| /* |
| * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the OpenSSL license (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include <openssl/dh.h> |
| |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/thread.h> |
| |
| #include "../../internal.h" |
| #include "../bn/internal.h" |
| #include "../service_indicator/internal.h" |
| #include "internal.h" |
| |
| |
| DH *DH_new(void) { |
| DH *dh = reinterpret_cast<DH *>(OPENSSL_zalloc(sizeof(DH))); |
| if (dh == NULL) { |
| return NULL; |
| } |
| |
| CRYPTO_MUTEX_init(&dh->method_mont_p_lock); |
| dh->references = 1; |
| return dh; |
| } |
| |
| void DH_free(DH *dh) { |
| if (dh == NULL) { |
| return; |
| } |
| |
| if (!CRYPTO_refcount_dec_and_test_zero(&dh->references)) { |
| return; |
| } |
| |
| BN_MONT_CTX_free(dh->method_mont_p); |
| BN_clear_free(dh->p); |
| BN_clear_free(dh->g); |
| BN_clear_free(dh->q); |
| BN_clear_free(dh->pub_key); |
| BN_clear_free(dh->priv_key); |
| CRYPTO_MUTEX_cleanup(&dh->method_mont_p_lock); |
| |
| OPENSSL_free(dh); |
| } |
| |
| unsigned DH_bits(const DH *dh) { return BN_num_bits(dh->p); } |
| |
| const BIGNUM *DH_get0_pub_key(const DH *dh) { return dh->pub_key; } |
| |
| const BIGNUM *DH_get0_priv_key(const DH *dh) { return dh->priv_key; } |
| |
| const BIGNUM *DH_get0_p(const DH *dh) { return dh->p; } |
| |
| const BIGNUM *DH_get0_q(const DH *dh) { return dh->q; } |
| |
| const BIGNUM *DH_get0_g(const DH *dh) { return dh->g; } |
| |
| void DH_get0_key(const DH *dh, const BIGNUM **out_pub_key, |
| const BIGNUM **out_priv_key) { |
| if (out_pub_key != NULL) { |
| *out_pub_key = dh->pub_key; |
| } |
| if (out_priv_key != NULL) { |
| *out_priv_key = dh->priv_key; |
| } |
| } |
| |
| int DH_set0_key(DH *dh, BIGNUM *pub_key, BIGNUM *priv_key) { |
| if (pub_key != NULL) { |
| BN_free(dh->pub_key); |
| dh->pub_key = pub_key; |
| } |
| |
| if (priv_key != NULL) { |
| BN_free(dh->priv_key); |
| dh->priv_key = priv_key; |
| } |
| |
| return 1; |
| } |
| |
| void DH_get0_pqg(const DH *dh, const BIGNUM **out_p, const BIGNUM **out_q, |
| const BIGNUM **out_g) { |
| if (out_p != NULL) { |
| *out_p = dh->p; |
| } |
| if (out_q != NULL) { |
| *out_q = dh->q; |
| } |
| if (out_g != NULL) { |
| *out_g = dh->g; |
| } |
| } |
| |
| int DH_set0_pqg(DH *dh, BIGNUM *p, BIGNUM *q, BIGNUM *g) { |
| if ((dh->p == NULL && p == NULL) || (dh->g == NULL && g == NULL)) { |
| return 0; |
| } |
| |
| if (p != NULL) { |
| BN_free(dh->p); |
| dh->p = p; |
| } |
| |
| if (q != NULL) { |
| BN_free(dh->q); |
| dh->q = q; |
| } |
| |
| if (g != NULL) { |
| BN_free(dh->g); |
| dh->g = g; |
| } |
| |
| // Invalidate the cached Montgomery parameters. |
| BN_MONT_CTX_free(dh->method_mont_p); |
| dh->method_mont_p = NULL; |
| return 1; |
| } |
| |
| int DH_set_length(DH *dh, unsigned priv_length) { |
| dh->priv_length = priv_length; |
| return 1; |
| } |
| |
| int DH_generate_key(DH *dh) { |
| boringssl_ensure_ffdh_self_test(); |
| |
| if (!dh_check_params_fast(dh)) { |
| return 0; |
| } |
| |
| int ok = 0; |
| int generate_new_key = 0; |
| BN_CTX *ctx = NULL; |
| BIGNUM *pub_key = NULL, *priv_key = NULL, *priv_key_limit = NULL; |
| |
| ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| goto err; |
| } |
| |
| if (dh->priv_key == NULL) { |
| priv_key = BN_new(); |
| if (priv_key == NULL) { |
| goto err; |
| } |
| generate_new_key = 1; |
| } else { |
| priv_key = dh->priv_key; |
| } |
| |
| if (dh->pub_key == NULL) { |
| pub_key = BN_new(); |
| if (pub_key == NULL) { |
| goto err; |
| } |
| } else { |
| pub_key = dh->pub_key; |
| } |
| |
| if (!BN_MONT_CTX_set_locked(&dh->method_mont_p, &dh->method_mont_p_lock, |
| dh->p, ctx)) { |
| goto err; |
| } |
| |
| if (generate_new_key) { |
| if (dh->q) { |
| // Section 5.6.1.1.4 of SP 800-56A Rev3 generates a private key uniformly |
| // from [1, min(2^N-1, q-1)]. |
| // |
| // Although SP 800-56A Rev3 now permits a private key length N, |
| // |dh->priv_length| historically was ignored when q is available. We |
| // continue to ignore it and interpret such a configuration as N = len(q). |
| if (!BN_rand_range_ex(priv_key, 1, dh->q)) { |
| goto err; |
| } |
| } else { |
| // If q is unspecified, we expect p to be a safe prime, with g generating |
| // the (p-1)/2 subgroup. So, we use q = (p-1)/2. (If g generates a smaller |
| // prime-order subgroup, q will still divide (p-1)/2.) |
| // |
| // We set N from |dh->priv_length|. Section 5.6.1.1.4 of SP 800-56A Rev3 |
| // says to reject N > len(q), or N > num_bits(p) - 1. However, this logic |
| // originally aligned with PKCS#3, which allows num_bits(p). Instead, we |
| // clamp |dh->priv_length| before invoking the algorithm. |
| |
| // Compute M = min(2^N, q). |
| priv_key_limit = BN_new(); |
| if (priv_key_limit == NULL) { |
| goto err; |
| } |
| if (dh->priv_length == 0 || dh->priv_length >= BN_num_bits(dh->p) - 1) { |
| // M = q = (p - 1) / 2. |
| if (!BN_rshift1(priv_key_limit, dh->p)) { |
| goto err; |
| } |
| } else { |
| // M = 2^N. |
| if (!BN_set_bit(priv_key_limit, dh->priv_length)) { |
| goto err; |
| } |
| } |
| |
| // Choose a private key uniformly from [1, M-1]. |
| if (!BN_rand_range_ex(priv_key, 1, priv_key_limit)) { |
| goto err; |
| } |
| } |
| } |
| |
| if (!BN_mod_exp_mont_consttime(pub_key, dh->g, priv_key, dh->p, ctx, |
| dh->method_mont_p)) { |
| goto err; |
| } |
| |
| dh->pub_key = pub_key; |
| dh->priv_key = priv_key; |
| ok = 1; |
| |
| err: |
| if (ok != 1) { |
| OPENSSL_PUT_ERROR(DH, ERR_R_BN_LIB); |
| } |
| |
| if (dh->pub_key == NULL) { |
| BN_free(pub_key); |
| } |
| if (dh->priv_key == NULL) { |
| BN_free(priv_key); |
| } |
| BN_free(priv_key_limit); |
| BN_CTX_free(ctx); |
| return ok; |
| } |
| |
| static int dh_compute_key(DH *dh, BIGNUM *out_shared_key, |
| const BIGNUM *peers_key, BN_CTX *ctx) { |
| if (!dh_check_params_fast(dh)) { |
| return 0; |
| } |
| |
| if (dh->priv_key == NULL) { |
| OPENSSL_PUT_ERROR(DH, DH_R_NO_PRIVATE_VALUE); |
| return 0; |
| } |
| |
| int check_result; |
| if (!DH_check_pub_key(dh, peers_key, &check_result) || check_result) { |
| OPENSSL_PUT_ERROR(DH, DH_R_INVALID_PUBKEY); |
| return 0; |
| } |
| |
| int ret = 0; |
| BN_CTX_start(ctx); |
| BIGNUM *p_minus_1 = BN_CTX_get(ctx); |
| |
| if (!p_minus_1 || |
| !BN_MONT_CTX_set_locked(&dh->method_mont_p, &dh->method_mont_p_lock, |
| dh->p, ctx)) { |
| goto err; |
| } |
| |
| if (!BN_mod_exp_mont_consttime(out_shared_key, peers_key, dh->priv_key, dh->p, |
| ctx, dh->method_mont_p) || |
| !BN_copy(p_minus_1, dh->p) || !BN_sub_word(p_minus_1, 1)) { |
| OPENSSL_PUT_ERROR(DH, ERR_R_BN_LIB); |
| goto err; |
| } |
| |
| // This performs the check required by SP 800-56Ar3 section 5.7.1.1 step two. |
| if (BN_cmp_word(out_shared_key, 1) <= 0 || |
| BN_cmp(out_shared_key, p_minus_1) == 0) { |
| OPENSSL_PUT_ERROR(DH, DH_R_INVALID_PUBKEY); |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| BN_CTX_end(ctx); |
| return ret; |
| } |
| |
| int dh_compute_key_padded_no_self_test(unsigned char *out, |
| const BIGNUM *peers_key, DH *dh) { |
| BN_CTX *ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return -1; |
| } |
| BN_CTX_start(ctx); |
| |
| int dh_size = DH_size(dh); |
| int ret = -1; |
| BIGNUM *shared_key = BN_CTX_get(ctx); |
| if (shared_key && dh_compute_key(dh, shared_key, peers_key, ctx) && |
| BN_bn2bin_padded(out, dh_size, shared_key)) { |
| ret = dh_size; |
| } |
| |
| BN_CTX_end(ctx); |
| BN_CTX_free(ctx); |
| return ret; |
| } |
| |
| int DH_compute_key_padded(unsigned char *out, const BIGNUM *peers_key, DH *dh) { |
| boringssl_ensure_ffdh_self_test(); |
| |
| return dh_compute_key_padded_no_self_test(out, peers_key, dh); |
| } |
| |
| int DH_compute_key(unsigned char *out, const BIGNUM *peers_key, DH *dh) { |
| boringssl_ensure_ffdh_self_test(); |
| |
| BN_CTX *ctx = BN_CTX_new(); |
| if (ctx == NULL) { |
| return -1; |
| } |
| BN_CTX_start(ctx); |
| |
| int ret = -1; |
| BIGNUM *shared_key = BN_CTX_get(ctx); |
| if (shared_key && dh_compute_key(dh, shared_key, peers_key, ctx)) { |
| // A |BIGNUM|'s byte count fits in |int|. |
| ret = (int)BN_bn2bin(shared_key, out); |
| } |
| |
| BN_CTX_end(ctx); |
| BN_CTX_free(ctx); |
| return ret; |
| } |
| |
| int DH_compute_key_hashed(DH *dh, uint8_t *out, size_t *out_len, |
| size_t max_out_len, const BIGNUM *peers_key, |
| const EVP_MD *digest) { |
| *out_len = SIZE_MAX; |
| |
| const size_t digest_len = EVP_MD_size(digest); |
| if (digest_len > max_out_len) { |
| return 0; |
| } |
| |
| FIPS_service_indicator_lock_state(); |
| |
| int ret = 0; |
| const size_t dh_len = DH_size(dh); |
| uint8_t *shared_bytes = reinterpret_cast<uint8_t *>(OPENSSL_malloc(dh_len)); |
| unsigned out_len_unsigned; |
| if (!shared_bytes || |
| // SP 800-56A is ambiguous about whether the output should be padded prior |
| // to revision three. But revision three, section C.1, awkwardly specifies |
| // padding to the length of p. |
| // |
| // Also, padded output avoids side-channels, so is always strongly |
| // advisable. |
| DH_compute_key_padded(shared_bytes, peers_key, dh) != (int)dh_len || |
| !EVP_Digest(shared_bytes, dh_len, out, &out_len_unsigned, digest, NULL) || |
| out_len_unsigned != digest_len) { |
| goto err; |
| } |
| |
| *out_len = digest_len; |
| ret = 1; |
| |
| err: |
| FIPS_service_indicator_unlock_state(); |
| OPENSSL_free(shared_bytes); |
| return ret; |
| } |
| |
| int DH_size(const DH *dh) { return BN_num_bytes(dh->p); } |
| |
| unsigned DH_num_bits(const DH *dh) { return BN_num_bits(dh->p); } |
| |
| int DH_up_ref(DH *dh) { |
| CRYPTO_refcount_inc(&dh->references); |
| return 1; |
| } |
| |
| DH *DH_get_rfc7919_2048(void) { |
| // This is the prime from https://tools.ietf.org/html/rfc7919#appendix-A.1, |
| // which is specifically approved for FIPS in appendix D of SP 800-56Ar3. |
| static const BN_ULONG kFFDHE2048Data[] = { |
| TOBN(0xffffffff, 0xffffffff), TOBN(0x886b4238, 0x61285c97), |
| TOBN(0xc6f34a26, 0xc1b2effa), TOBN(0xc58ef183, 0x7d1683b2), |
| TOBN(0x3bb5fcbc, 0x2ec22005), TOBN(0xc3fe3b1b, 0x4c6fad73), |
| TOBN(0x8e4f1232, 0xeef28183), TOBN(0x9172fe9c, 0xe98583ff), |
| TOBN(0xc03404cd, 0x28342f61), TOBN(0x9e02fce1, 0xcdf7e2ec), |
| TOBN(0x0b07a7c8, 0xee0a6d70), TOBN(0xae56ede7, 0x6372bb19), |
| TOBN(0x1d4f42a3, 0xde394df4), TOBN(0xb96adab7, 0x60d7f468), |
| TOBN(0xd108a94b, 0xb2c8e3fb), TOBN(0xbc0ab182, 0xb324fb61), |
| TOBN(0x30acca4f, 0x483a797a), TOBN(0x1df158a1, 0x36ade735), |
| TOBN(0xe2a689da, 0xf3efe872), TOBN(0x984f0c70, 0xe0e68b77), |
| TOBN(0xb557135e, 0x7f57c935), TOBN(0x85636555, 0x3ded1af3), |
| TOBN(0x2433f51f, 0x5f066ed0), TOBN(0xd3df1ed5, 0xd5fd6561), |
| TOBN(0xf681b202, 0xaec4617a), TOBN(0x7d2fe363, 0x630c75d8), |
| TOBN(0xcc939dce, 0x249b3ef9), TOBN(0xa9e13641, 0x146433fb), |
| TOBN(0xd8b9c583, 0xce2d3695), TOBN(0xafdc5620, 0x273d3cf1), |
| TOBN(0xadf85458, 0xa2bb4a9a), TOBN(0xffffffff, 0xffffffff), |
| }; |
| |
| BIGNUM *const ffdhe2048_p = BN_new(); |
| BIGNUM *const ffdhe2048_q = BN_new(); |
| BIGNUM *const ffdhe2048_g = BN_new(); |
| DH *const dh = DH_new(); |
| |
| if (!ffdhe2048_p || !ffdhe2048_q || !ffdhe2048_g || !dh) { |
| goto err; |
| } |
| |
| bn_set_static_words(ffdhe2048_p, kFFDHE2048Data, |
| OPENSSL_ARRAY_SIZE(kFFDHE2048Data)); |
| |
| if (!BN_rshift1(ffdhe2048_q, ffdhe2048_p) || !BN_set_word(ffdhe2048_g, 2) || |
| !DH_set0_pqg(dh, ffdhe2048_p, ffdhe2048_q, ffdhe2048_g)) { |
| goto err; |
| } |
| |
| return dh; |
| |
| err: |
| BN_free(ffdhe2048_p); |
| BN_free(ffdhe2048_q); |
| BN_free(ffdhe2048_g); |
| DH_free(dh); |
| return NULL; |
| } |