blob: f2dc7fe609005cfc40221663fe65a596195a562d [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/rsa.h>
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/thread.h>
#include "../../internal.h"
#include "../bn/internal.h"
#include "../delocate.h"
#include "../rand/fork_detect.h"
#include "../service_indicator/internal.h"
#include "internal.h"
int rsa_check_public_key(const RSA *rsa) {
if (rsa->n == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
// TODO(davidben): 16384-bit RSA is huge. Can we bring this down to a limit of
// 8192-bit?
unsigned n_bits = BN_num_bits(rsa->n);
if (n_bits > 16 * 1024) {
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
return 0;
}
// TODO(crbug.com/boringssl/607): Raise this limit. 512-bit RSA was factored
// in 1999.
if (n_bits < 512) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
// RSA moduli must be positive and odd. In addition to being necessary for RSA
// in general, we cannot setup Montgomery reduction with even moduli.
if (!BN_is_odd(rsa->n) || BN_is_negative(rsa->n)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
return 0;
}
static const unsigned kMaxExponentBits = 33;
if (rsa->e != NULL) {
// Reject e = 1, negative e, and even e. e must be odd to be relatively
// prime with phi(n).
unsigned e_bits = BN_num_bits(rsa->e);
if (e_bits < 2 || BN_is_negative(rsa->e) || !BN_is_odd(rsa->e)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
if (rsa->flags & RSA_FLAG_LARGE_PUBLIC_EXPONENT) {
// The caller has requested disabling DoS protections. Still, e must be
// less than n.
if (BN_ucmp(rsa->n, rsa->e) <= 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
} else {
// Mitigate DoS attacks by limiting the exponent size. 33 bits was chosen
// as the limit based on the recommendations in [1] and [2]. Windows
// CryptoAPI doesn't support values larger than 32 bits [3], so it is
// unlikely that exponents larger than 32 bits are being used for anything
// Windows commonly does.
//
// [1] https://www.imperialviolet.org/2012/03/16/rsae.html
// [2] https://www.imperialviolet.org/2012/03/17/rsados.html
// [3] https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
if (e_bits > kMaxExponentBits) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
// The upper bound on |e_bits| and lower bound on |n_bits| imply e is
// bounded by n.
assert(BN_ucmp(rsa->n, rsa->e) > 0);
}
} else if (!(rsa->flags & RSA_FLAG_NO_PUBLIC_EXPONENT)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
return 1;
}
static int ensure_fixed_copy(BIGNUM **out, const BIGNUM *in, int width) {
if (*out != NULL) {
return 1;
}
BIGNUM *copy = BN_dup(in);
if (copy == NULL ||
!bn_resize_words(copy, width)) {
BN_free(copy);
return 0;
}
*out = copy;
bn_secret(copy);
return 1;
}
// freeze_private_key finishes initializing |rsa|'s private key components.
// After this function has returned, |rsa| may not be changed. This is needed
// because |RSA| is a public struct and, additionally, OpenSSL 1.1.0 opaquified
// it wrong (see https://github.com/openssl/openssl/issues/5158).
static int freeze_private_key(RSA *rsa, BN_CTX *ctx) {
CRYPTO_MUTEX_lock_read(&rsa->lock);
int frozen = rsa->private_key_frozen;
CRYPTO_MUTEX_unlock_read(&rsa->lock);
if (frozen) {
return 1;
}
int ret = 0;
CRYPTO_MUTEX_lock_write(&rsa->lock);
if (rsa->private_key_frozen) {
ret = 1;
goto err;
}
// Check the public components are within DoS bounds.
if (!rsa_check_public_key(rsa)) {
goto err;
}
// Pre-compute various intermediate values, as well as copies of private
// exponents with correct widths. Note that other threads may concurrently
// read from |rsa->n|, |rsa->e|, etc., so any fixes must be in separate
// copies. We use |mont_n->N|, |mont_p->N|, and |mont_q->N| as copies of |n|,
// |p|, and |q| with the correct minimal widths.
if (rsa->mont_n == NULL) {
rsa->mont_n = BN_MONT_CTX_new_for_modulus(rsa->n, ctx);
if (rsa->mont_n == NULL) {
goto err;
}
}
const BIGNUM *n_fixed = &rsa->mont_n->N;
// The only public upper-bound of |rsa->d| is the bit length of |rsa->n|. The
// ASN.1 serialization of RSA private keys unfortunately leaks the byte length
// of |rsa->d|, but normalize it so we only leak it once, rather than per
// operation.
if (rsa->d != NULL &&
!ensure_fixed_copy(&rsa->d_fixed, rsa->d, n_fixed->width)) {
goto err;
}
if (rsa->e != NULL && rsa->p != NULL && rsa->q != NULL) {
// TODO: p and q are also CONSTTIME_SECRET but not yet marked as such
// because the Montgomery code does things like test whether or not values
// are zero. So the secret marking probably needs to happen inside that
// code.
if (rsa->mont_p == NULL) {
rsa->mont_p = BN_MONT_CTX_new_consttime(rsa->p, ctx);
if (rsa->mont_p == NULL) {
goto err;
}
}
const BIGNUM *p_fixed = &rsa->mont_p->N;
if (rsa->mont_q == NULL) {
rsa->mont_q = BN_MONT_CTX_new_consttime(rsa->q, ctx);
if (rsa->mont_q == NULL) {
goto err;
}
}
const BIGNUM *q_fixed = &rsa->mont_q->N;
if (rsa->dmp1 != NULL && rsa->dmq1 != NULL) {
// Key generation relies on this function to compute |iqmp|.
if (rsa->iqmp == NULL) {
BIGNUM *iqmp = BN_new();
if (iqmp == NULL ||
!bn_mod_inverse_secret_prime(iqmp, rsa->q, rsa->p, ctx,
rsa->mont_p)) {
BN_free(iqmp);
goto err;
}
rsa->iqmp = iqmp;
}
// CRT components are only publicly bounded by their corresponding
// moduli's bit lengths.
if (!ensure_fixed_copy(&rsa->dmp1_fixed, rsa->dmp1, p_fixed->width) ||
!ensure_fixed_copy(&rsa->dmq1_fixed, rsa->dmq1, q_fixed->width)) {
goto err;
}
// Compute |iqmp_mont|, which is |iqmp| in Montgomery form and with the
// correct bit width.
if (rsa->iqmp_mont == NULL) {
BIGNUM *iqmp_mont = BN_new();
if (iqmp_mont == NULL ||
!BN_to_montgomery(iqmp_mont, rsa->iqmp, rsa->mont_p, ctx)) {
BN_free(iqmp_mont);
goto err;
}
rsa->iqmp_mont = iqmp_mont;
bn_secret(rsa->iqmp_mont);
}
}
}
rsa->private_key_frozen = 1;
ret = 1;
err:
CRYPTO_MUTEX_unlock_write(&rsa->lock);
return ret;
}
void rsa_invalidate_key(RSA *rsa) {
rsa->private_key_frozen = 0;
BN_MONT_CTX_free(rsa->mont_n);
rsa->mont_n = NULL;
BN_MONT_CTX_free(rsa->mont_p);
rsa->mont_p = NULL;
BN_MONT_CTX_free(rsa->mont_q);
rsa->mont_q = NULL;
BN_free(rsa->d_fixed);
rsa->d_fixed = NULL;
BN_free(rsa->dmp1_fixed);
rsa->dmp1_fixed = NULL;
BN_free(rsa->dmq1_fixed);
rsa->dmq1_fixed = NULL;
BN_free(rsa->iqmp_mont);
rsa->iqmp_mont = NULL;
for (size_t i = 0; i < rsa->num_blindings; i++) {
BN_BLINDING_free(rsa->blindings[i]);
}
OPENSSL_free(rsa->blindings);
rsa->blindings = NULL;
rsa->num_blindings = 0;
OPENSSL_free(rsa->blindings_inuse);
rsa->blindings_inuse = NULL;
rsa->blinding_fork_generation = 0;
}
size_t rsa_default_size(const RSA *rsa) {
return BN_num_bytes(rsa->n);
}
// MAX_BLINDINGS_PER_RSA defines the maximum number of cached BN_BLINDINGs per
// RSA*. Then this limit is exceeded, BN_BLINDING objects will be created and
// destroyed as needed.
#if defined(OPENSSL_TSAN)
// Smaller under TSAN so that the edge case can be hit with fewer threads.
#define MAX_BLINDINGS_PER_RSA 2
#else
#define MAX_BLINDINGS_PER_RSA 1024
#endif
// rsa_blinding_get returns a BN_BLINDING to use with |rsa|. It does this by
// allocating one of the cached BN_BLINDING objects in |rsa->blindings|. If
// none are free, the cache will be extended by a extra element and the new
// BN_BLINDING is returned.
//
// On success, the index of the assigned BN_BLINDING is written to
// |*index_used| and must be passed to |rsa_blinding_release| when finished.
static BN_BLINDING *rsa_blinding_get(RSA *rsa, size_t *index_used,
BN_CTX *ctx) {
assert(ctx != NULL);
assert(rsa->mont_n != NULL);
BN_BLINDING *ret = NULL;
const uint64_t fork_generation = CRYPTO_get_fork_generation();
CRYPTO_MUTEX_lock_write(&rsa->lock);
// Wipe the blinding cache on |fork|.
if (rsa->blinding_fork_generation != fork_generation) {
for (size_t i = 0; i < rsa->num_blindings; i++) {
// The inuse flag must be zero unless we were forked from a
// multi-threaded process, in which case calling back into BoringSSL is
// forbidden.
assert(rsa->blindings_inuse[i] == 0);
BN_BLINDING_invalidate(rsa->blindings[i]);
}
rsa->blinding_fork_generation = fork_generation;
}
uint8_t *const free_inuse_flag =
OPENSSL_memchr(rsa->blindings_inuse, 0, rsa->num_blindings);
if (free_inuse_flag != NULL) {
*free_inuse_flag = 1;
*index_used = free_inuse_flag - rsa->blindings_inuse;
ret = rsa->blindings[*index_used];
goto out;
}
if (rsa->num_blindings >= MAX_BLINDINGS_PER_RSA) {
// No |BN_BLINDING| is free and nor can the cache be extended. This index
// value is magic and indicates to |rsa_blinding_release| that a
// |BN_BLINDING| was not inserted into the array.
*index_used = MAX_BLINDINGS_PER_RSA;
ret = BN_BLINDING_new();
goto out;
}
// Double the length of the cache.
static_assert(MAX_BLINDINGS_PER_RSA < UINT_MAX / 2,
"MAX_BLINDINGS_PER_RSA too large");
size_t new_num_blindings = rsa->num_blindings * 2;
if (new_num_blindings == 0) {
new_num_blindings = 1;
}
if (new_num_blindings > MAX_BLINDINGS_PER_RSA) {
new_num_blindings = MAX_BLINDINGS_PER_RSA;
}
assert(new_num_blindings > rsa->num_blindings);
BN_BLINDING **new_blindings =
OPENSSL_calloc(new_num_blindings, sizeof(BN_BLINDING *));
uint8_t *new_blindings_inuse = OPENSSL_malloc(new_num_blindings);
if (new_blindings == NULL || new_blindings_inuse == NULL) {
goto err;
}
OPENSSL_memcpy(new_blindings, rsa->blindings,
sizeof(BN_BLINDING *) * rsa->num_blindings);
OPENSSL_memcpy(new_blindings_inuse, rsa->blindings_inuse, rsa->num_blindings);
for (size_t i = rsa->num_blindings; i < new_num_blindings; i++) {
new_blindings[i] = BN_BLINDING_new();
if (new_blindings[i] == NULL) {
for (size_t j = rsa->num_blindings; j < i; j++) {
BN_BLINDING_free(new_blindings[j]);
}
goto err;
}
}
memset(&new_blindings_inuse[rsa->num_blindings], 0,
new_num_blindings - rsa->num_blindings);
new_blindings_inuse[rsa->num_blindings] = 1;
*index_used = rsa->num_blindings;
assert(*index_used != MAX_BLINDINGS_PER_RSA);
ret = new_blindings[rsa->num_blindings];
OPENSSL_free(rsa->blindings);
rsa->blindings = new_blindings;
OPENSSL_free(rsa->blindings_inuse);
rsa->blindings_inuse = new_blindings_inuse;
rsa->num_blindings = new_num_blindings;
goto out;
err:
OPENSSL_free(new_blindings_inuse);
OPENSSL_free(new_blindings);
out:
CRYPTO_MUTEX_unlock_write(&rsa->lock);
return ret;
}
// rsa_blinding_release marks the cached BN_BLINDING at the given index as free
// for other threads to use.
static void rsa_blinding_release(RSA *rsa, BN_BLINDING *blinding,
size_t blinding_index) {
if (blinding_index == MAX_BLINDINGS_PER_RSA) {
// This blinding wasn't cached.
BN_BLINDING_free(blinding);
return;
}
CRYPTO_MUTEX_lock_write(&rsa->lock);
rsa->blindings_inuse[blinding_index] = 0;
CRYPTO_MUTEX_unlock_write(&rsa->lock);
}
// signing
int rsa_default_sign_raw(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in, size_t in_len,
int padding) {
const unsigned rsa_size = RSA_size(rsa);
uint8_t *buf = NULL;
int i, ret = 0;
if (max_out < rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
buf = OPENSSL_malloc(rsa_size);
if (buf == NULL) {
goto err;
}
switch (padding) {
case RSA_PKCS1_PADDING:
i = RSA_padding_add_PKCS1_type_1(buf, rsa_size, in, in_len);
break;
case RSA_NO_PADDING:
i = RSA_padding_add_none(buf, rsa_size, in, in_len);
break;
default:
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
goto err;
}
if (i <= 0) {
goto err;
}
if (!rsa_private_transform_no_self_test(rsa, out, buf, rsa_size)) {
goto err;
}
CONSTTIME_DECLASSIFY(out, rsa_size);
*out_len = rsa_size;
ret = 1;
err:
OPENSSL_free(buf);
return ret;
}
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx);
int rsa_verify_raw_no_self_test(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in,
size_t in_len, int padding) {
if (rsa->n == NULL || rsa->e == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
if (!rsa_check_public_key(rsa)) {
return 0;
}
const unsigned rsa_size = RSA_size(rsa);
BIGNUM *f, *result;
if (max_out < rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_OUTPUT_BUFFER_TOO_SMALL);
return 0;
}
if (in_len != rsa_size) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_LEN_NOT_EQUAL_TO_MOD_LEN);
return 0;
}
BN_CTX *ctx = BN_CTX_new();
if (ctx == NULL) {
return 0;
}
int ret = 0;
uint8_t *buf = NULL;
BN_CTX_start(ctx);
f = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
if (f == NULL || result == NULL) {
goto err;
}
if (padding == RSA_NO_PADDING) {
buf = out;
} else {
// Allocate a temporary buffer to hold the padded plaintext.
buf = OPENSSL_malloc(rsa_size);
if (buf == NULL) {
goto err;
}
}
if (BN_bin2bn(in, in_len, f) == NULL) {
goto err;
}
if (BN_ucmp(f, rsa->n) >= 0) {
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
if (!BN_MONT_CTX_set_locked(&rsa->mont_n, &rsa->lock, rsa->n, ctx) ||
!BN_mod_exp_mont(result, f, rsa->e, &rsa->mont_n->N, ctx, rsa->mont_n)) {
goto err;
}
if (!BN_bn2bin_padded(buf, rsa_size, result)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
switch (padding) {
case RSA_PKCS1_PADDING:
ret =
RSA_padding_check_PKCS1_type_1(out, out_len, rsa_size, buf, rsa_size);
break;
case RSA_NO_PADDING:
ret = 1;
*out_len = rsa_size;
break;
default:
OPENSSL_PUT_ERROR(RSA, RSA_R_UNKNOWN_PADDING_TYPE);
goto err;
}
if (!ret) {
OPENSSL_PUT_ERROR(RSA, RSA_R_PADDING_CHECK_FAILED);
goto err;
}
err:
BN_CTX_end(ctx);
BN_CTX_free(ctx);
if (buf != out) {
OPENSSL_free(buf);
}
return ret;
}
int RSA_verify_raw(RSA *rsa, size_t *out_len, uint8_t *out,
size_t max_out, const uint8_t *in,
size_t in_len, int padding) {
boringssl_ensure_rsa_self_test();
return rsa_verify_raw_no_self_test(rsa, out_len, out, max_out, in, in_len,
padding);
}
int rsa_default_private_transform(RSA *rsa, uint8_t *out, const uint8_t *in,
size_t len) {
if (rsa->n == NULL || rsa->d == NULL) {
OPENSSL_PUT_ERROR(RSA, RSA_R_VALUE_MISSING);
return 0;
}
BIGNUM *f, *result;
BN_CTX *ctx = NULL;
size_t blinding_index = 0;
BN_BLINDING *blinding = NULL;
int ret = 0;
ctx = BN_CTX_new();
if (ctx == NULL) {
goto err;
}
BN_CTX_start(ctx);
f = BN_CTX_get(ctx);
result = BN_CTX_get(ctx);
if (f == NULL || result == NULL) {
goto err;
}
// The caller should have ensured this.
assert(len == BN_num_bytes(rsa->n));
if (BN_bin2bn(in, len, f) == NULL) {
goto err;
}
// The input to the RSA private transform may be secret, but padding is
// expected to construct a value within range, so we can leak this comparison.
if (constant_time_declassify_int(BN_ucmp(f, rsa->n) >= 0)) {
// Usually the padding functions would catch this.
OPENSSL_PUT_ERROR(RSA, RSA_R_DATA_TOO_LARGE_FOR_MODULUS);
goto err;
}
if (!freeze_private_key(rsa, ctx)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
const int do_blinding =
(rsa->flags & (RSA_FLAG_NO_BLINDING | RSA_FLAG_NO_PUBLIC_EXPONENT)) == 0;
if (rsa->e == NULL && do_blinding) {
// We cannot do blinding or verification without |e|, and continuing without
// those countermeasures is dangerous. However, the Java/Android RSA API
// requires support for keys where only |d| and |n| (and not |e|) are known.
// The callers that require that bad behavior must set
// |RSA_FLAG_NO_BLINDING| or use |RSA_new_private_key_no_e|.
//
// TODO(davidben): Update this comment when Conscrypt is updated to use
// |RSA_new_private_key_no_e|.
OPENSSL_PUT_ERROR(RSA, RSA_R_NO_PUBLIC_EXPONENT);
goto err;
}
if (do_blinding) {
blinding = rsa_blinding_get(rsa, &blinding_index, ctx);
if (blinding == NULL) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
if (!BN_BLINDING_convert(f, blinding, rsa->e, rsa->mont_n, ctx)) {
goto err;
}
}
if (rsa->p != NULL && rsa->q != NULL && rsa->e != NULL && rsa->dmp1 != NULL &&
rsa->dmq1 != NULL && rsa->iqmp != NULL &&
// Require that we can reduce |f| by |rsa->p| and |rsa->q| in constant
// time, which requires primes be the same size, rounded to the Montgomery
// coefficient. (See |mod_montgomery|.) This is not required by RFC 8017,
// but it is true for keys generated by us and all common implementations.
bn_less_than_montgomery_R(rsa->q, rsa->mont_p) &&
bn_less_than_montgomery_R(rsa->p, rsa->mont_q)) {
if (!mod_exp(result, f, rsa, ctx)) {
goto err;
}
} else if (!BN_mod_exp_mont_consttime(result, f, rsa->d_fixed, rsa->n, ctx,
rsa->mont_n)) {
goto err;
}
// Verify the result to protect against fault attacks as described in the
// 1997 paper "On the Importance of Checking Cryptographic Protocols for
// Faults" by Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. Some
// implementations do this only when the CRT is used, but we do it in all
// cases. Section 6 of the aforementioned paper describes an attack that
// works when the CRT isn't used. That attack is much less likely to succeed
// than the CRT attack, but there have likely been improvements since 1997.
//
// This check is cheap assuming |e| is small, which we require in
// |rsa_check_public_key|.
if (rsa->e != NULL) {
BIGNUM *vrfy = BN_CTX_get(ctx);
if (vrfy == NULL ||
!BN_mod_exp_mont(vrfy, result, rsa->e, rsa->n, ctx, rsa->mont_n) ||
!constant_time_declassify_int(BN_equal_consttime(vrfy, f))) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
}
if (do_blinding &&
!BN_BLINDING_invert(result, blinding, rsa->mont_n, ctx)) {
goto err;
}
// The computation should have left |result| as a maximally-wide number, so
// that it and serializing does not leak information about the magnitude of
// the result.
//
// See Falko Strenzke, "Manger's Attack revisited", ICICS 2010.
assert(result->width == rsa->mont_n->N.width);
bn_assert_fits_in_bytes(result, len);
if (!BN_bn2bin_padded(out, len, result)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
if (blinding != NULL) {
rsa_blinding_release(rsa, blinding, blinding_index);
}
return ret;
}
// mod_montgomery sets |r| to |I| mod |p|. |I| must already be fully reduced
// modulo |p| times |q|. It returns one on success and zero on error.
static int mod_montgomery(BIGNUM *r, const BIGNUM *I, const BIGNUM *p,
const BN_MONT_CTX *mont_p, const BIGNUM *q,
BN_CTX *ctx) {
// Reducing in constant-time with Montgomery reduction requires I <= p * R. We
// have I < p * q, so this follows if q < R. The caller should have checked
// this already.
if (!bn_less_than_montgomery_R(q, mont_p)) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
if (// Reduce mod p with Montgomery reduction. This computes I * R^-1 mod p.
!BN_from_montgomery(r, I, mont_p, ctx) ||
// Multiply by R^2 and do another Montgomery reduction to compute
// I * R^-1 * R^2 * R^-1 = I mod p.
!BN_to_montgomery(r, r, mont_p, ctx)) {
return 0;
}
// By precomputing R^3 mod p (normally |BN_MONT_CTX| only uses R^2 mod p) and
// adjusting the API for |BN_mod_exp_mont_consttime|, we could instead compute
// I * R mod p here and save a reduction per prime. But this would require
// changing the RSAZ code and may not be worth it. Note that the RSAZ code
// uses a different radix, so it uses R' = 2^1044. There we'd actually want
// R^2 * R', and would futher benefit from a precomputed R'^2. It currently
// converts |mont_p->RR| to R'^2.
return 1;
}
static int mod_exp(BIGNUM *r0, const BIGNUM *I, RSA *rsa, BN_CTX *ctx) {
assert(ctx != NULL);
assert(rsa->n != NULL);
assert(rsa->e != NULL);
assert(rsa->d != NULL);
assert(rsa->p != NULL);
assert(rsa->q != NULL);
assert(rsa->dmp1 != NULL);
assert(rsa->dmq1 != NULL);
assert(rsa->iqmp != NULL);
BIGNUM *r1, *m1;
int ret = 0;
BN_CTX_start(ctx);
r1 = BN_CTX_get(ctx);
m1 = BN_CTX_get(ctx);
if (r1 == NULL ||
m1 == NULL) {
goto err;
}
if (!freeze_private_key(rsa, ctx)) {
goto err;
}
// Use the minimal-width versions of |n|, |p|, and |q|. Either works, but if
// someone gives us non-minimal values, these will be slightly more efficient
// on the non-Montgomery operations.
const BIGNUM *n = &rsa->mont_n->N;
const BIGNUM *p = &rsa->mont_p->N;
const BIGNUM *q = &rsa->mont_q->N;
// This is a pre-condition for |mod_montgomery|. It was already checked by the
// caller.
assert(BN_ucmp(I, n) < 0);
if (// |m1| is the result modulo |q|.
!mod_montgomery(r1, I, q, rsa->mont_q, p, ctx) ||
!BN_mod_exp_mont_consttime(m1, r1, rsa->dmq1_fixed, q, ctx,
rsa->mont_q) ||
// |r0| is the result modulo |p|.
!mod_montgomery(r1, I, p, rsa->mont_p, q, ctx) ||
!BN_mod_exp_mont_consttime(r0, r1, rsa->dmp1_fixed, p, ctx,
rsa->mont_p) ||
// Compute r0 = r0 - m1 mod p. |m1| is reduced mod |q|, not |p|, so we
// just run |mod_montgomery| again for simplicity. This could be more
// efficient with more cases: if |p > q|, |m1| is already reduced. If
// |p < q| but they have the same bit width, |bn_reduce_once| suffices.
// However, compared to over 2048 Montgomery multiplications above, this
// difference is not measurable.
!mod_montgomery(r1, m1, p, rsa->mont_p, q, ctx) ||
!bn_mod_sub_consttime(r0, r0, r1, p, ctx) ||
// r0 = r0 * iqmp mod p. We use Montgomery multiplication to compute this
// in constant time. |iqmp_mont| is in Montgomery form and r0 is not, so
// the result is taken out of Montgomery form.
!BN_mod_mul_montgomery(r0, r0, rsa->iqmp_mont, rsa->mont_p, ctx) ||
// r0 = r0 * q + m1 gives the final result. Reducing modulo q gives m1, so
// it is correct mod p. Reducing modulo p gives (r0-m1)*iqmp*q + m1 = r0,
// so it is correct mod q. Finally, the result is bounded by [m1, n + m1),
// and the result is at least |m1|, so this must be the unique answer in
// [0, n).
!bn_mul_consttime(r0, r0, q, ctx) || //
!bn_uadd_consttime(r0, r0, m1)) {
goto err;
}
// The result should be bounded by |n|, but fixed-width operations may
// bound the width slightly higher, so fix it. This trips constant-time checks
// because a naive data flow analysis does not realize the excess words are
// publicly zero.
assert(BN_cmp(r0, n) < 0);
bn_assert_fits_in_bytes(r0, BN_num_bytes(n));
if (!bn_resize_words(r0, n->width)) {
goto err;
}
ret = 1;
err:
BN_CTX_end(ctx);
return ret;
}
static int ensure_bignum(BIGNUM **out) {
if (*out == NULL) {
*out = BN_new();
}
return *out != NULL;
}
// kBoringSSLRSASqrtTwo is the BIGNUM representation of ⌊2²⁰⁴⁷×√2⌋. This is
// chosen to give enough precision for 4096-bit RSA, the largest key size FIPS
// specifies. Key sizes beyond this will round up.
//
// To calculate, use the following Haskell code:
//
// import Text.Printf (printf)
// import Data.List (intercalate)
//
// pow2 = 4095
// target = 2^pow2
//
// f x = x*x - (toRational target)
//
// fprime x = 2*x
//
// newtonIteration x = x - (f x) / (fprime x)
//
// converge x =
// let n = floor x in
// if n*n - target < 0 && (n+1)*(n+1) - target > 0
// then n
// else converge (newtonIteration x)
//
// divrem bits x = (x `div` (2^bits), x `rem` (2^bits))
//
// bnWords :: Integer -> [Integer]
// bnWords x =
// if x == 0
// then []
// else let (high, low) = divrem 64 x in low : bnWords high
//
// showWord x = let (high, low) = divrem 32 x in printf "TOBN(0x%08x, 0x%08x)" high low
//
// output :: String
// output = intercalate ", " $ map showWord $ bnWords $ converge (2 ^ (pow2 `div` 2))
//
// To verify this number, check that n² < 2⁴⁰⁹⁵ < (n+1)², where n is value
// represented here. Note the components are listed in little-endian order. Here
// is some sample Python code to check:
//
// >>> TOBN = lambda a, b: a << 32 | b
// >>> l = [ <paste the contents of kSqrtTwo> ]
// >>> n = sum(a * 2**(64*i) for i, a in enumerate(l))
// >>> n**2 < 2**4095 < (n+1)**2
// True
const BN_ULONG kBoringSSLRSASqrtTwo[] = {
TOBN(0x4d7c60a5, 0xe633e3e1), TOBN(0x5fcf8f7b, 0xca3ea33b),
TOBN(0xc246785e, 0x92957023), TOBN(0xf9acce41, 0x797f2805),
TOBN(0xfdfe170f, 0xd3b1f780), TOBN(0xd24f4a76, 0x3facb882),
TOBN(0x18838a2e, 0xaff5f3b2), TOBN(0xc1fcbdde, 0xa2f7dc33),
TOBN(0xdea06241, 0xf7aa81c2), TOBN(0xf6a1be3f, 0xca221307),
TOBN(0x332a5e9f, 0x7bda1ebf), TOBN(0x0104dc01, 0xfe32352f),
TOBN(0xb8cf341b, 0x6f8236c7), TOBN(0x4264dabc, 0xd528b651),
TOBN(0xf4d3a02c, 0xebc93e0c), TOBN(0x81394ab6, 0xd8fd0efd),
TOBN(0xeaa4a089, 0x9040ca4a), TOBN(0xf52f120f, 0x836e582e),
TOBN(0xcb2a6343, 0x31f3c84d), TOBN(0xc6d5a8a3, 0x8bb7e9dc),
TOBN(0x460abc72, 0x2f7c4e33), TOBN(0xcab1bc91, 0x1688458a),
TOBN(0x53059c60, 0x11bc337b), TOBN(0xd2202e87, 0x42af1f4e),
TOBN(0x78048736, 0x3dfa2768), TOBN(0x0f74a85e, 0x439c7b4a),
TOBN(0xa8b1fe6f, 0xdc83db39), TOBN(0x4afc8304, 0x3ab8a2c3),
TOBN(0xed17ac85, 0x83339915), TOBN(0x1d6f60ba, 0x893ba84c),
TOBN(0x597d89b3, 0x754abe9f), TOBN(0xb504f333, 0xf9de6484),
};
const size_t kBoringSSLRSASqrtTwoLen = OPENSSL_ARRAY_SIZE(kBoringSSLRSASqrtTwo);
// generate_prime sets |out| to a prime with length |bits| such that |out|-1 is
// relatively prime to |e|. If |p| is non-NULL, |out| will also not be close to
// |p|. |sqrt2| must be ⌊2^(bits-1)×√2⌋ (or a slightly overestimate for large
// sizes), and |pow2_bits_100| must be 2^(bits-100).
//
// This function fails with probability around 2^-21.
static int generate_prime(BIGNUM *out, int bits, const BIGNUM *e,
const BIGNUM *p, const BIGNUM *sqrt2,
const BIGNUM *pow2_bits_100, BN_CTX *ctx,
BN_GENCB *cb) {
if (bits < 128 || (bits % BN_BITS2) != 0) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
return 0;
}
assert(BN_is_pow2(pow2_bits_100));
assert(BN_is_bit_set(pow2_bits_100, bits - 100));
// See FIPS 186-4 appendix B.3.3, steps 4 and 5. Note |bits| here is nlen/2.
// Use the limit from steps 4.7 and 5.8 for most values of |e|. When |e| is 3,
// the 186-4 limit is too low, so we use a higher one. Note this case is not
// reachable from |RSA_generate_key_fips|.
//
// |limit| determines the failure probability. We must find a prime that is
// not 1 mod |e|. By the prime number theorem, we'll find one with probability
// p = (e-1)/e * 2/(ln(2)*bits). Note the second term is doubled because we
// discard even numbers.
//
// The failure probability is thus (1-p)^limit. To convert that to a power of
// two, we take logs. -log_2((1-p)^limit) = -limit * ln(1-p) / ln(2).
//
// >>> def f(bits, e, limit):
// ... p = (e-1.0)/e * 2.0/(math.log(2)*bits)
// ... return -limit * math.log(1 - p) / math.log(2)
// ...
// >>> f(1024, 65537, 5*1024)
// 20.842750558272634
// >>> f(1536, 65537, 5*1536)
// 20.83294549602474
// >>> f(2048, 65537, 5*2048)
// 20.828047576234948
// >>> f(1024, 3, 8*1024)
// 22.222147925962307
// >>> f(1536, 3, 8*1536)
// 22.21518251065506
// >>> f(2048, 3, 8*2048)
// 22.211701985875937
if (bits >= INT_MAX/32) {
OPENSSL_PUT_ERROR(RSA, RSA_R_MODULUS_TOO_LARGE);
return 0;
}
int limit = BN_is_word(e, 3) ? bits * 8 : bits * 5;
int ret = 0, tries = 0, rand_tries = 0;
BN_CTX_start(ctx);
BIGNUM *tmp = BN_CTX_get(ctx);
if (tmp == NULL) {
goto err;
}
for (;;) {
// Generate a random number of length |bits| where the bottom bit is set
// (steps 4.2, 4.3, 5.2 and 5.3) and the top bit is set (implied by the
// bound checked below in steps 4.4 and 5.5).
if (!BN_rand(out, bits, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD) ||
!BN_GENCB_call(cb, BN_GENCB_GENERATED, rand_tries++)) {
goto err;
}
if (p != NULL) {
// If |p| and |out| are too close, try again (step 5.4).
if (!bn_abs_sub_consttime(tmp, out, p, ctx)) {
goto err;
}
if (BN_cmp(tmp, pow2_bits_100) <= 0) {
continue;
}
}
// If out < 2^(bits-1)×√2, try again (steps 4.4 and 5.5). This is equivalent
// to out <= ⌊2^(bits-1)×√2⌋, or out <= sqrt2 for FIPS key sizes.
//
// For larger keys, the comparison is approximate, leaning towards
// retrying. That is, we reject a negligible fraction of primes that are
// within the FIPS bound, but we will never accept a prime outside the
// bound, ensuring the resulting RSA key is the right size.
if (BN_cmp(out, sqrt2) <= 0) {
continue;
}
// RSA key generation's bottleneck is discarding composites. If it fails
// trial division, do not bother computing a GCD or performing Miller-Rabin.
if (!bn_odd_number_is_obviously_composite(out)) {
// Check gcd(out-1, e) is one (steps 4.5 and 5.6).
int relatively_prime;
if (!BN_sub(tmp, out, BN_value_one()) ||
!bn_is_relatively_prime(&relatively_prime, tmp, e, ctx)) {
goto err;
}
if (relatively_prime) {
// Test |out| for primality (steps 4.5.1 and 5.6.1).
int is_probable_prime;
if (!BN_primality_test(&is_probable_prime, out,
BN_prime_checks_for_generation, ctx, 0, cb)) {
goto err;
}
if (is_probable_prime) {
ret = 1;
goto err;
}
}
}
// If we've tried too many times to find a prime, abort (steps 4.7 and
// 5.8).
tries++;
if (tries >= limit) {
OPENSSL_PUT_ERROR(RSA, RSA_R_TOO_MANY_ITERATIONS);
goto err;
}
if (!BN_GENCB_call(cb, 2, tries)) {
goto err;
}
}
err:
BN_CTX_end(ctx);
return ret;
}
// rsa_generate_key_impl generates an RSA key using a generalized version of
// FIPS 186-4 appendix B.3. |RSA_generate_key_fips| performs additional checks
// for FIPS-compliant key generation.
//
// This function returns one on success and zero on failure. It has a failure
// probability of about 2^-20.
static int rsa_generate_key_impl(RSA *rsa, int bits, const BIGNUM *e_value,
BN_GENCB *cb) {
// See FIPS 186-4 appendix B.3. This function implements a generalized version
// of the FIPS algorithm. |RSA_generate_key_fips| performs additional checks
// for FIPS-compliant key generation.
// Always generate RSA keys which are a multiple of 128 bits. Round |bits|
// down as needed.
bits &= ~127;
// Reject excessively small keys.
if (bits < 256) {
OPENSSL_PUT_ERROR(RSA, RSA_R_KEY_SIZE_TOO_SMALL);
return 0;
}
// Reject excessively large public exponents. Windows CryptoAPI and Go don't
// support values larger than 32 bits, so match their limits for generating
// keys. (|rsa_check_public_key| uses a slightly more conservative value, but
// we don't need to support generating such keys.)
// https://github.com/golang/go/issues/3161
// https://msdn.microsoft.com/en-us/library/aa387685(VS.85).aspx
if (BN_num_bits(e_value) > 32) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_E_VALUE);
return 0;
}
int ret = 0;
int prime_bits = bits / 2;
BN_CTX *ctx = BN_CTX_new();
if (ctx == NULL) {
goto bn_err;
}
BN_CTX_start(ctx);
BIGNUM *totient = BN_CTX_get(ctx);
BIGNUM *pm1 = BN_CTX_get(ctx);
BIGNUM *qm1 = BN_CTX_get(ctx);
BIGNUM *sqrt2 = BN_CTX_get(ctx);
BIGNUM *pow2_prime_bits_100 = BN_CTX_get(ctx);
BIGNUM *pow2_prime_bits = BN_CTX_get(ctx);
if (totient == NULL || pm1 == NULL || qm1 == NULL || sqrt2 == NULL ||
pow2_prime_bits_100 == NULL || pow2_prime_bits == NULL ||
!BN_set_bit(pow2_prime_bits_100, prime_bits - 100) ||
!BN_set_bit(pow2_prime_bits, prime_bits)) {
goto bn_err;
}
// We need the RSA components non-NULL.
if (!ensure_bignum(&rsa->n) ||
!ensure_bignum(&rsa->d) ||
!ensure_bignum(&rsa->e) ||
!ensure_bignum(&rsa->p) ||
!ensure_bignum(&rsa->q) ||
!ensure_bignum(&rsa->dmp1) ||
!ensure_bignum(&rsa->dmq1)) {
goto bn_err;
}
if (!BN_copy(rsa->e, e_value)) {
goto bn_err;
}
// Compute sqrt2 >= ⌊2^(prime_bits-1)×√2⌋.
if (!bn_set_words(sqrt2, kBoringSSLRSASqrtTwo, kBoringSSLRSASqrtTwoLen)) {
goto bn_err;
}
int sqrt2_bits = kBoringSSLRSASqrtTwoLen * BN_BITS2;
assert(sqrt2_bits == (int)BN_num_bits(sqrt2));
if (sqrt2_bits > prime_bits) {
// For key sizes up to 4096 (prime_bits = 2048), this is exactly
// ⌊2^(prime_bits-1)×√2⌋.
if (!BN_rshift(sqrt2, sqrt2, sqrt2_bits - prime_bits)) {
goto bn_err;
}
} else if (prime_bits > sqrt2_bits) {
// For key sizes beyond 4096, this is approximate. We err towards retrying
// to ensure our key is the right size and round up.
if (!BN_add_word(sqrt2, 1) ||
!BN_lshift(sqrt2, sqrt2, prime_bits - sqrt2_bits)) {
goto bn_err;
}
}
assert(prime_bits == (int)BN_num_bits(sqrt2));
do {
// Generate p and q, each of size |prime_bits|, using the steps outlined in
// appendix FIPS 186-4 appendix B.3.3.
//
// Each call to |generate_prime| fails with probability p = 2^-21. The
// probability that either call fails is 1 - (1-p)^2, which is around 2^-20.
if (!generate_prime(rsa->p, prime_bits, rsa->e, NULL, sqrt2,
pow2_prime_bits_100, ctx, cb) ||
!BN_GENCB_call(cb, 3, 0) ||
!generate_prime(rsa->q, prime_bits, rsa->e, rsa->p, sqrt2,
pow2_prime_bits_100, ctx, cb) ||
!BN_GENCB_call(cb, 3, 1)) {
goto bn_err;
}
if (BN_cmp(rsa->p, rsa->q) < 0) {
BIGNUM *tmp = rsa->p;
rsa->p = rsa->q;
rsa->q = tmp;
}
// Calculate d = e^(-1) (mod lcm(p-1, q-1)), per FIPS 186-4. This differs
// from typical RSA implementations which use (p-1)*(q-1).
//
// Note this means the size of d might reveal information about p-1 and
// q-1. However, we do operations with Chinese Remainder Theorem, so we only
// use d (mod p-1) and d (mod q-1) as exponents. Using a minimal totient
// does not affect those two values.
int no_inverse;
if (!bn_usub_consttime(pm1, rsa->p, BN_value_one()) ||
!bn_usub_consttime(qm1, rsa->q, BN_value_one()) ||
!bn_lcm_consttime(totient, pm1, qm1, ctx) ||
!bn_mod_inverse_consttime(rsa->d, &no_inverse, rsa->e, totient, ctx)) {
goto bn_err;
}
// Retry if |rsa->d| <= 2^|prime_bits|. See appendix B.3.1's guidance on
// values for d.
} while (BN_cmp(rsa->d, pow2_prime_bits) <= 0);
assert(BN_num_bits(pm1) == (unsigned)prime_bits);
assert(BN_num_bits(qm1) == (unsigned)prime_bits);
if (// Calculate n.
!bn_mul_consttime(rsa->n, rsa->p, rsa->q, ctx) ||
// Calculate d mod (p-1).
!bn_div_consttime(NULL, rsa->dmp1, rsa->d, pm1, prime_bits, ctx) ||
// Calculate d mod (q-1)
!bn_div_consttime(NULL, rsa->dmq1, rsa->d, qm1, prime_bits, ctx)) {
goto bn_err;
}
bn_set_minimal_width(rsa->n);
// Sanity-check that |rsa->n| has the specified size. This is implied by
// |generate_prime|'s bounds.
if (BN_num_bits(rsa->n) != (unsigned)bits) {
OPENSSL_PUT_ERROR(RSA, ERR_R_INTERNAL_ERROR);
goto err;
}
// Call |freeze_private_key| to compute the inverse of q mod p, by way of
// |rsa->mont_p|.
if (!freeze_private_key(rsa, ctx)) {
goto bn_err;
}
// The key generation process is complex and thus error-prone. It could be
// disastrous to generate and then use a bad key so double-check that the key
// makes sense.
if (!RSA_check_key(rsa)) {
OPENSSL_PUT_ERROR(RSA, RSA_R_INTERNAL_ERROR);
goto err;
}
ret = 1;
bn_err:
if (!ret) {
OPENSSL_PUT_ERROR(RSA, ERR_LIB_BN);
}
err:
if (ctx != NULL) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
return ret;
}
static void replace_bignum(BIGNUM **out, BIGNUM **in) {
BN_free(*out);
*out = *in;
*in = NULL;
}
static void replace_bn_mont_ctx(BN_MONT_CTX **out, BN_MONT_CTX **in) {
BN_MONT_CTX_free(*out);
*out = *in;
*in = NULL;
}
static int RSA_generate_key_ex_maybe_fips(RSA *rsa, int bits,
const BIGNUM *e_value, BN_GENCB *cb,
int check_fips) {
boringssl_ensure_rsa_self_test();
RSA *tmp = NULL;
uint32_t err;
int ret = 0;
// |rsa_generate_key_impl|'s 2^-20 failure probability is too high at scale,
// so we run the FIPS algorithm four times, bringing it down to 2^-80. We
// should just adjust the retry limit, but FIPS 186-4 prescribes that value
// and thus results in unnecessary complexity.
int failures = 0;
do {
ERR_clear_error();
// Generate into scratch space, to avoid leaving partial work on failure.
tmp = RSA_new();
if (tmp == NULL) {
goto out;
}
if (rsa_generate_key_impl(tmp, bits, e_value, cb)) {
break;
}
err = ERR_peek_error();
RSA_free(tmp);
tmp = NULL;
failures++;
// Only retry on |RSA_R_TOO_MANY_ITERATIONS|. This is so a caller-induced
// failure in |BN_GENCB_call| is still fatal.
} while (failures < 4 && ERR_GET_LIB(err) == ERR_LIB_RSA &&
ERR_GET_REASON(err) == RSA_R_TOO_MANY_ITERATIONS);
if (tmp == NULL || (check_fips && !RSA_check_fips(tmp))) {
goto out;
}
rsa_invalidate_key(rsa);
replace_bignum(&rsa->n, &tmp->n);
replace_bignum(&rsa->e, &tmp->e);
replace_bignum(&rsa->d, &tmp->d);
replace_bignum(&rsa->p, &tmp->p);
replace_bignum(&rsa->q, &tmp->q);
replace_bignum(&rsa->dmp1, &tmp->dmp1);
replace_bignum(&rsa->dmq1, &tmp->dmq1);
replace_bignum(&rsa->iqmp, &tmp->iqmp);
replace_bn_mont_ctx(&rsa->mont_n, &tmp->mont_n);
replace_bn_mont_ctx(&rsa->mont_p, &tmp->mont_p);
replace_bn_mont_ctx(&rsa->mont_q, &tmp->mont_q);
replace_bignum(&rsa->d_fixed, &tmp->d_fixed);
replace_bignum(&rsa->dmp1_fixed, &tmp->dmp1_fixed);
replace_bignum(&rsa->dmq1_fixed, &tmp->dmq1_fixed);
replace_bignum(&rsa->iqmp_mont, &tmp->iqmp_mont);
rsa->private_key_frozen = tmp->private_key_frozen;
ret = 1;
out:
RSA_free(tmp);
return ret;
}
int RSA_generate_key_ex(RSA *rsa, int bits, const BIGNUM *e_value,
BN_GENCB *cb) {
return RSA_generate_key_ex_maybe_fips(rsa, bits, e_value, cb,
/*check_fips=*/0);
}
int RSA_generate_key_fips(RSA *rsa, int bits, BN_GENCB *cb) {
// FIPS 186-4 allows 2048-bit and 3072-bit RSA keys (1024-bit and 1536-bit
// primes, respectively) with the prime generation method we use.
// Subsequently, IG A.14 stated that larger modulus sizes can be used and ACVP
// testing supports 4096 bits.
if (bits != 2048 && bits != 3072 && bits != 4096) {
OPENSSL_PUT_ERROR(RSA, RSA_R_BAD_RSA_PARAMETERS);
return 0;
}
BIGNUM *e = BN_new();
int ret = e != NULL &&
BN_set_word(e, RSA_F4) &&
RSA_generate_key_ex_maybe_fips(rsa, bits, e, cb, /*check_fips=*/1);
BN_free(e);
if (ret) {
FIPS_service_indicator_update_state();
}
return ret;
}
DEFINE_METHOD_FUNCTION(RSA_METHOD, RSA_default_method) {
// All of the methods are NULL to make it easier for the compiler/linker to
// drop unused functions. The wrapper functions will select the appropriate
// |rsa_default_*| implementation.
OPENSSL_memset(out, 0, sizeof(RSA_METHOD));
out->common.is_static = 1;
}