| // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //     https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 |  | 
 | #include <openssl/evp.h> | 
 |  | 
 | #include <string.h> | 
 |  | 
 | #include <array> | 
 |  | 
 | #include <openssl/bytestring.h> | 
 | #include <openssl/dsa.h> | 
 | #include <openssl/ec_key.h> | 
 | #include <openssl/err.h> | 
 | #include <openssl/rsa.h> | 
 | #include <openssl/span.h> | 
 |  | 
 | #include "internal.h" | 
 | #include "../bytestring/internal.h" | 
 | #include "../internal.h" | 
 |  | 
 |  | 
 | EVP_PKEY *EVP_PKEY_from_subject_public_key_info(const uint8_t *in, size_t len, | 
 |                                                 const EVP_PKEY_ALG *const *algs, | 
 |                                                 size_t num_algs) { | 
 |   // Parse the SubjectPublicKeyInfo. | 
 |   CBS cbs, spki, algorithm, oid, key; | 
 |   CBS_init(&cbs, in, len); | 
 |   if (!CBS_get_asn1(&cbs, &spki, CBS_ASN1_SEQUENCE) || | 
 |       !CBS_get_asn1(&spki, &algorithm, CBS_ASN1_SEQUENCE) || | 
 |       !CBS_get_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || | 
 |       !CBS_get_asn1(&spki, &key, CBS_ASN1_BITSTRING) || | 
 |       CBS_len(&spki) != 0 ||  // | 
 |       CBS_len(&cbs) != 0) { | 
 |     OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); | 
 |   if (ret == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |   for (const EVP_PKEY_ALG *alg : bssl::Span(algs, num_algs)) { | 
 |     if (alg->method->pub_decode == nullptr || | 
 |         bssl::Span(alg->method->oid, alg->method->oid_len) != oid) { | 
 |       continue; | 
 |     } | 
 |     // Every key type we support encodes the key as a byte string with the same | 
 |     // conversion to BIT STRING, so perform that common conversion ahead of | 
 |     // time, but only after the OID is recognized as supported. | 
 |     CBS key_bytes = key; | 
 |     uint8_t padding; | 
 |     if (!CBS_get_u8(&key_bytes, &padding) || padding != 0) { | 
 |       OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
 |       return nullptr; | 
 |     } | 
 |     CBS params = algorithm; | 
 |     switch (alg->method->pub_decode(alg, ret.get(), ¶ms, &key_bytes)) { | 
 |       case evp_decode_error: | 
 |         return nullptr; | 
 |       case evp_decode_ok: | 
 |         return ret.release(); | 
 |       case evp_decode_unsupported: | 
 |         // Continue trying other algorithms. | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key) { | 
 |   if (key->ameth == nullptr || key->ameth->pub_encode == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return key->ameth->pub_encode(cbb, key); | 
 | } | 
 |  | 
 | EVP_PKEY *EVP_PKEY_from_private_key_info(const uint8_t *in, size_t len, | 
 |                                          const EVP_PKEY_ALG *const *algs, | 
 |                                          size_t num_algs) { | 
 |   // Parse the PrivateKeyInfo. | 
 |   CBS cbs, pkcs8, oid, algorithm, key; | 
 |   uint64_t version; | 
 |   CBS_init(&cbs, in, len); | 
 |   if (!CBS_get_asn1(&cbs, &pkcs8, CBS_ASN1_SEQUENCE) || | 
 |       !CBS_get_asn1_uint64(&pkcs8, &version) || version != 0 || | 
 |       !CBS_get_asn1(&pkcs8, &algorithm, CBS_ASN1_SEQUENCE) || | 
 |       !CBS_get_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) || | 
 |       !CBS_get_asn1(&pkcs8, &key, CBS_ASN1_OCTETSTRING) || | 
 |       // A PrivateKeyInfo ends with a SET of Attributes which we ignore. | 
 |       CBS_len(&cbs) != 0) { | 
 |     OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); | 
 |   if (ret == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |   for (const EVP_PKEY_ALG *alg : bssl::Span(algs, num_algs)) { | 
 |     if (alg->method->priv_decode == nullptr || | 
 |         bssl::Span(alg->method->oid, alg->method->oid_len) != oid) { | 
 |       continue; | 
 |     } | 
 |     CBS params = algorithm, key_copy = key; | 
 |     switch (alg->method->priv_decode(alg, ret.get(), ¶ms, &key_copy)) { | 
 |       case evp_decode_error: | 
 |         return nullptr; | 
 |       case evp_decode_ok: | 
 |         return ret.release(); | 
 |       case evp_decode_unsupported: | 
 |         // Continue trying other algorithms. | 
 |         break; | 
 |     } | 
 |   } | 
 |  | 
 |   OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); | 
 |   return nullptr; | 
 | } | 
 |  | 
 | int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key) { | 
 |   if (key->ameth == nullptr || key->ameth->priv_encode == nullptr) { | 
 |     OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM); | 
 |     return 0; | 
 |   } | 
 |  | 
 |   return key->ameth->priv_encode(cbb, key); | 
 | } | 
 |  | 
 | EVP_PKEY *EVP_parse_public_key(CBS *cbs) { | 
 |   CBS elem; | 
 |   if (!CBS_get_asn1_element(cbs, &elem, CBS_ASN1_SEQUENCE)) { | 
 |     OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   auto algs = bssl::GetDefaultEVPAlgorithms(); | 
 |   return EVP_PKEY_from_subject_public_key_info(CBS_data(&elem), CBS_len(&elem), | 
 |                                                algs.data(), algs.size()); | 
 | } | 
 |  | 
 | EVP_PKEY *EVP_parse_private_key(CBS *cbs) { | 
 |   CBS elem; | 
 |   if (!CBS_get_asn1_element(cbs, &elem, CBS_ASN1_SEQUENCE)) { | 
 |     OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   auto algs = bssl::GetDefaultEVPAlgorithms(); | 
 |   return EVP_PKEY_from_private_key_info(CBS_data(&elem), CBS_len(&elem), | 
 |                                         algs.data(), algs.size()); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<EVP_PKEY> old_priv_decode(CBS *cbs, int type) { | 
 |   bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); | 
 |   if (ret == nullptr) { | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   switch (type) { | 
 |     case EVP_PKEY_EC: { | 
 |       bssl::UniquePtr<EC_KEY> ec_key(EC_KEY_parse_private_key(cbs, nullptr)); | 
 |       if (ec_key == nullptr) { | 
 |         return nullptr; | 
 |       } | 
 |       EVP_PKEY_assign_EC_KEY(ret.get(), ec_key.release()); | 
 |       return ret; | 
 |     } | 
 |     case EVP_PKEY_DSA: { | 
 |       bssl::UniquePtr<DSA> dsa(DSA_parse_private_key(cbs)); | 
 |       if (dsa == nullptr) { | 
 |         return nullptr; | 
 |       } | 
 |       EVP_PKEY_assign_DSA(ret.get(), dsa.release()); | 
 |       return ret; | 
 |     } | 
 |     case EVP_PKEY_RSA: { | 
 |       bssl::UniquePtr<RSA> rsa(RSA_parse_private_key(cbs)); | 
 |       if (rsa == nullptr) { | 
 |         return nullptr; | 
 |       } | 
 |       EVP_PKEY_assign_RSA(ret.get(), rsa.release()); | 
 |       return ret; | 
 |     } | 
 |     default: | 
 |       OPENSSL_PUT_ERROR(EVP, EVP_R_UNKNOWN_PUBLIC_KEY_TYPE); | 
 |       return nullptr; | 
 |   } | 
 | } | 
 |  | 
 | EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp, | 
 |                          long len) { | 
 |   return bssl::D2IFromCBS( | 
 |       out, inp, len, [&](CBS *cbs) -> bssl::UniquePtr<EVP_PKEY> { | 
 |         // Parse with the legacy format. | 
 |         CBS copy = *cbs; | 
 |         bssl::UniquePtr<EVP_PKEY> ret = old_priv_decode(cbs, type); | 
 |         if (ret == nullptr) { | 
 |           // Try again with PKCS#8. | 
 |           ERR_clear_error(); | 
 |           *cbs = copy; | 
 |           ret.reset(EVP_parse_private_key(cbs)); | 
 |           if (ret == nullptr) { | 
 |             return nullptr; | 
 |           } | 
 |           if (EVP_PKEY_id(ret.get()) != type) { | 
 |             OPENSSL_PUT_ERROR(EVP, EVP_R_DIFFERENT_KEY_TYPES); | 
 |             return nullptr; | 
 |           } | 
 |         } | 
 |         return ret; | 
 |       }); | 
 | } | 
 |  | 
 | // num_elements parses one SEQUENCE from |in| and returns the number of elements | 
 | // in it. On parse error, it returns zero. | 
 | static size_t num_elements(const uint8_t *in, size_t in_len) { | 
 |   CBS cbs, sequence; | 
 |   CBS_init(&cbs, in, (size_t)in_len); | 
 |  | 
 |   if (!CBS_get_asn1(&cbs, &sequence, CBS_ASN1_SEQUENCE)) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   size_t count = 0; | 
 |   while (CBS_len(&sequence) > 0) { | 
 |     if (!CBS_get_any_asn1_element(&sequence, nullptr, nullptr, nullptr)) { | 
 |       return 0; | 
 |     } | 
 |  | 
 |     count++; | 
 |   } | 
 |  | 
 |   return count; | 
 | } | 
 |  | 
 | EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len) { | 
 |   if (len < 0) { | 
 |     OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
 |     return nullptr; | 
 |   } | 
 |  | 
 |   // Parse the input as a PKCS#8 PrivateKeyInfo. | 
 |   CBS cbs; | 
 |   CBS_init(&cbs, *inp, (size_t)len); | 
 |   EVP_PKEY *ret = EVP_parse_private_key(&cbs); | 
 |   if (ret != nullptr) { | 
 |     if (out != nullptr) { | 
 |       EVP_PKEY_free(*out); | 
 |       *out = ret; | 
 |     } | 
 |     *inp = CBS_data(&cbs); | 
 |     return ret; | 
 |   } | 
 |   ERR_clear_error(); | 
 |  | 
 |   // Count the elements to determine the legacy key format. | 
 |   switch (num_elements(*inp, (size_t)len)) { | 
 |     case 4: | 
 |       return d2i_PrivateKey(EVP_PKEY_EC, out, inp, len); | 
 |  | 
 |     case 6: | 
 |       return d2i_PrivateKey(EVP_PKEY_DSA, out, inp, len); | 
 |  | 
 |     default: | 
 |       return d2i_PrivateKey(EVP_PKEY_RSA, out, inp, len); | 
 |   } | 
 | } | 
 |  | 
 | int i2d_PublicKey(const EVP_PKEY *key, uint8_t **outp) { | 
 |   switch (EVP_PKEY_id(key)) { | 
 |     case EVP_PKEY_RSA: | 
 |       return i2d_RSAPublicKey(EVP_PKEY_get0_RSA(key), outp); | 
 |     case EVP_PKEY_DSA: | 
 |       return i2d_DSAPublicKey(EVP_PKEY_get0_DSA(key), outp); | 
 |     case EVP_PKEY_EC: | 
 |       return i2o_ECPublicKey(EVP_PKEY_get0_EC_KEY(key), outp); | 
 |     default: | 
 |       OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); | 
 |       return -1; | 
 |   } | 
 | } | 
 |  | 
 | EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **out, const uint8_t **inp, | 
 |                         long len) { | 
 |   return bssl::D2IFromCBS( | 
 |       out, inp, len, [&](CBS *cbs) -> bssl::UniquePtr<EVP_PKEY> { | 
 |         bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new()); | 
 |         if (ret == nullptr) { | 
 |           return nullptr; | 
 |         } | 
 |         switch (type) { | 
 |           case EVP_PKEY_RSA: { | 
 |             bssl::UniquePtr<RSA> rsa(RSA_parse_public_key(cbs)); | 
 |             if (rsa == nullptr) { | 
 |               return nullptr; | 
 |             } | 
 |             EVP_PKEY_assign_RSA(ret.get(), rsa.release()); | 
 |             return ret; | 
 |           } | 
 |  | 
 |           // Unlike OpenSSL, we do not support EC keys with this API. The raw EC | 
 |           // public key serialization requires knowing the group. In OpenSSL, | 
 |           // calling this function with |EVP_PKEY_EC| and setting |out| to | 
 |           // nullptr does not work. It requires |*out| to include a | 
 |           // partially-initialized |EVP_PKEY| to extract the group. | 
 |           default: | 
 |             OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE); | 
 |             return nullptr; | 
 |         } | 
 |       }); | 
 | } | 
 |  | 
 | EVP_PKEY *d2i_PUBKEY(EVP_PKEY **out, const uint8_t **inp, long len) { | 
 |   return bssl::D2IFromCBS(out, inp, len, EVP_parse_public_key); | 
 | } | 
 |  | 
 | int i2d_PUBKEY(const EVP_PKEY *pkey, uint8_t **outp) { | 
 |   if (pkey == nullptr) { | 
 |     return 0; | 
 |   } | 
 |   return bssl::I2DFromCBB( | 
 |       /*initial_capacity=*/128, outp, | 
 |       [&](CBB *cbb) -> bool { return EVP_marshal_public_key(cbb, pkey); }); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<EVP_PKEY> parse_spki( | 
 |     CBS *cbs, bssl::Span<const EVP_PKEY_ALG *const> algs) { | 
 |   CBS spki; | 
 |   if (!CBS_get_asn1_element(cbs, &spki, CBS_ASN1_SEQUENCE)) { | 
 |     OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR); | 
 |     return nullptr; | 
 |   } | 
 |   return bssl::UniquePtr<EVP_PKEY>(EVP_PKEY_from_subject_public_key_info( | 
 |       CBS_data(&spki), CBS_len(&spki), algs.data(), algs.size())); | 
 | } | 
 |  | 
 | static bssl::UniquePtr<EVP_PKEY> parse_spki(CBS *cbs, const EVP_PKEY_ALG *alg) { | 
 |   return parse_spki(cbs, bssl::Span(&alg, 1)); | 
 | } | 
 |  | 
 | RSA *d2i_RSA_PUBKEY(RSA **out, const uint8_t **inp, long len) { | 
 |   return bssl::D2IFromCBS(out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<RSA> { | 
 |     bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, EVP_pkey_rsa()); | 
 |     if (pkey == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |     return bssl::UniquePtr<RSA>(EVP_PKEY_get1_RSA(pkey.get())); | 
 |   }); | 
 | } | 
 |  | 
 | int i2d_RSA_PUBKEY(const RSA *rsa, uint8_t **outp) { | 
 |   if (rsa == nullptr) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
 |   if (pkey == nullptr || | 
 |       !EVP_PKEY_set1_RSA(pkey.get(), const_cast<RSA *>(rsa))) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   return i2d_PUBKEY(pkey.get(), outp); | 
 | } | 
 |  | 
 | DSA *d2i_DSA_PUBKEY(DSA **out, const uint8_t **inp, long len) { | 
 |   return bssl::D2IFromCBS(out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<DSA> { | 
 |     bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, EVP_pkey_dsa()); | 
 |     if (pkey == nullptr) { | 
 |       return nullptr; | 
 |     } | 
 |     return bssl::UniquePtr<DSA>(EVP_PKEY_get1_DSA(pkey.get())); | 
 |   }); | 
 | } | 
 |  | 
 | int i2d_DSA_PUBKEY(const DSA *dsa, uint8_t **outp) { | 
 |   if (dsa == nullptr) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
 |   if (pkey == nullptr || | 
 |       !EVP_PKEY_set1_DSA(pkey.get(), const_cast<DSA *>(dsa))) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   return i2d_PUBKEY(pkey.get(), outp); | 
 | } | 
 |  | 
 | EC_KEY *d2i_EC_PUBKEY(EC_KEY **out, const uint8_t **inp, long len) { | 
 |   return bssl::D2IFromCBS( | 
 |       out, inp, len, [](CBS *cbs) -> bssl::UniquePtr<EC_KEY> { | 
 |         const EVP_PKEY_ALG *const algs[] = { | 
 |             EVP_pkey_ec_p224(), EVP_pkey_ec_p256(), EVP_pkey_ec_p384(), | 
 |             EVP_pkey_ec_p521()}; | 
 |         bssl::UniquePtr<EVP_PKEY> pkey = parse_spki(cbs, algs); | 
 |         if (pkey == nullptr) { | 
 |           return nullptr; | 
 |         } | 
 |         return bssl::UniquePtr<EC_KEY>(EVP_PKEY_get1_EC_KEY(pkey.get())); | 
 |       }); | 
 | } | 
 |  | 
 | int i2d_EC_PUBKEY(const EC_KEY *ec_key, uint8_t **outp) { | 
 |   if (ec_key == nullptr) { | 
 |     return 0; | 
 |   } | 
 |  | 
 |   bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new()); | 
 |   if (pkey == nullptr || | 
 |       !EVP_PKEY_set1_EC_KEY(pkey.get(), const_cast<EC_KEY *>(ec_key))) { | 
 |     return -1; | 
 |   } | 
 |  | 
 |   return i2d_PUBKEY(pkey.get(), outp); | 
 | } |