blob: 51fee73f6e31d026fc64a829e63027f2fddabbbc [file] [log] [blame]
/*
* Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/evp.h>
#include <openssl/bio.h>
#include <openssl/bn.h>
#include <openssl/dsa.h>
#include <openssl/ec.h>
#include <openssl/ec_key.h>
#include <openssl/mem.h>
#include <openssl/rsa.h>
#include "../fipsmodule/rsa/internal.h"
#include "../internal.h"
static int print_hex(BIO *bp, const uint8_t *data, size_t len, int off) {
for (size_t i = 0; i < len; i++) {
if ((i % 15) == 0) {
if (BIO_puts(bp, "\n") <= 0 || //
!BIO_indent(bp, off + 4, 128)) {
return 0;
}
}
if (BIO_printf(bp, "%02x%s", data[i], (i + 1 == len) ? "" : ":") <= 0) {
return 0;
}
}
if (BIO_write(bp, "\n", 1) <= 0) {
return 0;
}
return 1;
}
static int bn_print(BIO *bp, const char *name, const BIGNUM *num, int off) {
if (num == NULL) {
return 1;
}
if (!BIO_indent(bp, off, 128)) {
return 0;
}
if (BN_is_zero(num)) {
if (BIO_printf(bp, "%s 0\n", name) <= 0) {
return 0;
}
return 1;
}
uint64_t u64;
if (BN_get_u64(num, &u64)) {
const char *neg = BN_is_negative(num) ? "-" : "";
return BIO_printf(bp, "%s %s%" PRIu64 " (%s0x%" PRIx64 ")\n", name, neg,
u64, neg, u64) > 0;
}
if (BIO_printf(bp, "%s%s", name,
(BN_is_negative(num)) ? " (Negative)" : "") <= 0) {
return 0;
}
// Print |num| in hex, adding a leading zero, as in ASN.1, if the high bit
// is set.
//
// TODO(davidben): Do we need to do this? We already print "(Negative)" above
// and negative values are never valid in keys anyway.
size_t len = BN_num_bytes(num);
uint8_t *buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(len + 1));
if (buf == NULL) {
return 0;
}
buf[0] = 0;
BN_bn2bin(num, buf + 1);
int ret;
if (len > 0 && (buf[1] & 0x80) != 0) {
// Print the whole buffer.
ret = print_hex(bp, buf, len + 1, off);
} else {
// Skip the leading zero.
ret = print_hex(bp, buf + 1, len, off);
}
OPENSSL_free(buf);
return ret;
}
// RSA keys.
static int do_rsa_print(BIO *out, const RSA *rsa, int off,
int include_private) {
int mod_len = 0;
if (rsa->n != NULL) {
mod_len = BN_num_bits(rsa->n);
}
if (!BIO_indent(out, off, 128)) {
return 0;
}
const char *s, *str;
if (include_private && rsa->d) {
if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) {
return 0;
}
str = "modulus:";
s = "publicExponent:";
} else {
if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) {
return 0;
}
str = "Modulus:";
s = "Exponent:";
}
if (!bn_print(out, str, rsa->n, off) || !bn_print(out, s, rsa->e, off)) {
return 0;
}
if (include_private) {
if (!bn_print(out, "privateExponent:", rsa->d, off) ||
!bn_print(out, "prime1:", rsa->p, off) ||
!bn_print(out, "prime2:", rsa->q, off) ||
!bn_print(out, "exponent1:", rsa->dmp1, off) ||
!bn_print(out, "exponent2:", rsa->dmq1, off) ||
!bn_print(out, "coefficient:", rsa->iqmp, off)) {
return 0;
}
}
return 1;
}
static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) {
return do_rsa_print(bp, EVP_PKEY_get0_RSA(pkey), indent, 0);
}
static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) {
return do_rsa_print(bp, EVP_PKEY_get0_RSA(pkey), indent, 1);
}
// DSA keys.
static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) {
const BIGNUM *priv_key = NULL;
if (ptype == 2) {
priv_key = DSA_get0_priv_key(x);
}
const BIGNUM *pub_key = NULL;
if (ptype > 0) {
pub_key = DSA_get0_pub_key(x);
}
const char *ktype = "DSA-Parameters";
if (ptype == 2) {
ktype = "Private-Key";
} else if (ptype == 1) {
ktype = "Public-Key";
}
if (!BIO_indent(bp, off, 128) ||
BIO_printf(bp, "%s: (%u bit)\n", ktype, BN_num_bits(DSA_get0_p(x))) <=
0 ||
// |priv_key| and |pub_key| may be NULL, in which case |bn_print| will
// silently skip them.
!bn_print(bp, "priv:", priv_key, off) ||
!bn_print(bp, "pub:", pub_key, off) ||
!bn_print(bp, "P:", DSA_get0_p(x), off) ||
!bn_print(bp, "Q:", DSA_get0_q(x), off) ||
!bn_print(bp, "G:", DSA_get0_g(x), off)) {
return 0;
}
return 1;
}
static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent) {
return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 0);
}
static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) {
return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 1);
}
static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) {
return do_dsa_print(bp, EVP_PKEY_get0_DSA(pkey), indent, 2);
}
// EC keys.
static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, int ktype) {
const EC_GROUP *group;
if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
const char *ecstr;
if (ktype == 2) {
ecstr = "Private-Key";
} else if (ktype == 1) {
ecstr = "Public-Key";
} else {
ecstr = "ECDSA-Parameters";
}
if (!BIO_indent(bp, off, 128)) {
return 0;
}
int curve_name = EC_GROUP_get_curve_name(group);
if (BIO_printf(bp, "%s: (%s)\n", ecstr,
curve_name == NID_undef
? "unknown curve"
: EC_curve_nid2nist(curve_name)) <= 0) {
return 0;
}
if (ktype == 2) {
const BIGNUM *priv_key = EC_KEY_get0_private_key(x);
if (priv_key != NULL && //
!bn_print(bp, "priv:", priv_key, off)) {
return 0;
}
}
if (ktype > 0 && EC_KEY_get0_public_key(x) != NULL) {
uint8_t *pub = NULL;
size_t pub_len = EC_KEY_key2buf(x, EC_KEY_get_conv_form(x), &pub, NULL);
if (pub_len == 0) {
return 0;
}
int ret = BIO_indent(bp, off, 128) && //
BIO_puts(bp, "pub:") > 0 && //
print_hex(bp, pub, pub_len, off);
OPENSSL_free(pub);
if (!ret) {
return 0;
}
}
return 1;
}
static int eckey_param_print(BIO *bp, const EVP_PKEY *pkey, int indent) {
return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 0);
}
static int eckey_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent) {
return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 1);
}
static int eckey_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent) {
return do_EC_KEY_print(bp, EVP_PKEY_get0_EC_KEY(pkey), indent, 2);
}
typedef struct {
int type;
int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent);
int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent);
int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent);
} EVP_PKEY_PRINT_METHOD;
static EVP_PKEY_PRINT_METHOD kPrintMethods[] = {
{
EVP_PKEY_RSA,
rsa_pub_print,
rsa_priv_print,
NULL /* param_print */,
},
{
EVP_PKEY_DSA,
dsa_pub_print,
dsa_priv_print,
dsa_param_print,
},
{
EVP_PKEY_EC,
eckey_pub_print,
eckey_priv_print,
eckey_param_print,
},
};
static size_t kPrintMethodsLen = OPENSSL_ARRAY_SIZE(kPrintMethods);
static EVP_PKEY_PRINT_METHOD *find_method(int type) {
for (size_t i = 0; i < kPrintMethodsLen; i++) {
if (kPrintMethods[i].type == type) {
return &kPrintMethods[i];
}
}
return NULL;
}
static int print_unsupported(BIO *out, const EVP_PKEY *pkey, int indent,
const char *kstr) {
BIO_indent(out, indent, 128);
BIO_printf(out, "%s algorithm unsupported\n", kstr);
return 1;
}
int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *pctx) {
EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey));
if (method != NULL && method->pub_print != NULL) {
return method->pub_print(out, pkey, indent);
}
return print_unsupported(out, pkey, indent, "Public Key");
}
int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *pctx) {
EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey));
if (method != NULL && method->priv_print != NULL) {
return method->priv_print(out, pkey, indent);
}
return print_unsupported(out, pkey, indent, "Private Key");
}
int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *pctx) {
EVP_PKEY_PRINT_METHOD *method = find_method(EVP_PKEY_id(pkey));
if (method != NULL && method->param_print != NULL) {
return method->param_print(out, pkey, indent);
}
return print_unsupported(out, pkey, indent, "Parameters");
}