| // Copyright 2016 Brian Smith. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include <openssl/bn.h> | 
 |  | 
 | #include <assert.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "../../internal.h" | 
 |  | 
 |  | 
 | static uint64_t bn_neg_inv_mod_u64(uint64_t n); | 
 |  | 
 | static_assert(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2, | 
 |               "BN_MONT_CTX_N0_LIMBS value is invalid"); | 
 | static_assert(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == sizeof(uint64_t), | 
 |               "uint64_t is insufficient precision for n0"); | 
 |  | 
 | uint64_t bn_mont_n0(const BIGNUM *n) { | 
 |   // These conditions are checked by the caller, |BN_MONT_CTX_set| or | 
 |   // |BN_MONT_CTX_new_consttime|. | 
 |   assert(!BN_is_zero(n)); | 
 |   assert(!BN_is_negative(n)); | 
 |   assert(BN_is_odd(n)); | 
 |  | 
 |   // r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) ensures that we can do integer | 
 |   // division by |r| by simply ignoring |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, | 
 |   // we can calculate values modulo |r| by just looking at the lowest | 
 |   // |BN_MONT_CTX_N0_LIMBS| limbs. This is what makes Montgomery multiplication | 
 |   // efficient. | 
 |   // | 
 |   // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography | 
 |   // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a | 
 |   // multi-limb Montgomery multiplication of |a * b (mod n)|, given the | 
 |   // unreduced product |t == a * b|, we repeatedly calculate: | 
 |   // | 
 |   //    t1 := t % r         |t1| is |t|'s lowest limb (see previous paragraph). | 
 |   //    t2 := t1*n0*n | 
 |   //    t3 := t + t2 | 
 |   //    t := t3 / r         copy all limbs of |t3| except the lowest to |t|. | 
 |   // | 
 |   // In the last step, it would only make sense to ignore the lowest limb of | 
 |   // |t3| if it were zero. The middle steps ensure that this is the case: | 
 |   // | 
 |   //                            t3 ==  0 (mod r) | 
 |   //                        t + t2 ==  0 (mod r) | 
 |   //                   t + t1*n0*n ==  0 (mod r) | 
 |   //                       t1*n0*n == -t (mod r) | 
 |   //                        t*n0*n == -t (mod r) | 
 |   //                          n0*n == -1 (mod r) | 
 |   //                            n0 == -1/n (mod r) | 
 |   // | 
 |   // Thus, in each iteration of the loop, we multiply by the constant factor | 
 |   // |n0|, the negative inverse of n (mod r). | 
 |  | 
 |   // n_mod_r = n % r. As explained above, this is done by taking the lowest | 
 |   // |BN_MONT_CTX_N0_LIMBS| limbs of |n|. | 
 |   uint64_t n_mod_r = n->d[0]; | 
 | #if BN_MONT_CTX_N0_LIMBS == 2 | 
 |   if (n->width > 1) { | 
 |     n_mod_r |= (uint64_t)n->d[1] << BN_BITS2; | 
 |   } | 
 | #endif | 
 |  | 
 |   // A 64-bit inverse is enough precision to invert by r. (r is also currently | 
 |   // always 2^64.) | 
 |   return bn_neg_inv_mod_u64(n_mod_r); | 
 | } | 
 |  | 
 | // bn_neg_inv_mod_u64 calculates -1/n mod 2^64. |n| must be odd. | 
 | static uint64_t bn_neg_inv_mod_u64(uint64_t n) { | 
 |   // This is a modified version of the technique described in | 
 |   // https://crypto.stackexchange.com/a/47496 and | 
 |   // https://bearssl.org/bigint.html#montgomery-reduction-and-multiplication. We | 
 |   // modify it to compute the negative inverse directly so that, on 32-bit, | 
 |   // negation happens before we go to double-word precision, instead of at the | 
 |   // end. | 
 |   // | 
 |   // If r = -n^-1 (mod m), then r * (r*n + 2) is -n^(-1) (mod m^2). This is | 
 |   // because, for some k, r*n = k*m - 1. Then: | 
 |   // | 
 |   //     r*n * (r*n + 2) = (k*m - 1) * (k*m + 1) = k^2*m^2 - 1 = -1 (mod m^2) | 
 |   // | 
 |   // We start with the negative inverse mod some small power of 2 and square the | 
 |   // modulus up to 2^64. n = n^-1 (mod 8) for all odd n, so r = -n (mod 8). From | 
 |   // there, four iterations are enough for 2^32 and five for 2^64. | 
 |   assert(n % 2 == 1); | 
 | #if defined(OPENSSL_32_BIT) | 
 |   // Compute the result mod 2^32 first. | 
 |   uint32_t n32 = static_cast<uint32_t>(n); | 
 |   uint32_t r = 0u - n32; | 
 |   for (int i = 0; i < 4; i++) { | 
 |     r *= r * n32 + 2; | 
 |   } | 
 |   // Run one more double-word iteration to get the result mod 2^64. | 
 |   return r * (r * n + 2); | 
 | #else | 
 |   uint64_t r = 0u - n; | 
 |   for (int i = 0; i < 5; i++) { | 
 |     r *= r * n + 2; | 
 |   } | 
 |   return r; | 
 | #endif | 
 | } | 
 |  | 
 | int bn_mont_ctx_set_RR_consttime(BN_MONT_CTX *mont, BN_CTX *ctx) { | 
 |   assert(!BN_is_zero(&mont->N)); | 
 |   assert(!BN_is_negative(&mont->N)); | 
 |   assert(BN_is_odd(&mont->N)); | 
 |   assert(bn_minimal_width(&mont->N) == mont->N.width); | 
 |  | 
 |   unsigned n_bits = BN_num_bits(&mont->N); | 
 |   assert(n_bits != 0); | 
 |   if (n_bits == 1) { | 
 |     BN_zero(&mont->RR); | 
 |     return bn_resize_words(&mont->RR, mont->N.width); | 
 |   } | 
 |  | 
 |   unsigned lgBigR = mont->N.width * BN_BITS2; | 
 |   assert(lgBigR >= n_bits); | 
 |  | 
 |   // RR is R, or 2^lgBigR, in the Montgomery domain. We can compute 2 in the | 
 |   // Montgomery domain, 2R or 2^(lgBigR+1), and then use Montgomery | 
 |   // square-and-multiply to exponentiate. | 
 |   // | 
 |   // The square steps take 2^n R to (2^n)*(2^n) R = 2^2n R. This is the same as | 
 |   // doubling 2^n R, n times (doubling any x, n times, computes 2^n * x). When n | 
 |   // is below some threshold, doubling is faster; when above, squaring is | 
 |   // faster. From benchmarking various 32-bit and 64-bit architectures, the word | 
 |   // count seems to work well as a threshold. (Doubling scales linearly and | 
 |   // Montgomery reduction scales quadratically, so the threshold should scale | 
 |   // roughly linearly.) | 
 |   // | 
 |   // The multiply steps take 2^n R to 2*2^n R = 2^(n+1) R. It is faster to | 
 |   // double the value instead, so the square-and-multiply exponentiation would | 
 |   // become square-and-double. However, when using the word count as the | 
 |   // threshold, it turns out that no multiply/double steps will be needed at | 
 |   // all, because squaring any x, i times, computes x^(2^i): | 
 |   // | 
 |   //   (2^threshold)^(2^BN_BITS2_LG) R | 
 |   //   (2^mont->N.width)^BN_BITS2 R | 
 |   // = 2^(mont->N.width*BN_BITS2) R | 
 |   // = 2^lgBigR R | 
 |   // = RR | 
 |   int threshold = mont->N.width; | 
 |  | 
 |   // Calculate 2^threshold R = 2^(threshold + lgBigR) by doubling. The | 
 |   // first n_bits - 1 doubles can be skipped because we don't need to reduce. | 
 |   if (!BN_set_bit(&mont->RR, n_bits - 1) || | 
 |       !bn_mod_lshift_consttime(&mont->RR, &mont->RR, | 
 |                                threshold + (lgBigR - (n_bits - 1)), | 
 |                                &mont->N, ctx)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // The above steps are the same regardless of the threshold. The steps below | 
 |   // need to be modified if the threshold changes. | 
 |   assert(threshold == mont->N.width); | 
 |   for (unsigned i = 0; i < BN_BITS2_LG; i++) { | 
 |     if (!BN_mod_mul_montgomery(&mont->RR, &mont->RR, &mont->RR, mont, ctx)) { | 
 |       return 0; | 
 |     } | 
 |   } | 
 |  | 
 |   return bn_resize_words(&mont->RR, mont->N.width); | 
 | } |