(); | 
|  | ASSERT_TRUE(pkey); | 
|  | bssl::ScopedEVP_MD_CTX md_ctx; | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestSignInit(md_ctx.get(), NULL, EVP_sha256(), NULL, pkey.get())); | 
|  | ASSERT_TRUE(EVP_DigestSignUpdate(md_ctx.get(), kMsg, sizeof(kMsg))); | 
|  |  | 
|  | // Determine the size of the signature. | 
|  | size_t sig_len = 0; | 
|  | ASSERT_TRUE(EVP_DigestSignFinal(md_ctx.get(), NULL, &sig_len)); | 
|  |  | 
|  | // Sanity check for testing. | 
|  | EXPECT_EQ(static_cast<size_t>(EVP_PKEY_size(pkey.get())), sig_len); | 
|  |  | 
|  | std::vector<uint8_t> sig; | 
|  | sig.resize(sig_len); | 
|  | ASSERT_TRUE(EVP_DigestSignFinal(md_ctx.get(), sig.data(), &sig_len)); | 
|  | sig.resize(sig_len); | 
|  |  | 
|  | // Ensure that the signature round-trips. | 
|  | md_ctx.Reset(); | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestVerifyInit(md_ctx.get(), NULL, EVP_sha256(), NULL, pkey.get())); | 
|  | ASSERT_TRUE(EVP_DigestVerifyUpdate(md_ctx.get(), kMsg, sizeof(kMsg))); | 
|  | ASSERT_TRUE(EVP_DigestVerifyFinal(md_ctx.get(), sig.data(), sig_len)); | 
|  | } | 
|  |  | 
|  | TEST(EVPExtraTest, DigestVerifyInit) { | 
|  | bssl::UniquePtr<EVP_PKEY> pkey = LoadExampleRSAKey(); | 
|  | bssl::ScopedEVP_MD_CTX md_ctx; | 
|  | ASSERT_TRUE(pkey); | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestVerifyInit(md_ctx.get(), NULL, EVP_sha256(), NULL, pkey.get())); | 
|  | ASSERT_TRUE(EVP_DigestVerifyUpdate(md_ctx.get(), kMsg, sizeof(kMsg))); | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestVerifyFinal(md_ctx.get(), kSignature, sizeof(kSignature))); | 
|  | } | 
|  |  | 
|  | TEST(EVPExtraTest, VerifyRecover) { | 
|  | bssl::UniquePtr<EVP_PKEY> pkey = LoadExampleRSAKey(); | 
|  | ASSERT_TRUE(pkey); | 
|  | bssl::UniquePtr<RSA> rsa(EVP_PKEY_get1_RSA(pkey.get())); | 
|  | ASSERT_TRUE(rsa); | 
|  |  | 
|  | const uint8_t kDummyHash[32] = {0}; | 
|  | uint8_t sig[2048/8]; | 
|  | unsigned sig_len = sizeof(sig); | 
|  | ASSERT_TRUE(RSA_sign(NID_sha256, kDummyHash, sizeof(kDummyHash), sig, | 
|  | &sig_len, rsa.get())); | 
|  |  | 
|  | size_t out_len; | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(pkey.get(), nullptr)); | 
|  | ASSERT_TRUE(EVP_PKEY_verify_recover_init(ctx.get())); | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(ctx.get(), RSA_PKCS1_PADDING)); | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_signature_md(ctx.get(), EVP_sha256())); | 
|  | ASSERT_TRUE( | 
|  | EVP_PKEY_verify_recover(ctx.get(), nullptr, &out_len, sig, sig_len)); | 
|  |  | 
|  | std::vector<uint8_t> recovered; | 
|  | recovered.resize(out_len); | 
|  |  | 
|  | ASSERT_TRUE(EVP_PKEY_verify_recover(ctx.get(), recovered.data(), &out_len, | 
|  | sig, sig_len)); | 
|  | EXPECT_EQ(Bytes(kDummyHash), Bytes(recovered.data(), out_len)); | 
|  |  | 
|  | out_len = recovered.size(); | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_signature_md(ctx.get(), nullptr)); | 
|  | ASSERT_TRUE(EVP_PKEY_verify_recover(ctx.get(), recovered.data(), &out_len, | 
|  | sig, sig_len)); | 
|  |  | 
|  | // The size of a SHA-256 hash plus PKCS#1 v1.5 ASN.1 stuff happens to be 51 | 
|  | // bytes. | 
|  | EXPECT_EQ(51u, out_len); | 
|  | } | 
|  |  | 
|  | static void TestValidPrivateKey(const uint8_t *input, size_t input_len, | 
|  | int expected_id) { | 
|  | const uint8_t *p = input; | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(d2i_AutoPrivateKey(NULL, &p, input_len)); | 
|  | ASSERT_TRUE(pkey); | 
|  | EXPECT_EQ(input + input_len, p); | 
|  | EXPECT_EQ(expected_id, EVP_PKEY_id(pkey.get())); | 
|  | } | 
|  |  | 
|  | TEST(EVPExtraTest, d2i_AutoPrivateKey) { | 
|  | TestValidPrivateKey(kExampleRSAKeyDER, sizeof(kExampleRSAKeyDER), | 
|  | EVP_PKEY_RSA); | 
|  | TestValidPrivateKey(kExampleRSAKeyPKCS8, sizeof(kExampleRSAKeyPKCS8), | 
|  | EVP_PKEY_RSA); | 
|  | TestValidPrivateKey(kExampleECKeyDER, sizeof(kExampleECKeyDER), EVP_PKEY_EC); | 
|  | TestValidPrivateKey(kExampleECKeyPKCS8, sizeof(kExampleECKeyPKCS8), | 
|  | EVP_PKEY_EC); | 
|  | TestValidPrivateKey(kExampleECKeySpecifiedCurvePKCS8, | 
|  | sizeof(kExampleECKeySpecifiedCurvePKCS8), EVP_PKEY_EC); | 
|  | TestValidPrivateKey(kExampleDSAKeyDER, sizeof(kExampleDSAKeyDER), | 
|  | EVP_PKEY_DSA); | 
|  |  | 
|  | const uint8_t *p = kInvalidPrivateKey; | 
|  | bssl::UniquePtr<EVP_PKEY> pkey( | 
|  | d2i_AutoPrivateKey(NULL, &p, sizeof(kInvalidPrivateKey))); | 
|  | EXPECT_FALSE(pkey) << "Parsed invalid private key"; | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | static bssl::UniquePtr<EVP_PKEY> ParsePrivateKey(int type, const uint8_t *in, | 
|  | size_t len) { | 
|  | const uint8_t *ptr = in; | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, nullptr, &ptr, len)); | 
|  | if (!pkey) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | EXPECT_EQ(in + len, ptr); | 
|  | return pkey; | 
|  | } | 
|  |  | 
|  | static std::string PrintToString(const EVP_PKEY *pkey, int indent, | 
|  | int (*print_func)(BIO *out, | 
|  | const EVP_PKEY *pkey, | 
|  | int indent, | 
|  | ASN1_PCTX *pctx)) { | 
|  | bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem())); | 
|  | const uint8_t *data; | 
|  | size_t len; | 
|  | if (!bio || !print_func(bio.get(), pkey, indent, nullptr) || | 
|  | !BIO_mem_contents(bio.get(), &data, &len)) { | 
|  | ADD_FAILURE() << "Error printing."; | 
|  | return ""; | 
|  | } | 
|  | return std::string(data, data + len); | 
|  | } | 
|  |  | 
|  | TEST(EVPExtraTest, Print) { | 
|  | bssl::UniquePtr<EVP_PKEY> rsa = ParsePrivateKey( | 
|  | EVP_PKEY_RSA, kExampleRSAKeyDER, sizeof(kExampleRSAKeyDER)); | 
|  | ASSERT_TRUE(rsa); | 
|  | EXPECT_EQ(PrintToString(rsa.get(), /*indent=*/2, &EVP_PKEY_print_params), | 
|  | "  Parameters algorithm unsupported\n"); | 
|  | EXPECT_EQ(PrintToString(rsa.get(), /*indent=*/2, &EVP_PKEY_print_public), | 
|  | R"(  Public-Key: (1024 bit) | 
|  | Modulus: | 
|  | 00:f8:b8:6c:83:b4:bc:d9:a8:57:c0:a5:b4:59:76: | 
|  | 8c:54:1d:79:eb:22:52:04:7e:d3:37:eb:41:fd:83: | 
|  | f9:f0:a6:85:15:34:75:71:5a:84:a8:3c:d2:ef:5a: | 
|  | 4e:d3:de:97:8a:dd:ff:bb:cf:0a:aa:86:92:be:b8: | 
|  | 50:e4:cd:6f:80:33:30:76:13:8f:ca:7b:dc:ec:5a: | 
|  | ca:63:c7:03:25:ef:a8:8a:83:58:76:20:fa:16:77: | 
|  | d7:79:92:63:01:48:1a:d8:7b:67:f1:52:55:49:4e: | 
|  | d6:6e:4a:5c:d7:7a:37:36:0c:de:dd:8f:44:e8:c2: | 
|  | a7:2c:2b:b5:af:64:4b:61:07 | 
|  | Exponent: 65537 (0x10001) | 
|  | )"); | 
|  | EXPECT_EQ(PrintToString(rsa.get(), /*indent=*/2, &EVP_PKEY_print_private), | 
|  | R"(  Private-Key: (1024 bit) | 
|  | modulus: | 
|  | 00:f8:b8:6c:83:b4:bc:d9:a8:57:c0:a5:b4:59:76: | 
|  | 8c:54:1d:79:eb:22:52:04:7e:d3:37:eb:41:fd:83: | 
|  | f9:f0:a6:85:15:34:75:71:5a:84:a8:3c:d2:ef:5a: | 
|  | 4e:d3:de:97:8a:dd:ff:bb:cf:0a:aa:86:92:be:b8: | 
|  | 50:e4:cd:6f:80:33:30:76:13:8f:ca:7b:dc:ec:5a: | 
|  | ca:63:c7:03:25:ef:a8:8a:83:58:76:20:fa:16:77: | 
|  | d7:79:92:63:01:48:1a:d8:7b:67:f1:52:55:49:4e: | 
|  | d6:6e:4a:5c:d7:7a:37:36:0c:de:dd:8f:44:e8:c2: | 
|  | a7:2c:2b:b5:af:64:4b:61:07 | 
|  | publicExponent: 65537 (0x10001) | 
|  | privateExponent: | 
|  | 74:88:64:3f:69:45:3a:6d:c7:7f:b9:a3:c0:6e:ec: | 
|  | dc:d4:5a:b5:32:85:5f:19:d4:f8:d4:3f:3c:fa:c2: | 
|  | f6:5f:ee:e6:ba:87:74:2e:c7:0c:d4:42:b8:66:85: | 
|  | 9c:7b:24:61:aa:16:11:f6:b5:b6:a4:0a:c9:55:2e: | 
|  | 81:a5:47:61:cb:25:8f:c2:15:7b:0e:7c:36:9f:3a: | 
|  | da:58:86:1c:5b:83:79:e6:2b:cc:e6:fa:2c:61:f2: | 
|  | 78:80:1b:e2:f3:9d:39:2b:65:57:91:3d:71:99:73: | 
|  | a5:c2:79:20:8c:07:4f:e5:b4:60:1f:99:a2:b1:4f: | 
|  | 0c:ef:bc:59:53:00:7d:b1 | 
|  | prime1: | 
|  | 00:fc:7e:23:65:70:f8:ce:d3:40:41:80:6a:1d:01: | 
|  | d6:01:ff:b6:1b:3d:3d:59:09:33:79:c0:4f:de:96: | 
|  | 27:4b:18:c6:d9:78:f1:f4:35:46:e9:7c:42:7a:5d: | 
|  | 9f:ef:54:b8:f7:9f:c4:33:6c:f3:8c:32:46:87:67: | 
|  | 30:7b:a7:ac:e3 | 
|  | prime2: | 
|  | 00:fc:2c:df:0c:0d:88:f5:b1:92:a8:93:47:63:55: | 
|  | f5:ca:58:43:ba:1c:e5:9e:b6:95:05:cd:b5:82:df: | 
|  | eb:04:53:9d:bd:c2:38:16:b3:62:dd:a1:46:db:6d: | 
|  | 97:93:9f:8a:c3:9b:64:7e:42:e3:32:57:19:1b:d5: | 
|  | 6e:85:fa:b8:8d | 
|  | exponent1: | 
|  | 00:bc:3d:de:6d:d6:97:e8:ba:9e:81:37:17:e5:a0: | 
|  | 64:c9:00:b7:e7:fe:f4:29:d9:2e:43:6b:19:20:bd: | 
|  | 99:75:e7:76:f8:d3:ae:af:7e:b8:eb:81:f4:9d:fe: | 
|  | 07:2b:0b:63:0b:5a:55:90:71:7d:f1:db:d9:b1:41: | 
|  | 41:68:2f:4e:39 | 
|  | exponent2: | 
|  | 5a:34:66:d8:f5:e2:7f:18:b5:00:6e:26:84:27:14: | 
|  | 93:fb:fc:c6:0f:5e:27:e6:e1:e9:c0:8a:e4:34:da: | 
|  | e9:a2:4b:73:bc:8c:b9:ba:13:6c:7a:2b:51:84:a3: | 
|  | 4a:e0:30:10:06:7e:ed:17:5a:14:00:c9:ef:85:ea: | 
|  | 52:2c:bc:65 | 
|  | coefficient: | 
|  | 51:e3:f2:83:19:9b:c4:1e:2f:50:3d:df:5a:a2:18: | 
|  | ca:5f:2e:49:af:6f:cc:fa:65:77:94:b5:a1:0a:a9: | 
|  | d1:8a:39:37:f4:0b:a0:d7:82:27:5e:ae:17:17:a1: | 
|  | 1e:54:34:bf:6e:c4:8e:99:5d:08:f1:2d:86:9d:a5: | 
|  | 20:1b:e5:df | 
|  | )"); | 
|  |  | 
|  | // We don't support printing DSA keys. | 
|  | bssl::UniquePtr<EVP_PKEY> dsa = ParsePrivateKey( | 
|  | EVP_PKEY_DSA, kExampleDSAKeyDER, sizeof(kExampleDSAKeyDER)); | 
|  | ASSERT_TRUE(dsa); | 
|  | EXPECT_EQ(PrintToString(dsa.get(), /*indent=*/2, &EVP_PKEY_print_params), | 
|  | "  Parameters algorithm unsupported\n"); | 
|  | EXPECT_EQ(PrintToString(dsa.get(), /*indent=*/2, &EVP_PKEY_print_public), | 
|  | "  Public Key algorithm unsupported\n"); | 
|  | EXPECT_EQ(PrintToString(dsa.get(), /*indent=*/2, &EVP_PKEY_print_private), | 
|  | "  Private Key algorithm unsupported\n"); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> ec = | 
|  | ParsePrivateKey(EVP_PKEY_EC, kExampleECKeyDER, sizeof(kExampleECKeyDER)); | 
|  | ASSERT_TRUE(ec); | 
|  | EXPECT_EQ(PrintToString(ec.get(), /*indent=*/2, &EVP_PKEY_print_params), | 
|  | "  ECDSA-Parameters: (P-256)\n"); | 
|  | EXPECT_EQ(PrintToString(ec.get(), /*indent=*/2, &EVP_PKEY_print_public), | 
|  | R"(  Public-Key: (P-256) | 
|  | pub: | 
|  | 04:e6:2b:69:e2:bf:65:9f:97:be:2f:1e:0d:94:8a: | 
|  | 4c:d5:97:6b:b7:a9:1e:0d:46:fb:dd:a9:a9:1e:9d: | 
|  | dc:ba:5a:01:e7:d6:97:a8:0a:18:f9:c3:c4:a3:1e: | 
|  | 56:e2:7c:83:48:db:16:1a:1c:f5:1d:7e:f1:94:2d: | 
|  | 4b:cf:72:22:c1 | 
|  | )"); | 
|  | EXPECT_EQ(PrintToString(ec.get(), /*indent=*/2, &EVP_PKEY_print_private), | 
|  | R"(  Private-Key: (P-256) | 
|  | priv: | 
|  | 07:0f:08:72:7a:d4:a0:4a:9c:dd:59:c9:4d:89:68: | 
|  | 77:08:b5:6f:c9:5d:30:77:0e:e8:d1:c9:ce:0a:8b: | 
|  | b4:6a | 
|  | pub: | 
|  | 04:e6:2b:69:e2:bf:65:9f:97:be:2f:1e:0d:94:8a: | 
|  | 4c:d5:97:6b:b7:a9:1e:0d:46:fb:dd:a9:a9:1e:9d: | 
|  | dc:ba:5a:01:e7:d6:97:a8:0a:18:f9:c3:c4:a3:1e: | 
|  | 56:e2:7c:83:48:db:16:1a:1c:f5:1d:7e:f1:94:2d: | 
|  | 4b:cf:72:22:c1 | 
|  | )"); | 
|  | } | 
|  |  | 
|  | // Tests loading a bad key in PKCS8 format. | 
|  | TEST(EVPExtraTest, BadECKey) { | 
|  | const uint8_t *derp = kExampleBadECKeyDER; | 
|  | bssl::UniquePtr<PKCS8_PRIV_KEY_INFO> p8inf( | 
|  | d2i_PKCS8_PRIV_KEY_INFO(NULL, &derp, sizeof(kExampleBadECKeyDER))); | 
|  | ASSERT_TRUE(p8inf); | 
|  | EXPECT_EQ(kExampleBadECKeyDER + sizeof(kExampleBadECKeyDER), derp); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKCS82PKEY(p8inf.get())); | 
|  | ASSERT_FALSE(pkey) << "Imported invalid EC key"; | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | // Tests |EVP_marshal_public_key| on an empty key. | 
|  | TEST(EVPExtraTest, MarshalEmptyPublicKey) { | 
|  | bssl::UniquePtr<EVP_PKEY> empty(EVP_PKEY_new()); | 
|  | ASSERT_TRUE(empty); | 
|  |  | 
|  | bssl::ScopedCBB cbb; | 
|  | EXPECT_FALSE(EVP_marshal_public_key(cbb.get(), empty.get())) | 
|  | << "Marshalled empty public key."; | 
|  | EXPECT_TRUE(ErrorEquals(ERR_peek_last_error(), ERR_LIB_EVP, | 
|  | EVP_R_UNSUPPORTED_ALGORITHM)); | 
|  | } | 
|  |  | 
|  | TEST(EVPExtraTest, d2i_PrivateKey) { | 
|  | EXPECT_TRUE(ParsePrivateKey(EVP_PKEY_RSA, kExampleRSAKeyDER, | 
|  | sizeof(kExampleRSAKeyDER))); | 
|  | EXPECT_TRUE(ParsePrivateKey(EVP_PKEY_DSA, kExampleDSAKeyDER, | 
|  | sizeof(kExampleDSAKeyDER))); | 
|  | EXPECT_TRUE(ParsePrivateKey(EVP_PKEY_RSA, kExampleRSAKeyPKCS8, | 
|  | sizeof(kExampleRSAKeyPKCS8))); | 
|  | EXPECT_TRUE( | 
|  | ParsePrivateKey(EVP_PKEY_EC, kExampleECKeyDER, sizeof(kExampleECKeyDER))); | 
|  |  | 
|  | EXPECT_FALSE(ParsePrivateKey(EVP_PKEY_EC, kExampleBadECKeyDER, | 
|  | sizeof(kExampleBadECKeyDER))); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // Copy the input into a |malloc|'d vector to flag memory errors. | 
|  | std::vector<uint8_t> copy( | 
|  | kExampleBadECKeyDER2, | 
|  | kExampleBadECKeyDER2 + sizeof(kExampleBadECKeyDER2)); | 
|  | EXPECT_FALSE(ParsePrivateKey(EVP_PKEY_EC, copy.data(), copy.size())); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // Test that an RSA key may not be imported as an EC key. | 
|  | EXPECT_FALSE(ParsePrivateKey(EVP_PKEY_EC, kExampleRSAKeyPKCS8, | 
|  | sizeof(kExampleRSAKeyPKCS8))); | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | TEST(EVPExtraTest, Ed25519) { | 
|  | static const uint8_t kPublicKey[32] = { | 
|  | 0xd7, 0x5a, 0x98, 0x01, 0x82, 0xb1, 0x0a, 0xb7, 0xd5, 0x4b, 0xfe, | 
|  | 0xd3, 0xc9, 0x64, 0x07, 0x3a, 0x0e, 0xe1, 0x72, 0xf3, 0xda, 0xa6, | 
|  | 0x23, 0x25, 0xaf, 0x02, 0x1a, 0x68, 0xf7, 0x07, 0x51, 0x1a, | 
|  | }; | 
|  |  | 
|  | static const uint8_t kPublicKeySPKI[] = { | 
|  | 0x30, 0x2a, 0x30, 0x05, 0x06, 0x03, 0x2b, 0x65, 0x70, 0x03, 0x21, | 
|  | 0x00, 0xd7, 0x5a, 0x98, 0x01, 0x82, 0xb1, 0x0a, 0xb7, 0xd5, 0x4b, | 
|  | 0xfe, 0xd3, 0xc9, 0x64, 0x07, 0x3a, 0x0e, 0xe1, 0x72, 0xf3, 0xda, | 
|  | 0xa6, 0x23, 0x25, 0xaf, 0x02, 0x1a, 0x68, 0xf7, 0x07, 0x51, 0x1a, | 
|  | }; | 
|  |  | 
|  | static const uint8_t kPrivateKeySeed[32] = { | 
|  | 0x9d, 0x61, 0xb1, 0x9d, 0xef, 0xfd, 0x5a, 0x60, 0xba, 0x84, 0x4a, | 
|  | 0xf4, 0x92, 0xec, 0x2c, 0xc4, 0x44, 0x49, 0xc5, 0x69, 0x7b, 0x32, | 
|  | 0x69, 0x19, 0x70, 0x3b, 0xac, 0x03, 0x1c, 0xae, 0x7f, 0x60, | 
|  | }; | 
|  |  | 
|  | static const uint8_t kPrivateKeyPKCS8[] = { | 
|  | 0x30, 0x2e, 0x02, 0x01, 0x00, 0x30, 0x05, 0x06, 0x03, 0x2b, 0x65, 0x70, | 
|  | 0x04, 0x22, 0x04, 0x20, 0x9d, 0x61, 0xb1, 0x9d, 0xef, 0xfd, 0x5a, 0x60, | 
|  | 0xba, 0x84, 0x4a, 0xf4, 0x92, 0xec, 0x2c, 0xc4, 0x44, 0x49, 0xc5, 0x69, | 
|  | 0x7b, 0x32, 0x69, 0x19, 0x70, 0x3b, 0xac, 0x03, 0x1c, 0xae, 0x7f, 0x60, | 
|  | }; | 
|  |  | 
|  | // Create a public key. | 
|  | bssl::UniquePtr<EVP_PKEY> pubkey(EVP_PKEY_from_raw_public_key( | 
|  | EVP_pkey_ed25519(), kPublicKey, sizeof(kPublicKey))); | 
|  | ASSERT_TRUE(pubkey); | 
|  | EXPECT_EQ(EVP_PKEY_ED25519, EVP_PKEY_id(pubkey.get())); | 
|  |  | 
|  | // The public key must be extractable. | 
|  | uint8_t buf[32]; | 
|  | size_t len; | 
|  | ASSERT_TRUE(EVP_PKEY_get_raw_public_key(pubkey.get(), nullptr, &len)); | 
|  | EXPECT_EQ(len, 32u); | 
|  | ASSERT_TRUE(EVP_PKEY_get_raw_public_key(pubkey.get(), buf, &len)); | 
|  | EXPECT_EQ(Bytes(buf, len), Bytes(kPublicKey)); | 
|  | // Passing too large of a buffer is okay. The function will still only read | 
|  | // 32 bytes. | 
|  | len = 64; | 
|  | ASSERT_TRUE(EVP_PKEY_get_raw_public_key(pubkey.get(), buf, &len)); | 
|  | EXPECT_EQ(Bytes(buf, len), Bytes(kPublicKey)); | 
|  | // Passing too small of a buffer is noticed. | 
|  | len = 31; | 
|  | EXPECT_FALSE(EVP_PKEY_get_raw_public_key(pubkey.get(), buf, &len)); | 
|  | EXPECT_TRUE( | 
|  | ErrorEquals(ERR_get_error(), ERR_LIB_EVP, EVP_R_BUFFER_TOO_SMALL)); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // There is no private key. | 
|  | EXPECT_FALSE(EVP_PKEY_get_raw_private_key(pubkey.get(), nullptr, &len)); | 
|  | EXPECT_TRUE( | 
|  | ErrorEquals(ERR_get_error(), ERR_LIB_EVP, EVP_R_NOT_A_PRIVATE_KEY)); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // The public key must encode properly. | 
|  | bssl::ScopedCBB cbb; | 
|  | uint8_t *der; | 
|  | size_t der_len; | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 0)); | 
|  | ASSERT_TRUE(EVP_marshal_public_key(cbb.get(), pubkey.get())); | 
|  | ASSERT_TRUE(CBB_finish(cbb.get(), &der, &der_len)); | 
|  | bssl::UniquePtr<uint8_t> free_der(der); | 
|  | EXPECT_EQ(Bytes(kPublicKeySPKI), Bytes(der, der_len)); | 
|  |  | 
|  | // The public key must gracefully fail to encode as a private key. | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 0)); | 
|  | EXPECT_FALSE(EVP_marshal_private_key(cbb.get(), pubkey.get())); | 
|  | EXPECT_TRUE( | 
|  | ErrorEquals(ERR_get_error(), ERR_LIB_EVP, EVP_R_NOT_A_PRIVATE_KEY)); | 
|  | ERR_clear_error(); | 
|  | cbb.Reset(); | 
|  |  | 
|  | // Create a private key. | 
|  | bssl::UniquePtr<EVP_PKEY> privkey(EVP_PKEY_from_raw_private_key( | 
|  | EVP_pkey_ed25519(), kPrivateKeySeed, sizeof(kPrivateKeySeed))); | 
|  | ASSERT_TRUE(privkey); | 
|  | EXPECT_EQ(EVP_PKEY_ED25519, EVP_PKEY_id(privkey.get())); | 
|  |  | 
|  | // The private key must be extractable. | 
|  | ASSERT_TRUE(EVP_PKEY_get_raw_private_key(privkey.get(), nullptr, &len)); | 
|  | EXPECT_EQ(len, 32u); | 
|  | ASSERT_TRUE(EVP_PKEY_get_raw_private_key(privkey.get(), buf, &len)); | 
|  | EXPECT_EQ(Bytes(buf, len), Bytes(kPrivateKeySeed)); | 
|  | // Passing too large of a buffer is okay. The function will still only read | 
|  | // 32 bytes. | 
|  | len = 64; | 
|  | ASSERT_TRUE(EVP_PKEY_get_raw_private_key(privkey.get(), buf, &len)); | 
|  | EXPECT_EQ(Bytes(buf, len), Bytes(kPrivateKeySeed)); | 
|  | // Passing too small of a buffer is noticed. | 
|  | len = 31; | 
|  | EXPECT_FALSE(EVP_PKEY_get_raw_private_key(privkey.get(), buf, &len)); | 
|  | EXPECT_TRUE( | 
|  | ErrorEquals(ERR_get_error(), ERR_LIB_EVP, EVP_R_BUFFER_TOO_SMALL)); | 
|  | ERR_clear_error(); | 
|  | // The public key must be extractable. | 
|  | len = 32; | 
|  | ASSERT_TRUE(EVP_PKEY_get_raw_public_key(privkey.get(), buf, &len)); | 
|  | EXPECT_EQ(Bytes(buf, len), Bytes(kPublicKey)); | 
|  |  | 
|  | // The public key must encode from the private key. | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 0)); | 
|  | ASSERT_TRUE(EVP_marshal_public_key(cbb.get(), privkey.get())); | 
|  | ASSERT_TRUE(CBB_finish(cbb.get(), &der, &der_len)); | 
|  | free_der.reset(der); | 
|  | EXPECT_EQ(Bytes(kPublicKeySPKI), Bytes(der, der_len)); | 
|  |  | 
|  | // The private key must encode properly. | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 0)); | 
|  | ASSERT_TRUE(EVP_marshal_private_key(cbb.get(), privkey.get())); | 
|  | ASSERT_TRUE(CBB_finish(cbb.get(), &der, &der_len)); | 
|  | free_der.reset(der); | 
|  | EXPECT_EQ(Bytes(kPrivateKeyPKCS8), Bytes(der, der_len)); | 
|  |  | 
|  | // Test EVP_PKEY_cmp. | 
|  | EXPECT_EQ(1, EVP_PKEY_cmp(pubkey.get(), privkey.get())); | 
|  |  | 
|  | static const uint8_t kZeros[32] = {0}; | 
|  | bssl::UniquePtr<EVP_PKEY> pubkey2( | 
|  | EVP_PKEY_from_raw_public_key(EVP_pkey_ed25519(), kZeros, sizeof(kZeros))); | 
|  | ASSERT_TRUE(pubkey2); | 
|  | EXPECT_EQ(0, EVP_PKEY_cmp(pubkey.get(), pubkey2.get())); | 
|  | EXPECT_EQ(0, EVP_PKEY_cmp(privkey.get(), pubkey2.get())); | 
|  |  | 
|  | // Ed25519 may not be used streaming. | 
|  | bssl::ScopedEVP_MD_CTX ctx; | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestSignInit(ctx.get(), nullptr, nullptr, nullptr, privkey.get())); | 
|  | EXPECT_FALSE(EVP_DigestSignUpdate(ctx.get(), nullptr, 0)); | 
|  | EXPECT_FALSE(EVP_DigestSignFinal(ctx.get(), nullptr, &len)); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | ctx.Reset(); | 
|  | ASSERT_TRUE(EVP_DigestVerifyInit(ctx.get(), nullptr, nullptr, nullptr, | 
|  | privkey.get())); | 
|  | EXPECT_FALSE(EVP_DigestVerifyUpdate(ctx.get(), nullptr, 0)); | 
|  | EXPECT_FALSE(EVP_DigestVerifyFinal(ctx.get(), nullptr, 0)); | 
|  | ERR_clear_error(); | 
|  |  | 
|  | // The buffer length to |EVP_DigestSign| is an input/output parameter and | 
|  | // should be checked before signing. | 
|  | ctx.Reset(); | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestSignInit(ctx.get(), nullptr, nullptr, nullptr, privkey.get())); | 
|  | len = 31; | 
|  | EXPECT_FALSE(EVP_DigestSign(ctx.get(), buf, &len, nullptr /* msg */, 0)); | 
|  | EXPECT_TRUE( | 
|  | ErrorEquals(ERR_get_error(), ERR_LIB_EVP, EVP_R_BUFFER_TOO_SMALL)); | 
|  | ERR_clear_error(); | 
|  | } | 
|  |  | 
|  | static void ExpectECGroupOnly(const EVP_PKEY *pkey, int nid) { | 
|  | EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); | 
|  | ASSERT_TRUE(ec); | 
|  | const EC_GROUP *group = EC_KEY_get0_group(ec); | 
|  | ASSERT_TRUE(group); | 
|  | EXPECT_EQ(nid, EC_GROUP_get_curve_name(group)); | 
|  | EXPECT_EQ(nid, EVP_PKEY_get_ec_curve_nid(pkey)); | 
|  | EXPECT_FALSE(EC_KEY_get0_public_key(ec)); | 
|  | EXPECT_FALSE(EC_KEY_get0_private_key(ec)); | 
|  | } | 
|  |  | 
|  | static void ExpectECGroupAndKey(const EVP_PKEY *pkey, int nid) { | 
|  | EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); | 
|  | ASSERT_TRUE(ec); | 
|  | const EC_GROUP *group = EC_KEY_get0_group(ec); | 
|  | ASSERT_TRUE(group); | 
|  | EXPECT_EQ(nid, EC_GROUP_get_curve_name(group)); | 
|  | EXPECT_EQ(nid, EVP_PKEY_get_ec_curve_nid(pkey)); | 
|  | EXPECT_TRUE(EC_KEY_get0_public_key(ec)); | 
|  | EXPECT_TRUE(EC_KEY_get0_private_key(ec)); | 
|  | } | 
|  |  | 
|  | TEST(EVPExtraTest, ECKeygen) { | 
|  | for (bool copy : {false, true}) { | 
|  | SCOPED_TRACE(copy); | 
|  |  | 
|  | auto maybe_copy = [&](bssl::UniquePtr<EVP_PKEY_CTX> *ctx) -> bool { | 
|  | if (copy) { | 
|  | ctx->reset(EVP_PKEY_CTX_dup(ctx->get())); | 
|  | } | 
|  | return *ctx != nullptr; | 
|  | }; | 
|  |  | 
|  | // |EVP_PKEY_paramgen| may be used as an extremely roundabout way to get an | 
|  | // |EC_GROUP|. | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> ctx( | 
|  | EVP_PKEY_CTX_new_id(EVP_PKEY_EC, nullptr)); | 
|  | ASSERT_TRUE(ctx); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | ASSERT_TRUE(EVP_PKEY_paramgen_init(ctx.get())); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_ec_paramgen_curve_nid(ctx.get(), | 
|  | NID_X9_62_prime256v1)); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | EVP_PKEY *raw = nullptr; | 
|  | ASSERT_TRUE(EVP_PKEY_paramgen(ctx.get(), &raw)); | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(raw); | 
|  | raw = nullptr; | 
|  | ExpectECGroupOnly(pkey.get(), NID_X9_62_prime256v1); | 
|  |  | 
|  | // That resulting |EVP_PKEY| may be used as a template for key generation. | 
|  | ctx.reset(EVP_PKEY_CTX_new(pkey.get(), nullptr)); | 
|  | ASSERT_TRUE(ctx); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | ASSERT_TRUE(EVP_PKEY_keygen_init(ctx.get())); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | raw = nullptr; | 
|  | ASSERT_TRUE(EVP_PKEY_keygen(ctx.get(), &raw)); | 
|  | pkey.reset(raw); | 
|  | raw = nullptr; | 
|  | ExpectECGroupAndKey(pkey.get(), NID_X9_62_prime256v1); | 
|  |  | 
|  | // |EVP_PKEY_paramgen| may also be skipped. | 
|  | ctx.reset(EVP_PKEY_CTX_new_id(EVP_PKEY_EC, nullptr)); | 
|  | ASSERT_TRUE(ctx); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | ASSERT_TRUE(EVP_PKEY_keygen_init(ctx.get())); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_ec_paramgen_curve_nid(ctx.get(), | 
|  | NID_X9_62_prime256v1)); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | raw = nullptr; | 
|  | ASSERT_TRUE(EVP_PKEY_keygen(ctx.get(), &raw)); | 
|  | pkey.reset(raw); | 
|  | raw = nullptr; | 
|  | ExpectECGroupAndKey(pkey.get(), NID_X9_62_prime256v1); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(EVPExtraTest, DHKeygen) { | 
|  | // Set up some DH params in an |EVP_PKEY|. There is currently no API to do | 
|  | // this from EVP directly. | 
|  | bssl::UniquePtr<BIGNUM> p(BN_get_rfc3526_prime_1536(nullptr)); | 
|  | ASSERT_TRUE(p); | 
|  | bssl::UniquePtr<BIGNUM> g(BN_new()); | 
|  | ASSERT_TRUE(g); | 
|  | ASSERT_TRUE(BN_set_u64(g.get(), 2)); | 
|  | bssl::UniquePtr<DH> params_dh(DH_new()); | 
|  | ASSERT_TRUE(params_dh); | 
|  | ASSERT_TRUE( | 
|  | DH_set0_pqg(params_dh.get(), p.release(), /*q=*/nullptr, g.release())); | 
|  | bssl::UniquePtr<EVP_PKEY> params(EVP_PKEY_new()); | 
|  | ASSERT_TRUE(params); | 
|  | ASSERT_TRUE(EVP_PKEY_set1_DH(params.get(), params_dh.get())); | 
|  |  | 
|  | for (bool copy : {false, true}) { | 
|  | SCOPED_TRACE(copy); | 
|  |  | 
|  | auto maybe_copy = [&](bssl::UniquePtr<EVP_PKEY_CTX> *ctx) -> bool { | 
|  | if (copy) { | 
|  | ctx->reset(EVP_PKEY_CTX_dup(ctx->get())); | 
|  | } | 
|  | return *ctx != nullptr; | 
|  | }; | 
|  |  | 
|  | // |params| may be used as a template for key generation. | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(params.get(), nullptr)); | 
|  | ASSERT_TRUE(ctx); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | ASSERT_TRUE(EVP_PKEY_keygen_init(ctx.get())); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | EVP_PKEY *raw = nullptr; | 
|  | ASSERT_TRUE(EVP_PKEY_keygen(ctx.get(), &raw)); | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(raw); | 
|  |  | 
|  | EXPECT_EQ(EVP_PKEY_id(pkey.get()), EVP_PKEY_DH); | 
|  | const DH *dh = EVP_PKEY_get0_DH(pkey.get()); | 
|  | EXPECT_EQ(0, BN_cmp(DH_get0_p(dh), DH_get0_p(params_dh.get()))); | 
|  | EXPECT_EQ(0, BN_cmp(DH_get0_g(dh), DH_get0_g(params_dh.get()))); | 
|  | EXPECT_FALSE(DH_get0_q(dh)); | 
|  | EXPECT_TRUE(DH_get0_pub_key(dh)); | 
|  | EXPECT_TRUE(DH_get0_priv_key(dh)); | 
|  | EXPECT_EQ(1, EVP_PKEY_cmp_parameters(params.get(), pkey.get())); | 
|  | EXPECT_EQ(0, EVP_PKEY_cmp(params.get(), pkey.get())); | 
|  |  | 
|  | // Generate a second key. | 
|  | ctx.reset(EVP_PKEY_CTX_new(params.get(), nullptr)); | 
|  | ASSERT_TRUE(ctx); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | ASSERT_TRUE(EVP_PKEY_keygen_init(ctx.get())); | 
|  | ASSERT_TRUE(maybe_copy(&ctx)); | 
|  | raw = nullptr; | 
|  | ASSERT_TRUE(EVP_PKEY_keygen(ctx.get(), &raw)); | 
|  | bssl::UniquePtr<EVP_PKEY> pkey2(raw); | 
|  |  | 
|  | EXPECT_EQ(1, EVP_PKEY_cmp_parameters(params.get(), pkey2.get())); | 
|  | EXPECT_EQ(1, EVP_PKEY_cmp_parameters(pkey.get(), pkey2.get())); | 
|  | EXPECT_EQ(0, EVP_PKEY_cmp(pkey.get(), pkey2.get())); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Test that |EVP_PKEY_keygen| works for Ed25519. | 
|  | TEST(EVPExtraTest, Ed25519Keygen) { | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> pctx( | 
|  | EVP_PKEY_CTX_new_id(EVP_PKEY_ED25519, nullptr)); | 
|  | ASSERT_TRUE(pctx); | 
|  | ASSERT_TRUE(EVP_PKEY_keygen_init(pctx.get())); | 
|  | EVP_PKEY *raw = nullptr; | 
|  | ASSERT_TRUE(EVP_PKEY_keygen(pctx.get(), &raw)); | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(raw); | 
|  |  | 
|  | // Round-trip a signature to sanity-check the key is good. | 
|  | bssl::ScopedEVP_MD_CTX ctx; | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestSignInit(ctx.get(), nullptr, nullptr, nullptr, pkey.get())); | 
|  | uint8_t sig[64]; | 
|  | size_t len = sizeof(sig); | 
|  | ASSERT_TRUE(EVP_DigestSign(ctx.get(), sig, &len, | 
|  | reinterpret_cast<const uint8_t *>("hello"), 5)); | 
|  |  | 
|  | ctx.Reset(); | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestVerifyInit(ctx.get(), nullptr, nullptr, nullptr, pkey.get())); | 
|  | ASSERT_TRUE(EVP_DigestVerify(ctx.get(), sig, len, | 
|  | reinterpret_cast<const uint8_t *>("hello"), 5)); | 
|  | } | 
|  |  | 
|  | // Test that OpenSSL's legacy TLS-specific APIs in EVP work correctly. When we | 
|  | // target OpenSSL 3.0, these should be renamed to | 
|  | // |EVP_PKEY_get1_encoded_public_key|. | 
|  | TEST(EVPExtraTest, TLSEncodedPoint) { | 
|  | const struct { | 
|  | int pkey_type; | 
|  | std::vector<uint8_t> spki; | 
|  | std::vector<uint8_t> encoded_point; | 
|  | } kTests[] = { | 
|  | {EVP_PKEY_EC, | 
|  | {0x30, 0x59, 0x30, 0x13, 0x06, 0x07, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, | 
|  | 0x01, 0x06, 0x08, 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, 0x03, | 
|  | 0x42, 0x00, 0x04, 0x2c, 0x15, 0x0f, 0x42, 0x9c, 0xe7, 0x0f, 0x21, 0x6c, | 
|  | 0x25, 0x2c, 0xf5, 0xe0, 0x62, 0xce, 0x1f, 0x63, 0x9c, 0xd5, 0xd1, 0x65, | 
|  | 0xc7, 0xf8, 0x94, 0x24, 0x07, 0x2c, 0x27, 0x19, 0x7d, 0x78, 0xb3, 0x3b, | 
|  | 0x92, 0x0e, 0x95, 0xcd, 0xb6, 0x64, 0xe9, 0x90, 0xdc, 0xf0, 0xcf, 0xea, | 
|  | 0x0d, 0x94, 0xe2, 0xa8, 0xe6, 0xaf, 0x9d, 0x0e, 0x58, 0x05, 0x6e, 0x65, | 
|  | 0x31, 0x04, 0x92, 0x5b, 0x9f, 0xe6, 0xc9}, | 
|  | {0x04, 0x2c, 0x15, 0x0f, 0x42, 0x9c, 0xe7, 0x0f, 0x21, 0x6c, 0x25, | 
|  | 0x2c, 0xf5, 0xe0, 0x62, 0xce, 0x1f, 0x63, 0x9c, 0xd5, 0xd1, 0x65, | 
|  | 0xc7, 0xf8, 0x94, 0x24, 0x07, 0x2c, 0x27, 0x19, 0x7d, 0x78, 0xb3, | 
|  | 0x3b, 0x92, 0x0e, 0x95, 0xcd, 0xb6, 0x64, 0xe9, 0x90, 0xdc, 0xf0, | 
|  | 0xcf, 0xea, 0x0d, 0x94, 0xe2, 0xa8, 0xe6, 0xaf, 0x9d, 0x0e, 0x58, | 
|  | 0x05, 0x6e, 0x65, 0x31, 0x04, 0x92, 0x5b, 0x9f, 0xe6, 0xc9}}, | 
|  | {EVP_PKEY_X25519, | 
|  | {0x30, 0x2a, 0x30, 0x05, 0x06, 0x03, 0x2b, 0x65, 0x6e, 0x03, 0x21, | 
|  | 0x00, 0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94, | 
|  | 0xc1, 0xa4, 0x24, 0xb1, 0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec, 0x26, | 
|  | 0xb3, 0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c}, | 
|  | {0xe6, 0xdb, 0x68, 0x67, 0x58, 0x30, 0x30, 0xdb, 0x35, 0x94, 0xc1, | 
|  | 0xa4, 0x24, 0xb1, 0x5f, 0x7c, 0x72, 0x66, 0x24, 0xec, 0x26, 0xb3, | 
|  | 0x35, 0x3b, 0x10, 0xa9, 0x03, 0xa6, 0xd0, 0xab, 0x1c, 0x4c}}}; | 
|  | for (const auto& test : kTests) { | 
|  | SCOPED_TRACE(test.pkey_type); | 
|  | SCOPED_TRACE(Bytes(test.spki)); | 
|  | CBS spki; | 
|  | CBS_init(&spki, test.spki.data(), test.spki.size()); | 
|  | bssl::UniquePtr<EVP_PKEY> from_spki(EVP_parse_public_key(&spki)); | 
|  | ASSERT_TRUE(from_spki); | 
|  |  | 
|  | uint8_t *data; | 
|  | size_t len = EVP_PKEY_get1_tls_encodedpoint(from_spki.get(), &data); | 
|  | ASSERT_GT(len, 0u); | 
|  | EXPECT_EQ(Bytes(data, len), Bytes(test.encoded_point)); | 
|  | OPENSSL_free(data); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> from_encoded_point(EVP_PKEY_new()); | 
|  | ASSERT_TRUE(from_encoded_point); | 
|  | if (test.pkey_type == EVP_PKEY_EC) { | 
|  | // |EVP_PKEY_EC| should have been |EVP_PKEY_EC_P256|, etc., but instead | 
|  | // part of the type is buried inside parameters. | 
|  | ASSERT_TRUE( | 
|  | EVP_PKEY_copy_parameters(from_encoded_point.get(), from_spki.get())); | 
|  | } else { | 
|  | ASSERT_TRUE(EVP_PKEY_set_type(from_encoded_point.get(), test.pkey_type)); | 
|  | } | 
|  | ASSERT_TRUE(EVP_PKEY_set1_tls_encodedpoint(from_encoded_point.get(), | 
|  | test.encoded_point.data(), | 
|  | test.encoded_point.size())); | 
|  |  | 
|  | bssl::ScopedCBB cbb; | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), test.spki.size())); | 
|  | ASSERT_TRUE(EVP_marshal_public_key(cbb.get(), from_encoded_point.get())); | 
|  | EXPECT_EQ(Bytes(CBB_data(cbb.get()), CBB_len(cbb.get())), Bytes(test.spki)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(EVPExtraTest, Parameters) { | 
|  | auto new_pkey_with_curve = [](int curve_nid) -> bssl::UniquePtr<EVP_PKEY> { | 
|  | bssl::UniquePtr<EVP_PKEY_CTX> ctx( | 
|  | EVP_PKEY_CTX_new_id(EVP_PKEY_EC, nullptr)); | 
|  | EVP_PKEY *pkey = nullptr; | 
|  | if (!ctx ||  // | 
|  | !EVP_PKEY_paramgen_init(ctx.get()) || | 
|  | !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(ctx.get(), curve_nid) || | 
|  | !EVP_PKEY_paramgen(ctx.get(), &pkey)) { | 
|  | return nullptr; | 
|  | } | 
|  | return bssl::UniquePtr<EVP_PKEY>(pkey); | 
|  | }; | 
|  |  | 
|  | // RSA keys have no parameters. | 
|  | bssl::UniquePtr<EVP_PKEY> rsa = LoadExampleRSAKey(); | 
|  | ASSERT_TRUE(rsa); | 
|  | EXPECT_FALSE(EVP_PKEY_missing_parameters(rsa.get())); | 
|  |  | 
|  | // EC keys have parameters, but it is possible to initialize an |EVP_PKEY| | 
|  | // with a completely empty |EC_KEY|. | 
|  | bssl::UniquePtr<EVP_PKEY> ec_no_params(EVP_PKEY_new()); | 
|  | ASSERT_TRUE(ec_no_params); | 
|  | ASSERT_TRUE(EVP_PKEY_assign_EC_KEY(ec_no_params.get(), EC_KEY_new())); | 
|  | EXPECT_TRUE(EVP_PKEY_missing_parameters(ec_no_params.get())); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> p256 = new_pkey_with_curve(NID_X9_62_prime256v1); | 
|  | ASSERT_TRUE(p256); | 
|  | EXPECT_FALSE(EVP_PKEY_missing_parameters(p256.get())); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> p256_2 = new_pkey_with_curve(NID_X9_62_prime256v1); | 
|  | ASSERT_TRUE(p256_2); | 
|  | EXPECT_FALSE(EVP_PKEY_missing_parameters(p256_2.get())); | 
|  |  | 
|  | bssl::UniquePtr<EVP_PKEY> p384 = new_pkey_with_curve(NID_secp384r1); | 
|  | ASSERT_TRUE(p384); | 
|  | EXPECT_FALSE(EVP_PKEY_missing_parameters(p384.get())); | 
|  |  | 
|  | EXPECT_EQ(1, EVP_PKEY_cmp_parameters(p256.get(), p256_2.get())); | 
|  | EXPECT_EQ(0, EVP_PKEY_cmp_parameters(p256.get(), p384.get())); | 
|  |  | 
|  | // Copying parameters onto a curve-less EC key works. | 
|  | ASSERT_TRUE(EVP_PKEY_copy_parameters(ec_no_params.get(), p256.get())); | 
|  | EXPECT_EQ(1, EVP_PKEY_cmp_parameters(p256.get(), ec_no_params.get())); | 
|  |  | 
|  | // No-op copies silently succeed. | 
|  | ASSERT_TRUE(EVP_PKEY_copy_parameters(ec_no_params.get(), p256.get())); | 
|  | EXPECT_EQ(1, EVP_PKEY_cmp_parameters(p256.get(), ec_no_params.get())); | 
|  |  | 
|  | // Copying parameters onto a type-less key works. | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
|  | ASSERT_TRUE(pkey); | 
|  | ASSERT_TRUE(EVP_PKEY_copy_parameters(pkey.get(), p256.get())); | 
|  | EXPECT_EQ(EVP_PKEY_EC, EVP_PKEY_id(pkey.get())); | 
|  | EXPECT_EQ(1, EVP_PKEY_cmp_parameters(p256.get(), pkey.get())); | 
|  |  | 
|  | // |EVP_PKEY_copy_parameters| cannot change a key's type or curve. | 
|  | EXPECT_FALSE(EVP_PKEY_copy_parameters(rsa.get(), p256.get())); | 
|  | EXPECT_EQ(EVP_PKEY_RSA, EVP_PKEY_id(rsa.get())); | 
|  | EXPECT_FALSE(EVP_PKEY_copy_parameters(rsa.get(), p256.get())); | 
|  | EXPECT_EQ(EVP_PKEY_RSA, EVP_PKEY_id(rsa.get())); | 
|  | } | 
|  |  | 
|  | TEST(EVPExtraTest, RawKeyUnsupported) { | 
|  | static const uint8_t kKey[] = {1, 2, 3, 4}; | 
|  | EXPECT_FALSE( | 
|  | EVP_PKEY_new_raw_public_key(EVP_PKEY_RSA, nullptr, kKey, sizeof(kKey))); | 
|  | EXPECT_FALSE( | 
|  | EVP_PKEY_new_raw_private_key(EVP_PKEY_RSA, nullptr, kKey, sizeof(kKey))); | 
|  | EXPECT_FALSE( | 
|  | EVP_PKEY_from_raw_public_key(EVP_pkey_rsa(), kKey, sizeof(kKey))); | 
|  | EXPECT_FALSE( | 
|  | EVP_PKEY_from_raw_private_key(EVP_pkey_rsa(), kKey, sizeof(kKey))); | 
|  | } | 
|  |  | 
|  | // The default salt length for PSS should be |RSA_PSS_SALTLEN_DIGEST|. | 
|  | TEST(EVPExtraTest, PSSDefaultSaltLen) { | 
|  | bssl::UniquePtr<EVP_PKEY> key = LoadExampleRSAKey(); | 
|  | ASSERT_TRUE(key); | 
|  | bssl::ScopedEVP_MD_CTX ctx; | 
|  | EVP_PKEY_CTX *pctx; | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestSignInit(ctx.get(), &pctx, EVP_sha256(), nullptr, key.get())); | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING)); | 
|  | int salt_len; | 
|  | ASSERT_TRUE(EVP_PKEY_CTX_get_rsa_pss_saltlen(pctx, &salt_len)); | 
|  | EXPECT_EQ(salt_len, RSA_PSS_SALTLEN_DIGEST); | 
|  | } | 
|  |  | 
|  | // Test that setting a key to type none will clear it. Some calling code has | 
|  | // unit tests that rely on this, usually as part of a roundabout way to get a | 
|  | // key of the "wrong" type to test with. (In reality, |EVP_PKEY_new| will | 
|  | // produce the same object.) | 
|  | TEST(EVPExtraTest, SetNoneClearsKey) { | 
|  | bssl::UniquePtr<EVP_PKEY> pkey = LoadExampleRSAKey(); | 
|  | ASSERT_TRUE(pkey); | 
|  | // EVP_PKEY_NONE is not a known type, so this should fail. | 
|  | EXPECT_FALSE(EVP_PKEY_set_type(pkey.get(), EVP_PKEY_NONE)); | 
|  | // However, it still resets the key to the initial state. | 
|  | EXPECT_EQ(EVP_PKEY_id(pkey.get()), EVP_PKEY_NONE); | 
|  | // Calling operations on the |EVP_PKEY| should cleanly fail. | 
|  | EXPECT_EQ(EVP_PKEY_bits(pkey.get()), 0); | 
|  | } | 
|  |  | 
|  | // Test that |EC_KEY|s using custom curves can be wrapped in |EVP_PKEY|. Callers | 
|  | // should not follow this code. This is maintained and tested only for | 
|  | // compatibility with one legacy application, and supported in only a limited | 
|  | // form. (E.g. such keys cannot be serialized.) | 
|  | TEST(EVPExtraTest, CustomCurve) { | 
|  | // Coefficients for brainpoolp256r1, not supported by BoringSSL. | 
|  | static const char kP[] = | 
|  | "a9fb57dba1eea9bc3e660a909d838d726e3bf623d52620282013481d1f6e5377"; | 
|  | static const char kA[] = | 
|  | "7d5a0975fc2c3057eef67530417affe7fb8055c126dc5c6ce94a4b44f330b5d9"; | 
|  | static const char kB[] = | 
|  | "26dc5c6ce94a4b44f330b5d9bbd77cbf958416295cf7e1ce6bccdc18ff8c07b6"; | 
|  | static const char kX[] = | 
|  | "8bd2aeb9cb7e57cb2c4b482ffc81b7afb9de27e1e3bd23c23a4453bd9ace3262"; | 
|  | static const char kY[] = | 
|  | "547ef835c3dac4fd97f8461a14611dc9c27745132ded8e545c1d54c72f046997"; | 
|  | static const char kN[] = | 
|  | "a9fb57dba1eea9bc3e660a909d838d718c397aa3b561a6f7901e0e82974856a7"; | 
|  | static const char kD[] = | 
|  | "0da21d76fed40dd82ac3314cce91abb585b5c4246e902b238a839609ea1e7ce1"; | 
|  | static const char kQX[] = | 
|  | "3a55e0341cab50452fe27b8a87e4775dec7a9daca94b0d84ad1e9f85b53ea513"; | 
|  | static const char kQY[] = | 
|  | "40088146b33bbbe81b092b41146774b35dd478cf056437cfb35ef0df2d269339"; | 
|  |  | 
|  | // Construct a custom group. | 
|  | bssl::UniquePtr<BIGNUM> p = HexToBIGNUM(kP), a = HexToBIGNUM(kA), | 
|  | b = HexToBIGNUM(kB), x = HexToBIGNUM(kX), | 
|  | y = HexToBIGNUM(kY), n = HexToBIGNUM(kN), | 
|  | d = HexToBIGNUM(kD), qx = HexToBIGNUM(kQX), | 
|  | qy = HexToBIGNUM(kQY); | 
|  | ASSERT_TRUE(p && a && b && x && y && n && d && qx && qy); | 
|  | bssl::UniquePtr<EC_GROUP> group( | 
|  | EC_GROUP_new_curve_GFp(p.get(), a.get(), b.get(), nullptr)); | 
|  | ASSERT_TRUE(group); | 
|  | bssl::UniquePtr<EC_POINT> g(EC_POINT_new(group.get())); | 
|  | ASSERT_TRUE(g); | 
|  | ASSERT_TRUE(EC_POINT_set_affine_coordinates_GFp(group.get(), g.get(), x.get(), | 
|  | y.get(), nullptr)); | 
|  | ASSERT_TRUE( | 
|  | EC_GROUP_set_generator(group.get(), g.get(), n.get(), BN_value_one())); | 
|  |  | 
|  | // Generate a key with it. | 
|  | bssl::UniquePtr<EC_KEY> ec_key(EC_KEY_new()); | 
|  | ASSERT_TRUE(ec_key); | 
|  | ASSERT_TRUE(EC_KEY_set_group(ec_key.get(), group.get())); | 
|  | ASSERT_TRUE(EC_KEY_generate_key(ec_key.get())); | 
|  |  | 
|  | // Wrap it in an |EVP_PKEY|. | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
|  | ASSERT_TRUE(pkey); | 
|  | ASSERT_TRUE(EVP_PKEY_set1_EC_KEY(pkey.get(), ec_key.get())); | 
|  |  | 
|  | // Signing should work. | 
|  | bssl::Span<const uint8_t> msg = bssl::StringAsBytes("hello"); | 
|  | bssl::ScopedEVP_MD_CTX ctx; | 
|  | ASSERT_TRUE(EVP_DigestSignInit(ctx.get(), nullptr, EVP_sha256(), nullptr, | 
|  | pkey.get())); | 
|  | std::vector<uint8_t> sig(EVP_PKEY_size(pkey.get())); | 
|  | size_t len = sig.size(); | 
|  | ASSERT_TRUE( | 
|  | EVP_DigestSign(ctx.get(), sig.data(), &len, msg.data(), msg.size())); | 
|  | sig.resize(len); | 
|  |  | 
|  | // Verifying should work. | 
|  | ctx.Reset(); | 
|  | ASSERT_TRUE(EVP_DigestVerifyInit(ctx.get(), nullptr, EVP_sha256(), nullptr, | 
|  | pkey.get())); | 
|  | ASSERT_TRUE(EVP_DigestVerify(ctx.get(), sig.data(), sig.size(), msg.data(), | 
|  | msg.size())); | 
|  |  | 
|  | // We will not serialize arbitrary groups, so serialization should fail. | 
|  | bssl::ScopedCBB cbb; | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 0)); | 
|  | EXPECT_FALSE(EVP_marshal_public_key(cbb.get(), pkey.get())); | 
|  | cbb.Reset(); | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 0)); | 
|  | EXPECT_FALSE(EVP_marshal_private_key(cbb.get(), pkey.get())); | 
|  | } | 
|  |  | 
|  | // APIs should avoid creating an |EVP_PKEY| that is missing its underlying data. | 
|  | // In some cases, we are stuck with this due to OpenSSL compatibility, but it is | 
|  | // preferable to reduce the number of kinds of half-empty states. | 
|  | TEST(EVPExtraTest, NoHalfEmptyKeys) { | 
|  | bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
|  | ASSERT_TRUE(pkey); | 
|  |  | 
|  | EXPECT_FALSE(EVP_PKEY_set_type(pkey.get(), EVP_PKEY_RSA)); | 
|  | EXPECT_EQ(EVP_PKEY_id(pkey.get()), EVP_PKEY_NONE); | 
|  | EXPECT_FALSE(EVP_PKEY_set1_RSA(pkey.get(), nullptr)); | 
|  | EXPECT_EQ(EVP_PKEY_id(pkey.get()), EVP_PKEY_NONE); | 
|  |  | 
|  | EXPECT_FALSE(EVP_PKEY_set_type(pkey.get(), EVP_PKEY_EC)); | 
|  | EXPECT_EQ(EVP_PKEY_id(pkey.get()), EVP_PKEY_NONE); | 
|  | EXPECT_FALSE(EVP_PKEY_set1_EC_KEY(pkey.get(), nullptr)); | 
|  | EXPECT_EQ(EVP_PKEY_id(pkey.get()), EVP_PKEY_NONE); | 
|  |  | 
|  | EXPECT_FALSE(EVP_PKEY_set_type(pkey.get(), EVP_PKEY_DH)); | 
|  | EXPECT_EQ(EVP_PKEY_id(pkey.get()), EVP_PKEY_NONE); | 
|  | EXPECT_FALSE(EVP_PKEY_set1_DH(pkey.get(), nullptr)); | 
|  | EXPECT_EQ(EVP_PKEY_id(pkey.get()), EVP_PKEY_NONE); | 
|  |  | 
|  | EXPECT_FALSE(EVP_PKEY_set_type(pkey.get(), EVP_PKEY_DSA)); | 
|  | EXPECT_EQ(EVP_PKEY_id(pkey.get()), EVP_PKEY_NONE); | 
|  | EXPECT_FALSE(EVP_PKEY_set1_DSA(pkey.get(), nullptr)); | 
|  | EXPECT_EQ(EVP_PKEY_id(pkey.get()), EVP_PKEY_NONE); | 
|  | } | 
|  |  | 
|  | // Test that parsers correctly handle trailing data. | 
|  | TEST(EVPExtraTest, TrailingData) { | 
|  | bssl::UniquePtr<EVP_PKEY> pkey = LoadExampleRSAKey(); | 
|  | ASSERT_TRUE(pkey); | 
|  | bssl::ScopedCBB cbb; | 
|  | ASSERT_TRUE(CBB_init(cbb.get(), 64)); | 
|  | ASSERT_TRUE(EVP_marshal_public_key(cbb.get(), pkey.get())); | 
|  |  | 
|  | std::vector<uint8_t> spki(CBB_data(cbb.get()), | 
|  | CBB_data(cbb.get()) + CBB_len(cbb.get())); | 
|  | spki.push_back('a'); | 
|  |  | 
|  | // |EVP_parse_public_key| should accept trailing data and return the | 
|  | // remainder. | 
|  | CBS cbs(spki); | 
|  | pkey.reset(EVP_parse_public_key(&cbs)); | 
|  | EXPECT_TRUE(pkey); | 
|  | EXPECT_EQ(Bytes(cbs), Bytes("a")); | 
|  |  | 
|  | // |EVP_PKEY_from_subject_public_key_info| should not. | 
|  | const EVP_PKEY_ALG *alg = EVP_pkey_rsa(); | 
|  | pkey.reset(EVP_PKEY_from_subject_public_key_info(spki.data(), spki.size(), | 
|  | &alg, 1u)); | 
|  | EXPECT_FALSE(pkey); | 
|  | EXPECT_TRUE( | 
|  | ErrorEquals(ERR_peek_last_error(), ERR_LIB_EVP, EVP_R_DECODE_ERROR)); | 
|  | } |