| // Copyright 2018 The BoringSSL Authors | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include <openssl/bn.h> | 
 |  | 
 | #include <assert.h> | 
 |  | 
 | #include "internal.h" | 
 |  | 
 |  | 
 | // The following functions use a Barrett reduction variant to avoid leaking the | 
 | // numerator. See http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html | 
 | // | 
 | // We use 32-bit numerator and 16-bit divisor for simplicity. This allows | 
 | // computing |m| and |q| without architecture-specific code. | 
 |  | 
 | // mod_u16 returns |n| mod |d|. |p| and |m| are the "magic numbers" for |d| (see | 
 | // reference). For proof of correctness in Coq, see | 
 | // https://github.com/davidben/fiat-crypto/blob/barrett/src/Arithmetic/BarrettReduction/RidiculousFish.v | 
 | // Note the Coq version of |mod_u16| additionally includes the computation of | 
 | // |p| and |m| from |bn_mod_u16_consttime| below. | 
 | static uint16_t mod_u16(uint32_t n, uint16_t d, uint32_t p, uint32_t m) { | 
 |   // Compute floor(n/d) per steps 3 through 5. | 
 |   uint32_t q = ((uint64_t)m * n) >> 32; | 
 |   // Note there is a typo in the reference. We right-shift by one, not two. | 
 |   uint32_t t = ((n - q) >> 1) + q; | 
 |   t = t >> (p - 1); | 
 |  | 
 |   // Multiply and subtract to get the remainder. | 
 |   n -= d * t; | 
 |   declassify_assert(n < d); | 
 |   return n; | 
 | } | 
 |  | 
 | // shift_and_add_mod_u16 returns |r| * 2^32 + |a| mod |d|. |p| and |m| are the | 
 | // "magic numbers" for |d| (see reference). | 
 | static uint16_t shift_and_add_mod_u16(uint16_t r, uint32_t a, uint16_t d, | 
 |                                       uint32_t p, uint32_t m) { | 
 |   // Incorporate |a| in two 16-bit chunks. | 
 |   uint32_t t = r; | 
 |   t <<= 16; | 
 |   t |= a >> 16; | 
 |   t = mod_u16(t, d, p, m); | 
 |  | 
 |   t <<= 16; | 
 |   t |= a & 0xffff; | 
 |   t = mod_u16(t, d, p, m); | 
 |   return t; | 
 | } | 
 |  | 
 | uint16_t bn_mod_u16_consttime(const BIGNUM *bn, uint16_t d) { | 
 |   if (d <= 1) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   // Compute the "magic numbers" for |d|. See steps 1 and 2. | 
 |   // This computes p = ceil(log_2(d)). | 
 |   uint32_t p = BN_num_bits_word(d - 1); | 
 |   // This operation is not constant-time, but |p| and |d| are public values. | 
 |   // Note that |p| is at most 16, so the computation fits in |uint64_t|. | 
 |   assert(p <= 16); | 
 |   uint32_t m = (uint32_t)(((UINT64_C(1) << (32 + p)) + d - 1) / d); | 
 |  | 
 |   uint16_t ret = 0; | 
 |   for (int i = bn->width - 1; i >= 0; i--) { | 
 | #if BN_BITS2 == 32 | 
 |     ret = shift_and_add_mod_u16(ret, bn->d[i], d, p, m); | 
 | #elif BN_BITS2 == 64 | 
 |     ret = shift_and_add_mod_u16(ret, bn->d[i] >> 32, d, p, m); | 
 |     ret = shift_and_add_mod_u16(ret, bn->d[i] & 0xffffffff, d, p, m); | 
 | #else | 
 | #error "Unknown BN_ULONG size" | 
 | #endif | 
 |   } | 
 |   return ret; | 
 | } |