| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@openssl.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/bn.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/cpu.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "internal.h" |
| |
| |
| #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) |
| #define OPENSSL_BN_ASM_MONT5 |
| #define RSAZ_ENABLED |
| |
| #include "rsaz_exp.h" |
| |
| void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap, const void *table, |
| const BN_ULONG *np, const BN_ULONG *n0, int num, |
| int power); |
| void bn_scatter5(const BN_ULONG *inp, size_t num, void *table, size_t power); |
| void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power); |
| void bn_power5(BN_ULONG *rp, const BN_ULONG *ap, const void *table, |
| const BN_ULONG *np, const BN_ULONG *n0, int num, int power); |
| int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap, |
| const BN_ULONG *not_used, const BN_ULONG *np, |
| const BN_ULONG *n0, int num); |
| #endif |
| |
| int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) { |
| int i, bits, ret = 0; |
| BIGNUM *v, *rr; |
| |
| BN_CTX_start(ctx); |
| if (r == a || r == p) { |
| rr = BN_CTX_get(ctx); |
| } else { |
| rr = r; |
| } |
| |
| v = BN_CTX_get(ctx); |
| if (rr == NULL || v == NULL) { |
| goto err; |
| } |
| |
| if (BN_copy(v, a) == NULL) { |
| goto err; |
| } |
| bits = BN_num_bits(p); |
| |
| if (BN_is_odd(p)) { |
| if (BN_copy(rr, a) == NULL) { |
| goto err; |
| } |
| } else { |
| if (!BN_one(rr)) { |
| goto err; |
| } |
| } |
| |
| for (i = 1; i < bits; i++) { |
| if (!BN_sqr(v, v, ctx)) { |
| goto err; |
| } |
| if (BN_is_bit_set(p, i)) { |
| if (!BN_mul(rr, rr, v, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| if (r != rr && !BN_copy(r, rr)) { |
| goto err; |
| } |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| typedef struct bn_recp_ctx_st { |
| BIGNUM N; // the divisor |
| BIGNUM Nr; // the reciprocal |
| int num_bits; |
| int shift; |
| int flags; |
| } BN_RECP_CTX; |
| |
| static void BN_RECP_CTX_init(BN_RECP_CTX *recp) { |
| BN_init(&recp->N); |
| BN_init(&recp->Nr); |
| recp->num_bits = 0; |
| recp->shift = 0; |
| recp->flags = 0; |
| } |
| |
| static void BN_RECP_CTX_free(BN_RECP_CTX *recp) { |
| if (recp == NULL) { |
| return; |
| } |
| |
| BN_free(&recp->N); |
| BN_free(&recp->Nr); |
| } |
| |
| static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) { |
| if (!BN_copy(&(recp->N), d)) { |
| return 0; |
| } |
| BN_zero(&recp->Nr); |
| recp->num_bits = BN_num_bits(d); |
| recp->shift = 0; |
| |
| return 1; |
| } |
| |
| // len is the expected size of the result We actually calculate with an extra |
| // word of precision, so we can do faster division if the remainder is not |
| // required. |
| // r := 2^len / m |
| static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) { |
| int ret = -1; |
| BIGNUM *t; |
| |
| BN_CTX_start(ctx); |
| t = BN_CTX_get(ctx); |
| if (t == NULL) { |
| goto err; |
| } |
| |
| if (!BN_set_bit(t, len)) { |
| goto err; |
| } |
| |
| if (!BN_div(r, NULL, t, m, ctx)) { |
| goto err; |
| } |
| |
| ret = len; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, |
| BN_RECP_CTX *recp, BN_CTX *ctx) { |
| int i, j, ret = 0; |
| BIGNUM *a, *b, *d, *r; |
| |
| BN_CTX_start(ctx); |
| a = BN_CTX_get(ctx); |
| b = BN_CTX_get(ctx); |
| if (dv != NULL) { |
| d = dv; |
| } else { |
| d = BN_CTX_get(ctx); |
| } |
| |
| if (rem != NULL) { |
| r = rem; |
| } else { |
| r = BN_CTX_get(ctx); |
| } |
| |
| if (a == NULL || b == NULL || d == NULL || r == NULL) { |
| goto err; |
| } |
| |
| if (BN_ucmp(m, &recp->N) < 0) { |
| BN_zero(d); |
| if (!BN_copy(r, m)) { |
| goto err; |
| } |
| BN_CTX_end(ctx); |
| return 1; |
| } |
| |
| // We want the remainder |
| // Given input of ABCDEF / ab |
| // we need multiply ABCDEF by 3 digests of the reciprocal of ab |
| |
| // i := max(BN_num_bits(m), 2*BN_num_bits(N)) |
| i = BN_num_bits(m); |
| j = recp->num_bits << 1; |
| if (j > i) { |
| i = j; |
| } |
| |
| // Nr := round(2^i / N) |
| if (i != recp->shift) { |
| recp->shift = |
| BN_reciprocal(&(recp->Nr), &(recp->N), i, |
| ctx); // BN_reciprocal returns i, or -1 for an error |
| } |
| |
| if (recp->shift == -1) { |
| goto err; |
| } |
| |
| // d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i - |
| // BN_num_bits(N)))| |
| // = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i - |
| // BN_num_bits(N)))| |
| // <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)| |
| // = |m/N| |
| if (!BN_rshift(a, m, recp->num_bits)) { |
| goto err; |
| } |
| if (!BN_mul(b, a, &(recp->Nr), ctx)) { |
| goto err; |
| } |
| if (!BN_rshift(d, b, i - recp->num_bits)) { |
| goto err; |
| } |
| d->neg = 0; |
| |
| if (!BN_mul(b, &(recp->N), d, ctx)) { |
| goto err; |
| } |
| if (!BN_usub(r, m, b)) { |
| goto err; |
| } |
| r->neg = 0; |
| |
| j = 0; |
| while (BN_ucmp(r, &(recp->N)) >= 0) { |
| if (j++ > 2) { |
| OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL); |
| goto err; |
| } |
| if (!BN_usub(r, r, &(recp->N))) { |
| goto err; |
| } |
| if (!BN_add_word(d, 1)) { |
| goto err; |
| } |
| } |
| |
| r->neg = BN_is_zero(r) ? 0 : m->neg; |
| d->neg = m->neg ^ recp->N.neg; |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, |
| BN_RECP_CTX *recp, BN_CTX *ctx) { |
| int ret = 0; |
| BIGNUM *a; |
| const BIGNUM *ca; |
| |
| BN_CTX_start(ctx); |
| a = BN_CTX_get(ctx); |
| if (a == NULL) { |
| goto err; |
| } |
| |
| if (y != NULL) { |
| if (x == y) { |
| if (!BN_sqr(a, x, ctx)) { |
| goto err; |
| } |
| } else { |
| if (!BN_mul(a, x, y, ctx)) { |
| goto err; |
| } |
| } |
| ca = a; |
| } else { |
| ca = x; // Just do the mod |
| } |
| |
| ret = BN_div_recp(NULL, r, ca, recp, ctx); |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| // BN_window_bits_for_exponent_size returns sliding window size for mod_exp with |
| // a |b| bit exponent. |
| // |
| // For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of |
| // multiplications is a constant plus on average |
| // |
| // 2^(w-1) + (b-w)/(w+1); |
| // |
| // here 2^(w-1) is for precomputing the table (we actually need entries only |
| // for windows that have the lowest bit set), and (b-w)/(w+1) is an |
| // approximation for the expected number of w-bit windows, not counting the |
| // first one. |
| // |
| // Thus we should use |
| // |
| // w >= 6 if b > 671 |
| // w = 5 if 671 > b > 239 |
| // w = 4 if 239 > b > 79 |
| // w = 3 if 79 > b > 23 |
| // w <= 2 if 23 > b |
| // |
| // (with draws in between). Very small exponents are often selected |
| // with low Hamming weight, so we use w = 1 for b <= 23. |
| static int BN_window_bits_for_exponent_size(int b) { |
| if (b > 671) { |
| return 6; |
| } |
| if (b > 239) { |
| return 5; |
| } |
| if (b > 79) { |
| return 4; |
| } |
| if (b > 23) { |
| return 3; |
| } |
| return 1; |
| } |
| |
| // TABLE_SIZE is the maximum precomputation table size for *variable* sliding |
| // windows. This must be 2^(max_window - 1), where max_window is the largest |
| // value returned from |BN_window_bits_for_exponent_size|. |
| #define TABLE_SIZE 32 |
| |
| // TABLE_BITS_SMALL is the smallest value returned from |
| // |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| * |
| // |BN_SMALL_MAX_WORDS| words. |
| #define TABLE_BITS_SMALL 5 |
| |
| // TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most |
| // |BN_BITS2| * |BN_SMALL_MAX_WORDS|. |
| #define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1)) |
| |
| static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx) { |
| int i, j, bits, ret = 0, wstart, window; |
| int start = 1; |
| BIGNUM *aa; |
| // Table of variables obtained from 'ctx' |
| BIGNUM *val[TABLE_SIZE]; |
| BN_RECP_CTX recp; |
| |
| bits = BN_num_bits(p); |
| |
| if (bits == 0) { |
| // x**0 mod 1 is still zero. |
| if (BN_is_one(m)) { |
| BN_zero(r); |
| return 1; |
| } |
| return BN_one(r); |
| } |
| |
| BN_CTX_start(ctx); |
| aa = BN_CTX_get(ctx); |
| val[0] = BN_CTX_get(ctx); |
| if (!aa || !val[0]) { |
| goto err; |
| } |
| |
| BN_RECP_CTX_init(&recp); |
| if (m->neg) { |
| // ignore sign of 'm' |
| if (!BN_copy(aa, m)) { |
| goto err; |
| } |
| aa->neg = 0; |
| if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) { |
| goto err; |
| } |
| } else { |
| if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) { |
| goto err; |
| } |
| } |
| |
| if (!BN_nnmod(val[0], a, m, ctx)) { |
| goto err; // 1 |
| } |
| if (BN_is_zero(val[0])) { |
| BN_zero(r); |
| ret = 1; |
| goto err; |
| } |
| |
| window = BN_window_bits_for_exponent_size(bits); |
| if (window > 1) { |
| if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) { |
| goto err; // 2 |
| } |
| j = 1 << (window - 1); |
| for (i = 1; i < j; i++) { |
| if (((val[i] = BN_CTX_get(ctx)) == NULL) || |
| !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| start = 1; // This is used to avoid multiplication etc |
| // when there is only the value '1' in the |
| // buffer. |
| wstart = bits - 1; // The top bit of the window |
| |
| if (!BN_one(r)) { |
| goto err; |
| } |
| |
| for (;;) { |
| int wvalue; // The 'value' of the window |
| int wend; // The bottom bit of the window |
| |
| if (!BN_is_bit_set(p, wstart)) { |
| if (!start) { |
| if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) { |
| goto err; |
| } |
| } |
| if (wstart == 0) { |
| break; |
| } |
| wstart--; |
| continue; |
| } |
| |
| // We now have wstart on a 'set' bit, we now need to work out |
| // how bit a window to do. To do this we need to scan |
| // forward until the last set bit before the end of the |
| // window |
| wvalue = 1; |
| wend = 0; |
| for (i = 1; i < window; i++) { |
| if (wstart - i < 0) { |
| break; |
| } |
| if (BN_is_bit_set(p, wstart - i)) { |
| wvalue <<= (i - wend); |
| wvalue |= 1; |
| wend = i; |
| } |
| } |
| |
| // wend is the size of the current window |
| j = wend + 1; |
| // add the 'bytes above' |
| if (!start) { |
| for (i = 0; i < j; i++) { |
| if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| // wvalue will be an odd number < 2^window |
| if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) { |
| goto err; |
| } |
| |
| // move the 'window' down further |
| wstart -= wend + 1; |
| start = 0; |
| if (wstart < 0) { |
| break; |
| } |
| } |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| BN_RECP_CTX_free(&recp); |
| return ret; |
| } |
| |
| int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m, |
| BN_CTX *ctx) { |
| if (BN_is_odd(m)) { |
| return BN_mod_exp_mont(r, a, p, m, ctx, NULL); |
| } |
| |
| return mod_exp_recp(r, a, p, m, ctx); |
| } |
| |
| int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) { |
| if (!BN_is_odd(m)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| return 0; |
| } |
| int bits = BN_num_bits(p); |
| if (bits == 0) { |
| // x**0 mod 1 is still zero. |
| if (BN_is_one(m)) { |
| BN_zero(rr); |
| return 1; |
| } |
| return BN_one(rr); |
| } |
| |
| int ret = 0; |
| BIGNUM *val[TABLE_SIZE]; |
| BN_MONT_CTX *new_mont = NULL; |
| |
| BN_CTX_start(ctx); |
| BIGNUM *d = BN_CTX_get(ctx); |
| BIGNUM *r = BN_CTX_get(ctx); |
| val[0] = BN_CTX_get(ctx); |
| if (!d || !r || !val[0]) { |
| goto err; |
| } |
| |
| // Allocate a montgomery context if it was not supplied by the caller. |
| if (mont == NULL) { |
| new_mont = BN_MONT_CTX_new(); |
| if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) { |
| goto err; |
| } |
| mont = new_mont; |
| } |
| |
| const BIGNUM *aa; |
| if (a->neg || BN_ucmp(a, m) >= 0) { |
| if (!BN_nnmod(val[0], a, m, ctx)) { |
| goto err; |
| } |
| aa = val[0]; |
| } else { |
| aa = a; |
| } |
| |
| if (BN_is_zero(aa)) { |
| BN_zero(rr); |
| ret = 1; |
| goto err; |
| } |
| |
| // We exponentiate by looking at sliding windows of the exponent and |
| // precomputing powers of |aa|. Windows may be shifted so they always end on a |
| // set bit, so only precompute odd powers. We compute val[i] = aa^(2*i + 1) |
| // for i = 0 to 2^(window-1), all in Montgomery form. |
| int window = BN_window_bits_for_exponent_size(bits); |
| if (!BN_to_montgomery(val[0], aa, mont, ctx)) { |
| goto err; |
| } |
| if (window > 1) { |
| if (!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) { |
| goto err; |
| } |
| for (int i = 1; i < 1 << (window - 1); i++) { |
| val[i] = BN_CTX_get(ctx); |
| if (val[i] == NULL || |
| !BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| // Set |r| to one in Montgomery form. If the high bit of |m| is set, |m| is |
| // close to R and we subtract rather than perform Montgomery reduction. |
| if (m->d[m->top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) { |
| if (!bn_wexpand(r, m->top)) { |
| goto err; |
| } |
| // r = 2^(top*BN_BITS2) - m |
| r->d[0] = 0 - m->d[0]; |
| for (int i = 1; i < m->top; i++) { |
| r->d[i] = ~m->d[i]; |
| } |
| r->top = m->top; |
| // The upper words will be zero if the corresponding words of |m| were |
| // 0xfff[...], so call |bn_correct_top|. |
| bn_correct_top(r); |
| } else if (!BN_to_montgomery(r, BN_value_one(), mont, ctx)) { |
| goto err; |
| } |
| |
| int r_is_one = 1; |
| int wstart = bits - 1; // The top bit of the window. |
| for (;;) { |
| if (!BN_is_bit_set(p, wstart)) { |
| if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) { |
| goto err; |
| } |
| if (wstart == 0) { |
| break; |
| } |
| wstart--; |
| continue; |
| } |
| |
| // We now have wstart on a set bit. Find the largest window we can use. |
| int wvalue = 1; |
| int wsize = 0; |
| for (int i = 1; i < window && i <= wstart; i++) { |
| if (BN_is_bit_set(p, wstart - i)) { |
| wvalue <<= (i - wsize); |
| wvalue |= 1; |
| wsize = i; |
| } |
| } |
| |
| // Shift |r| to the end of the window. |
| if (!r_is_one) { |
| for (int i = 0; i < wsize + 1; i++) { |
| if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| assert(wvalue & 1); |
| assert(wvalue < (1 << window)); |
| if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) { |
| goto err; |
| } |
| |
| r_is_one = 0; |
| if (wstart == wsize) { |
| break; |
| } |
| wstart -= wsize + 1; |
| } |
| |
| if (!BN_from_montgomery(rr, r, mont, ctx)) { |
| goto err; |
| } |
| ret = 1; |
| |
| err: |
| BN_MONT_CTX_free(new_mont); |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| int bn_mod_exp_mont_small(BN_ULONG *r, size_t num_r, const BN_ULONG *a, |
| size_t num_a, const BN_ULONG *p, size_t num_p, |
| const BN_MONT_CTX *mont) { |
| const BN_ULONG *n = mont->N.d; |
| size_t num_n = mont->N.top; |
| if (num_n != num_a || num_n != num_r || num_n > BN_SMALL_MAX_WORDS) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| if (!BN_is_odd(&mont->N)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| return 0; |
| } |
| unsigned bits = 0; |
| if (num_p != 0) { |
| bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2; |
| } |
| if (bits == 0) { |
| OPENSSL_memset(r, 0, num_r * sizeof(BN_ULONG)); |
| if (!BN_is_one(&mont->N)) { |
| r[0] = 1; |
| } |
| return 1; |
| } |
| |
| // We exponentiate by looking at sliding windows of the exponent and |
| // precomputing powers of |a|. Windows may be shifted so they always end on a |
| // set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for |
| // i = 0 to 2^(window-1), all in Montgomery form. |
| unsigned window = BN_window_bits_for_exponent_size(bits); |
| if (window > TABLE_BITS_SMALL) { |
| window = TABLE_BITS_SMALL; // Tolerate excessively large |p|. |
| } |
| int ret = 0; |
| BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS]; |
| OPENSSL_memcpy(val[0], a, num_n * sizeof(BN_ULONG)); |
| if (window > 1) { |
| BN_ULONG d[BN_SMALL_MAX_WORDS]; |
| if (!bn_mod_mul_montgomery_small(d, num_n, val[0], num_n, val[0], num_n, |
| mont)) { |
| goto err; |
| } |
| for (unsigned i = 1; i < 1u << (window - 1); i++) { |
| if (!bn_mod_mul_montgomery_small(val[i], num_n, val[i - 1], num_n, d, |
| num_n, mont)) { |
| goto err; |
| } |
| } |
| } |
| |
| // Set |r| to one in Montgomery form. If the high bit of |m| is set, |m| is |
| // close to R and we subtract rather than perform Montgomery reduction. |
| if (n[num_n - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) { |
| // r = 2^(top*BN_BITS2) - m |
| r[0] = 0 - n[0]; |
| for (size_t i = 1; i < num_n; i++) { |
| r[i] = ~n[i]; |
| } |
| } else if (!bn_from_montgomery_small(r, num_r, mont->RR.d, mont->RR.top, |
| mont)) { |
| goto err; |
| } |
| |
| int r_is_one = 1; |
| unsigned wstart = bits - 1; // The top bit of the window. |
| for (;;) { |
| if (!bn_is_bit_set_words(p, num_p, wstart)) { |
| if (!r_is_one && |
| !bn_mod_mul_montgomery_small(r, num_r, r, num_r, r, num_r, mont)) { |
| goto err; |
| } |
| if (wstart == 0) { |
| break; |
| } |
| wstart--; |
| continue; |
| } |
| |
| // We now have wstart on a set bit. Find the largest window we can use. |
| unsigned wvalue = 1; |
| unsigned wsize = 0; |
| for (unsigned i = 1; i < window && i <= wstart; i++) { |
| if (bn_is_bit_set_words(p, num_p, wstart - i)) { |
| wvalue <<= (i - wsize); |
| wvalue |= 1; |
| wsize = i; |
| } |
| } |
| |
| // Shift |r| to the end of the window. |
| if (!r_is_one) { |
| for (unsigned i = 0; i < wsize + 1; i++) { |
| if (!bn_mod_mul_montgomery_small(r, num_r, r, num_r, r, num_r, mont)) { |
| goto err; |
| } |
| } |
| } |
| |
| assert(wvalue & 1); |
| assert(wvalue < (1u << window)); |
| if (!bn_mod_mul_montgomery_small(r, num_r, r, num_r, val[wvalue >> 1], |
| num_n, mont)) { |
| goto err; |
| } |
| |
| r_is_one = 0; |
| if (wstart == wsize) { |
| break; |
| } |
| wstart -= wsize + 1; |
| } |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_cleanse(val, sizeof(val)); |
| return ret; |
| } |
| |
| int bn_mod_inverse_prime_mont_small(BN_ULONG *r, size_t num_r, |
| const BN_ULONG *a, size_t num_a, |
| const BN_MONT_CTX *mont) { |
| const BN_ULONG *p = mont->N.d; |
| size_t num_p = mont->N.top; |
| if (num_p > BN_SMALL_MAX_WORDS || num_p == 0) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| return 0; |
| } |
| |
| // Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime. |
| BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS]; |
| OPENSSL_memcpy(p_minus_two, p, num_p * sizeof(BN_ULONG)); |
| if (p_minus_two[0] >= 2) { |
| p_minus_two[0] -= 2; |
| } else { |
| p_minus_two[0] -= 2; |
| for (size_t i = 1; i < num_p; i++) { |
| if (p_minus_two[i]-- != 0) { |
| break; |
| } |
| } |
| } |
| |
| return bn_mod_exp_mont_small(r, num_r, a, num_a, p_minus_two, num_p, mont); |
| } |
| |
| |
| // |BN_mod_exp_mont_consttime| stores the precomputed powers in a specific |
| // layout so that accessing any of these table values shows the same access |
| // pattern as far as cache lines are concerned. The following functions are |
| // used to transfer a BIGNUM from/to that table. |
| |
| static void copy_to_prebuf(const BIGNUM *b, int top, unsigned char *buf, |
| int idx, int window) { |
| int i, j; |
| const int width = 1 << window; |
| BN_ULONG *table = (BN_ULONG *) buf; |
| |
| if (top > b->top) { |
| top = b->top; // this works because 'buf' is explicitly zeroed |
| } |
| |
| for (i = 0, j = idx; i < top; i++, j += width) { |
| table[j] = b->d[i]; |
| } |
| } |
| |
| static int copy_from_prebuf(BIGNUM *b, int top, unsigned char *buf, int idx, |
| int window) { |
| int i, j; |
| const int width = 1 << window; |
| volatile BN_ULONG *table = (volatile BN_ULONG *)buf; |
| |
| if (!bn_wexpand(b, top)) { |
| return 0; |
| } |
| |
| if (window <= 3) { |
| for (i = 0; i < top; i++, table += width) { |
| BN_ULONG acc = 0; |
| |
| for (j = 0; j < width; j++) { |
| acc |= table[j] & ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1)); |
| } |
| |
| b->d[i] = acc; |
| } |
| } else { |
| int xstride = 1 << (window - 2); |
| BN_ULONG y0, y1, y2, y3; |
| |
| i = idx >> (window - 2); // equivalent of idx / xstride |
| idx &= xstride - 1; // equivalent of idx % xstride |
| |
| y0 = (BN_ULONG)0 - (constant_time_eq_int(i, 0) & 1); |
| y1 = (BN_ULONG)0 - (constant_time_eq_int(i, 1) & 1); |
| y2 = (BN_ULONG)0 - (constant_time_eq_int(i, 2) & 1); |
| y3 = (BN_ULONG)0 - (constant_time_eq_int(i, 3) & 1); |
| |
| for (i = 0; i < top; i++, table += width) { |
| BN_ULONG acc = 0; |
| |
| for (j = 0; j < xstride; j++) { |
| acc |= ((table[j + 0 * xstride] & y0) | (table[j + 1 * xstride] & y1) | |
| (table[j + 2 * xstride] & y2) | (table[j + 3 * xstride] & y3)) & |
| ((BN_ULONG)0 - (constant_time_eq_int(j, idx) & 1)); |
| } |
| |
| b->d[i] = acc; |
| } |
| } |
| |
| b->top = top; |
| bn_correct_top(b); |
| return 1; |
| } |
| |
| // BN_mod_exp_mont_conttime is based on the assumption that the L1 data cache |
| // line width of the target processor is at least the following value. |
| #define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH (64) |
| #define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \ |
| (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) |
| |
| // Window sizes optimized for fixed window size modular exponentiation |
| // algorithm (BN_mod_exp_mont_consttime). |
| // |
| // To achieve the security goals of BN_mode_exp_mont_consttime, the maximum |
| // size of the window must not exceed |
| // log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). |
| // |
| // Window size thresholds are defined for cache line sizes of 32 and 64, cache |
| // line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of |
| // 7 should only be used on processors that have a 128 byte or greater cache |
| // line size. |
| #if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 |
| |
| #define BN_window_bits_for_ctime_exponent_size(b) \ |
| ((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1) |
| #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) |
| |
| #elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 |
| |
| #define BN_window_bits_for_ctime_exponent_size(b) \ |
| ((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1) |
| #define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) |
| |
| #endif |
| |
| // Given a pointer value, compute the next address that is a cache line |
| // multiple. |
| #define MOD_EXP_CTIME_ALIGN(x_) \ |
| ((unsigned char *)(x_) + \ |
| (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \ |
| (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK)))) |
| |
| // This variant of BN_mod_exp_mont() uses fixed windows and the special |
| // precomputation memory layout to limit data-dependency to a minimum |
| // to protect secret exponents (cf. the hyper-threading timing attacks |
| // pointed out by Colin Percival, |
| // http://www.daemonology.net/hyperthreading-considered-harmful/) |
| int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, |
| const BN_MONT_CTX *mont) { |
| int i, bits, ret = 0, window, wvalue; |
| int top; |
| BN_MONT_CTX *new_mont = NULL; |
| |
| int numPowers; |
| unsigned char *powerbufFree = NULL; |
| int powerbufLen = 0; |
| unsigned char *powerbuf = NULL; |
| BIGNUM tmp, am; |
| BIGNUM *new_a = NULL; |
| |
| if (!BN_is_odd(m)) { |
| OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS); |
| return 0; |
| } |
| |
| top = m->top; |
| |
| bits = BN_num_bits(p); |
| if (bits == 0) { |
| // x**0 mod 1 is still zero. |
| if (BN_is_one(m)) { |
| BN_zero(rr); |
| return 1; |
| } |
| return BN_one(rr); |
| } |
| |
| // Allocate a montgomery context if it was not supplied by the caller. |
| if (mont == NULL) { |
| new_mont = BN_MONT_CTX_new(); |
| if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) { |
| goto err; |
| } |
| mont = new_mont; |
| } |
| |
| if (a->neg || BN_ucmp(a, m) >= 0) { |
| new_a = BN_new(); |
| if (new_a == NULL || |
| !BN_nnmod(new_a, a, m, ctx)) { |
| goto err; |
| } |
| a = new_a; |
| } |
| |
| #ifdef RSAZ_ENABLED |
| // If the size of the operands allow it, perform the optimized |
| // RSAZ exponentiation. For further information see |
| // crypto/bn/rsaz_exp.c and accompanying assembly modules. |
| if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024) && |
| rsaz_avx2_eligible()) { |
| if (!bn_wexpand(rr, 16)) { |
| goto err; |
| } |
| RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0]); |
| rr->top = 16; |
| rr->neg = 0; |
| bn_correct_top(rr); |
| ret = 1; |
| goto err; |
| } |
| #endif |
| |
| // Get the window size to use with size of p. |
| window = BN_window_bits_for_ctime_exponent_size(bits); |
| #if defined(OPENSSL_BN_ASM_MONT5) |
| if (window >= 5) { |
| window = 5; // ~5% improvement for RSA2048 sign, and even for RSA4096 |
| // reserve space for mont->N.d[] copy |
| powerbufLen += top * sizeof(mont->N.d[0]); |
| } |
| #endif |
| |
| // Allocate a buffer large enough to hold all of the pre-computed |
| // powers of am, am itself and tmp. |
| numPowers = 1 << window; |
| powerbufLen += |
| sizeof(m->d[0]) * |
| (top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers)); |
| #ifdef alloca |
| if (powerbufLen < 3072) { |
| powerbufFree = alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH); |
| } else |
| #endif |
| { |
| if ((powerbufFree = OPENSSL_malloc( |
| powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH)) == NULL) { |
| goto err; |
| } |
| } |
| |
| powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree); |
| OPENSSL_memset(powerbuf, 0, powerbufLen); |
| |
| #ifdef alloca |
| if (powerbufLen < 3072) { |
| powerbufFree = NULL; |
| } |
| #endif |
| |
| // lay down tmp and am right after powers table |
| tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers); |
| am.d = tmp.d + top; |
| tmp.top = am.top = 0; |
| tmp.dmax = am.dmax = top; |
| tmp.neg = am.neg = 0; |
| tmp.flags = am.flags = BN_FLG_STATIC_DATA; |
| |
| // prepare a^0 in Montgomery domain |
| // by Shay Gueron's suggestion |
| if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) { |
| // 2^(top*BN_BITS2) - m |
| tmp.d[0] = 0 - m->d[0]; |
| for (i = 1; i < top; i++) { |
| tmp.d[i] = ~m->d[i]; |
| } |
| tmp.top = top; |
| } else if (!BN_to_montgomery(&tmp, BN_value_one(), mont, ctx)) { |
| goto err; |
| } |
| |
| // prepare a^1 in Montgomery domain |
| assert(!a->neg); |
| assert(BN_ucmp(a, m) < 0); |
| if (!BN_to_montgomery(&am, a, mont, ctx)) { |
| goto err; |
| } |
| |
| #if defined(OPENSSL_BN_ASM_MONT5) |
| // This optimization uses ideas from http://eprint.iacr.org/2011/239, |
| // specifically optimization of cache-timing attack countermeasures |
| // and pre-computation optimization. |
| |
| // Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as |
| // 512-bit RSA is hardly relevant, we omit it to spare size... |
| if (window == 5 && top > 1) { |
| const BN_ULONG *n0 = mont->n0; |
| BN_ULONG *np; |
| |
| // BN_to_montgomery can contaminate words above .top |
| // [in BN_DEBUG[_DEBUG] build]... |
| for (i = am.top; i < top; i++) { |
| am.d[i] = 0; |
| } |
| for (i = tmp.top; i < top; i++) { |
| tmp.d[i] = 0; |
| } |
| |
| // copy mont->N.d[] to improve cache locality |
| for (np = am.d + top, i = 0; i < top; i++) { |
| np[i] = mont->N.d[i]; |
| } |
| |
| bn_scatter5(tmp.d, top, powerbuf, 0); |
| bn_scatter5(am.d, am.top, powerbuf, 1); |
| bn_mul_mont(tmp.d, am.d, am.d, np, n0, top); |
| bn_scatter5(tmp.d, top, powerbuf, 2); |
| |
| // same as above, but uses squaring for 1/2 of operations |
| for (i = 4; i < 32; i *= 2) { |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_scatter5(tmp.d, top, powerbuf, i); |
| } |
| for (i = 3; i < 8; i += 2) { |
| int j; |
| bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
| bn_scatter5(tmp.d, top, powerbuf, i); |
| for (j = 2 * i; j < 32; j *= 2) { |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_scatter5(tmp.d, top, powerbuf, j); |
| } |
| } |
| for (; i < 16; i += 2) { |
| bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
| bn_scatter5(tmp.d, top, powerbuf, i); |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_scatter5(tmp.d, top, powerbuf, 2 * i); |
| } |
| for (; i < 32; i += 2) { |
| bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1); |
| bn_scatter5(tmp.d, top, powerbuf, i); |
| } |
| |
| bits--; |
| for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) { |
| wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| } |
| bn_gather5(tmp.d, top, powerbuf, wvalue); |
| |
| // At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit |
| // that has not been read yet.) |
| assert(bits >= -1 && (bits == -1 || bits % 5 == 4)); |
| |
| // Scan the exponent one window at a time starting from the most |
| // significant bits. |
| if (top & 7) { |
| while (bits >= 0) { |
| for (wvalue = 0, i = 0; i < 5; i++, bits--) { |
| wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| } |
| |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top); |
| bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); |
| } |
| } else { |
| const uint8_t *p_bytes = (const uint8_t *)p->d; |
| int max_bits = p->top * BN_BITS2; |
| assert(bits < max_bits); |
| // |p = 0| has been handled as a special case, so |max_bits| is at least |
| // one word. |
| assert(max_bits >= 64); |
| |
| // If the first bit to be read lands in the last byte, unroll the first |
| // iteration to avoid reading past the bounds of |p->d|. (After the first |
| // iteration, we are guaranteed to be past the last byte.) Note |bits| |
| // here is the top bit, inclusive. |
| if (bits - 4 >= max_bits - 8) { |
| // Read five bits from |bits-4| through |bits|, inclusive. |
| wvalue = p_bytes[p->top * BN_BYTES - 1]; |
| wvalue >>= (bits - 4) & 7; |
| wvalue &= 0x1f; |
| bits -= 5; |
| bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue); |
| } |
| while (bits >= 0) { |
| // Read five bits from |bits-4| through |bits|, inclusive. |
| int first_bit = bits - 4; |
| uint16_t val; |
| OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val)); |
| val >>= first_bit & 7; |
| val &= 0x1f; |
| bits -= 5; |
| bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val); |
| } |
| } |
| |
| ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top); |
| tmp.top = top; |
| bn_correct_top(&tmp); |
| if (ret) { |
| if (!BN_copy(rr, &tmp)) { |
| ret = 0; |
| } |
| goto err; // non-zero ret means it's not error |
| } |
| } else |
| #endif |
| { |
| copy_to_prebuf(&tmp, top, powerbuf, 0, window); |
| copy_to_prebuf(&am, top, powerbuf, 1, window); |
| |
| // If the window size is greater than 1, then calculate |
| // val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) |
| // (even powers could instead be computed as (a^(i/2))^2 |
| // to use the slight performance advantage of sqr over mul). |
| if (window > 1) { |
| if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) { |
| goto err; |
| } |
| |
| copy_to_prebuf(&tmp, top, powerbuf, 2, window); |
| |
| for (i = 3; i < numPowers; i++) { |
| // Calculate a^i = a^(i-1) * a |
| if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) { |
| goto err; |
| } |
| |
| copy_to_prebuf(&tmp, top, powerbuf, i, window); |
| } |
| } |
| |
| bits--; |
| for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) { |
| wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| } |
| if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) { |
| goto err; |
| } |
| |
| // Scan the exponent one window at a time starting from the most |
| // significant bits. |
| while (bits >= 0) { |
| wvalue = 0; // The 'value' of the window |
| |
| // Scan the window, squaring the result as we go |
| for (i = 0; i < window; i++, bits--) { |
| if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) { |
| goto err; |
| } |
| wvalue = (wvalue << 1) + BN_is_bit_set(p, bits); |
| } |
| |
| // Fetch the appropriate pre-computed value from the pre-buf |
| if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) { |
| goto err; |
| } |
| |
| // Multiply the result into the intermediate result |
| if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) { |
| goto err; |
| } |
| } |
| } |
| |
| // Convert the final result from montgomery to standard format |
| if (!BN_from_montgomery(rr, &tmp, mont, ctx)) { |
| goto err; |
| } |
| ret = 1; |
| |
| err: |
| BN_MONT_CTX_free(new_mont); |
| BN_clear_free(new_a); |
| OPENSSL_free(powerbufFree); |
| return (ret); |
| } |
| |
| int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p, |
| const BIGNUM *m, BN_CTX *ctx, |
| const BN_MONT_CTX *mont) { |
| BIGNUM a_bignum; |
| BN_init(&a_bignum); |
| |
| int ret = 0; |
| |
| if (!BN_set_word(&a_bignum, a)) { |
| OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR); |
| goto err; |
| } |
| |
| ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont); |
| |
| err: |
| BN_free(&a_bignum); |
| |
| return ret; |
| } |
| |
| #define TABLE_SIZE 32 |
| |
| int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1, |
| const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m, |
| BN_CTX *ctx, const BN_MONT_CTX *mont) { |
| BIGNUM tmp; |
| BN_init(&tmp); |
| |
| int ret = 0; |
| BN_MONT_CTX *new_mont = NULL; |
| |
| // Allocate a montgomery context if it was not supplied by the caller. |
| if (mont == NULL) { |
| new_mont = BN_MONT_CTX_new(); |
| if (new_mont == NULL || !BN_MONT_CTX_set(new_mont, m, ctx)) { |
| goto err; |
| } |
| mont = new_mont; |
| } |
| |
| // BN_mod_mul_montgomery removes one Montgomery factor, so passing one |
| // Montgomery-encoded and one non-Montgomery-encoded value gives a |
| // non-Montgomery-encoded result. |
| if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) || |
| !BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) || |
| !BN_to_montgomery(rr, rr, mont, ctx) || |
| !BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_MONT_CTX_free(new_mont); |
| BN_free(&tmp); |
| |
| return ret; |
| } |