| /* |
| * Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 2015 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| */ |
| |
| #include <openssl/evp.h> |
| |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| OPENSSL_MSVC_PRAGMA(warning(push)) |
| OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) |
| |
| #include <map> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| OPENSSL_MSVC_PRAGMA(warning(pop)) |
| |
| #include <gtest/gtest.h> |
| |
| #include <openssl/buf.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/crypto.h> |
| #include <openssl/digest.h> |
| #include <openssl/dsa.h> |
| #include <openssl/err.h> |
| #include <openssl/rsa.h> |
| |
| #include "../test/file_test.h" |
| #include "../test/test_util.h" |
| #include "../test/wycheproof_util.h" |
| |
| |
| // evp_test dispatches between multiple test types. PrivateKey tests take a key |
| // name parameter and single block, decode it as a PEM private key, and save it |
| // under that key name. Decrypt, Sign, and Verify tests take a previously |
| // imported key name as parameter and test their respective operations. |
| |
| static const EVP_MD *GetDigest(FileTest *t, const std::string &name) { |
| if (name == "MD5") { |
| return EVP_md5(); |
| } else if (name == "SHA1") { |
| return EVP_sha1(); |
| } else if (name == "SHA224") { |
| return EVP_sha224(); |
| } else if (name == "SHA256") { |
| return EVP_sha256(); |
| } else if (name == "SHA384") { |
| return EVP_sha384(); |
| } else if (name == "SHA512") { |
| return EVP_sha512(); |
| } |
| ADD_FAILURE() << "Unknown digest: " << name; |
| return nullptr; |
| } |
| |
| static int GetKeyType(FileTest *t, const std::string &name) { |
| if (name == "RSA") { |
| return EVP_PKEY_RSA; |
| } |
| if (name == "EC") { |
| return EVP_PKEY_EC; |
| } |
| if (name == "DSA") { |
| return EVP_PKEY_DSA; |
| } |
| if (name == "Ed25519") { |
| return EVP_PKEY_ED25519; |
| } |
| ADD_FAILURE() << "Unknown key type: " << name; |
| return EVP_PKEY_NONE; |
| } |
| |
| static int GetRSAPadding(FileTest *t, int *out, const std::string &name) { |
| if (name == "PKCS1") { |
| *out = RSA_PKCS1_PADDING; |
| return true; |
| } |
| if (name == "PSS") { |
| *out = RSA_PKCS1_PSS_PADDING; |
| return true; |
| } |
| if (name == "OAEP") { |
| *out = RSA_PKCS1_OAEP_PADDING; |
| return true; |
| } |
| ADD_FAILURE() << "Unknown RSA padding mode: " << name; |
| return false; |
| } |
| |
| using KeyMap = std::map<std::string, bssl::UniquePtr<EVP_PKEY>>; |
| |
| static bool ImportKey(FileTest *t, KeyMap *key_map, |
| EVP_PKEY *(*parse_func)(CBS *cbs), |
| int (*marshal_func)(CBB *cbb, const EVP_PKEY *key)) { |
| std::vector<uint8_t> input; |
| if (!t->GetBytes(&input, "Input")) { |
| return false; |
| } |
| |
| CBS cbs; |
| CBS_init(&cbs, input.data(), input.size()); |
| bssl::UniquePtr<EVP_PKEY> pkey(parse_func(&cbs)); |
| if (!pkey) { |
| return false; |
| } |
| |
| std::string key_type; |
| if (!t->GetAttribute(&key_type, "Type")) { |
| return false; |
| } |
| EXPECT_EQ(GetKeyType(t, key_type), EVP_PKEY_id(pkey.get())); |
| |
| // The key must re-encode correctly. |
| bssl::ScopedCBB cbb; |
| uint8_t *der; |
| size_t der_len; |
| if (!CBB_init(cbb.get(), 0) || |
| !marshal_func(cbb.get(), pkey.get()) || |
| !CBB_finish(cbb.get(), &der, &der_len)) { |
| return false; |
| } |
| bssl::UniquePtr<uint8_t> free_der(der); |
| |
| std::vector<uint8_t> output = input; |
| if (t->HasAttribute("Output") && |
| !t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| EXPECT_EQ(Bytes(output), Bytes(der, der_len)) << "Re-encoding the key did not match."; |
| |
| // Save the key for future tests. |
| const std::string &key_name = t->GetParameter(); |
| EXPECT_EQ(0u, key_map->count(key_name)) << "Duplicate key: " << key_name; |
| (*key_map)[key_name] = std::move(pkey); |
| return true; |
| } |
| |
| // SetupContext configures |ctx| based on attributes in |t|, with the exception |
| // of the signing digest which must be configured externally. |
| static bool SetupContext(FileTest *t, EVP_PKEY_CTX *ctx) { |
| if (t->HasAttribute("RSAPadding")) { |
| int padding; |
| if (!GetRSAPadding(t, &padding, t->GetAttributeOrDie("RSAPadding")) || |
| !EVP_PKEY_CTX_set_rsa_padding(ctx, padding)) { |
| return false; |
| } |
| } |
| if (t->HasAttribute("PSSSaltLength") && |
| !EVP_PKEY_CTX_set_rsa_pss_saltlen( |
| ctx, atoi(t->GetAttributeOrDie("PSSSaltLength").c_str()))) { |
| return false; |
| } |
| if (t->HasAttribute("MGF1Digest")) { |
| const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("MGF1Digest")); |
| if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_mgf1_md(ctx, digest)) { |
| return false; |
| } |
| } |
| if (t->HasAttribute("OAEPDigest")) { |
| const EVP_MD *digest = GetDigest(t, t->GetAttributeOrDie("OAEPDigest")); |
| if (digest == nullptr || !EVP_PKEY_CTX_set_rsa_oaep_md(ctx, digest)) { |
| return false; |
| } |
| } |
| if (t->HasAttribute("OAEPLabel")) { |
| std::vector<uint8_t> label; |
| if (!t->GetBytes(&label, "OAEPLabel")) { |
| return false; |
| } |
| // For historical reasons, |EVP_PKEY_CTX_set0_rsa_oaep_label| expects to be |
| // take ownership of the input. |
| bssl::UniquePtr<uint8_t> buf( |
| reinterpret_cast<uint8_t *>(BUF_memdup(label.data(), label.size()))); |
| if (!buf || |
| !EVP_PKEY_CTX_set0_rsa_oaep_label(ctx, buf.get(), label.size())) { |
| return false; |
| } |
| buf.release(); |
| } |
| return true; |
| } |
| |
| static bool TestEVP(FileTest *t, KeyMap *key_map) { |
| if (t->GetType() == "PrivateKey") { |
| return ImportKey(t, key_map, EVP_parse_private_key, |
| EVP_marshal_private_key); |
| } |
| |
| if (t->GetType() == "PublicKey") { |
| return ImportKey(t, key_map, EVP_parse_public_key, EVP_marshal_public_key); |
| } |
| |
| int (*key_op_init)(EVP_PKEY_CTX *ctx) = nullptr; |
| int (*key_op)(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *out_len, |
| const uint8_t *in, size_t in_len) = nullptr; |
| int (*md_op_init)(EVP_MD_CTX * ctx, EVP_PKEY_CTX * *pctx, const EVP_MD *type, |
| ENGINE *e, EVP_PKEY *pkey) = nullptr; |
| bool is_verify = false; |
| if (t->GetType() == "Decrypt") { |
| key_op_init = EVP_PKEY_decrypt_init; |
| key_op = EVP_PKEY_decrypt; |
| } else if (t->GetType() == "Sign") { |
| key_op_init = EVP_PKEY_sign_init; |
| key_op = EVP_PKEY_sign; |
| } else if (t->GetType() == "Verify") { |
| key_op_init = EVP_PKEY_verify_init; |
| is_verify = true; |
| } else if (t->GetType() == "SignMessage") { |
| md_op_init = EVP_DigestSignInit; |
| } else if (t->GetType() == "VerifyMessage") { |
| md_op_init = EVP_DigestVerifyInit; |
| is_verify = true; |
| } else if (t->GetType() == "Encrypt") { |
| key_op_init = EVP_PKEY_encrypt_init; |
| key_op = EVP_PKEY_encrypt; |
| } else { |
| ADD_FAILURE() << "Unknown test " << t->GetType(); |
| return false; |
| } |
| |
| // Load the key. |
| const std::string &key_name = t->GetParameter(); |
| if (key_map->count(key_name) == 0) { |
| ADD_FAILURE() << "Could not find key " << key_name; |
| return false; |
| } |
| EVP_PKEY *key = (*key_map)[key_name].get(); |
| |
| const EVP_MD *digest = nullptr; |
| if (t->HasAttribute("Digest")) { |
| digest = GetDigest(t, t->GetAttributeOrDie("Digest")); |
| if (digest == nullptr) { |
| return false; |
| } |
| } |
| |
| // For verify tests, the "output" is the signature. Read it now so that, for |
| // tests which expect a failure in SetupContext, the attribute is still |
| // consumed. |
| std::vector<uint8_t> input, actual, output; |
| if (!t->GetBytes(&input, "Input") || |
| (is_verify && !t->GetBytes(&output, "Output"))) { |
| return false; |
| } |
| |
| if (md_op_init) { |
| bssl::ScopedEVP_MD_CTX ctx; |
| EVP_PKEY_CTX *pctx; |
| if (!md_op_init(ctx.get(), &pctx, digest, nullptr, key) || |
| !SetupContext(t, pctx)) { |
| return false; |
| } |
| |
| if (is_verify) { |
| return !!EVP_DigestVerify(ctx.get(), output.data(), output.size(), |
| input.data(), input.size()); |
| } |
| |
| size_t len; |
| if (!EVP_DigestSign(ctx.get(), nullptr, &len, input.data(), input.size())) { |
| return false; |
| } |
| actual.resize(len); |
| if (!EVP_DigestSign(ctx.get(), actual.data(), &len, input.data(), |
| input.size()) || |
| !t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| actual.resize(len); |
| EXPECT_EQ(Bytes(output), Bytes(actual)); |
| return true; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY_CTX> ctx(EVP_PKEY_CTX_new(key, nullptr)); |
| if (!ctx || |
| !key_op_init(ctx.get()) || |
| (digest != nullptr && |
| !EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) || |
| !SetupContext(t, ctx.get())) { |
| return false; |
| } |
| |
| if (is_verify) { |
| return !!EVP_PKEY_verify(ctx.get(), output.data(), output.size(), |
| input.data(), input.size()); |
| } |
| |
| size_t len; |
| if (!key_op(ctx.get(), nullptr, &len, input.data(), input.size())) { |
| return false; |
| } |
| actual.resize(len); |
| if (!key_op(ctx.get(), actual.data(), &len, input.data(), input.size())) { |
| return false; |
| } |
| |
| // Encryption is non-deterministic, so we check by decrypting. |
| if (t->HasAttribute("CheckDecrypt")) { |
| size_t plaintext_len; |
| ctx.reset(EVP_PKEY_CTX_new(key, nullptr)); |
| if (!ctx || |
| !EVP_PKEY_decrypt_init(ctx.get()) || |
| (digest != nullptr && |
| !EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) || |
| !SetupContext(t, ctx.get()) || |
| !EVP_PKEY_decrypt(ctx.get(), nullptr, &plaintext_len, actual.data(), |
| actual.size())) { |
| return false; |
| } |
| output.resize(plaintext_len); |
| if (!EVP_PKEY_decrypt(ctx.get(), output.data(), &plaintext_len, |
| actual.data(), actual.size())) { |
| ADD_FAILURE() << "Could not decrypt result."; |
| return false; |
| } |
| output.resize(plaintext_len); |
| EXPECT_EQ(Bytes(input), Bytes(output)) << "Decrypted result mismatch."; |
| return true; |
| } |
| |
| // Some signature schemes are non-deterministic, so we check by verifying. |
| if (t->HasAttribute("CheckVerify")) { |
| ctx.reset(EVP_PKEY_CTX_new(key, nullptr)); |
| if (!ctx || |
| !EVP_PKEY_verify_init(ctx.get()) || |
| (digest != nullptr && |
| !EVP_PKEY_CTX_set_signature_md(ctx.get(), digest)) || |
| !SetupContext(t, ctx.get())) { |
| return false; |
| } |
| if (t->HasAttribute("VerifyPSSSaltLength") && |
| !EVP_PKEY_CTX_set_rsa_pss_saltlen( |
| ctx.get(), |
| atoi(t->GetAttributeOrDie("VerifyPSSSaltLength").c_str()))) { |
| return false; |
| } |
| EXPECT_TRUE(EVP_PKEY_verify(ctx.get(), actual.data(), actual.size(), |
| input.data(), input.size())) |
| << "Could not verify result."; |
| return true; |
| } |
| |
| // By default, check by comparing the result against Output. |
| if (!t->GetBytes(&output, "Output")) { |
| return false; |
| } |
| actual.resize(len); |
| EXPECT_EQ(Bytes(output), Bytes(actual)); |
| return true; |
| } |
| |
| TEST(EVPTest, TestVectors) { |
| KeyMap key_map; |
| FileTestGTest("crypto/evp/evp_tests.txt", [&](FileTest *t) { |
| bool result = TestEVP(t, &key_map); |
| if (t->HasAttribute("Error")) { |
| ASSERT_FALSE(result) << "Operation unexpectedly succeeded."; |
| uint32_t err = ERR_peek_error(); |
| EXPECT_EQ(t->GetAttributeOrDie("Error"), ERR_reason_error_string(err)); |
| } else if (!result) { |
| ADD_FAILURE() << "Operation unexpectedly failed."; |
| } |
| }); |
| } |
| |
| static void RunWycheproofTest(const char *path) { |
| SCOPED_TRACE(path); |
| FileTestGTest(path, [](FileTest *t) { |
| t->IgnoreInstruction("key.type"); |
| // Extra ECDSA fields. |
| t->IgnoreInstruction("key.curve"); |
| t->IgnoreInstruction("key.keySize"); |
| t->IgnoreInstruction("key.wx"); |
| t->IgnoreInstruction("key.wy"); |
| t->IgnoreInstruction("key.uncompressed"); |
| // Extra RSA fields. |
| t->IgnoreInstruction("e"); |
| t->IgnoreInstruction("keyAsn"); |
| t->IgnoreInstruction("keysize"); |
| t->IgnoreInstruction("n"); |
| t->IgnoreAttribute("padding"); |
| // Extra EdDSA fields. |
| t->IgnoreInstruction("key.pk"); |
| t->IgnoreInstruction("key.sk"); |
| // Extra DSA fields. |
| t->IgnoreInstruction("key.g"); |
| t->IgnoreInstruction("key.p"); |
| t->IgnoreInstruction("key.q"); |
| t->IgnoreInstruction("key.y"); |
| |
| std::vector<uint8_t> der; |
| ASSERT_TRUE(t->GetInstructionBytes(&der, "keyDer")); |
| CBS cbs; |
| CBS_init(&cbs, der.data(), der.size()); |
| bssl::UniquePtr<EVP_PKEY> key(EVP_parse_public_key(&cbs)); |
| ASSERT_TRUE(key); |
| |
| const EVP_MD *md = nullptr; |
| if (t->HasInstruction("sha")) { |
| md = GetWycheproofDigest(t, "sha", true); |
| ASSERT_TRUE(md); |
| } |
| std::vector<uint8_t> msg; |
| ASSERT_TRUE(t->GetBytes(&msg, "msg")); |
| std::vector<uint8_t> sig; |
| ASSERT_TRUE(t->GetBytes(&sig, "sig")); |
| WycheproofResult result; |
| ASSERT_TRUE(GetWycheproofResult(t, &result)); |
| |
| if (EVP_PKEY_id(key.get()) == EVP_PKEY_DSA) { |
| // DSA is deprecated and is not usable via EVP. |
| DSA *dsa = EVP_PKEY_get0_DSA(key.get()); |
| uint8_t digest[EVP_MAX_MD_SIZE]; |
| unsigned digest_len; |
| ASSERT_TRUE( |
| EVP_Digest(msg.data(), msg.size(), digest, &digest_len, md, nullptr)); |
| int valid; |
| bool sig_ok = DSA_check_signature(&valid, digest, digest_len, sig.data(), |
| sig.size(), dsa) && |
| valid; |
| if (result == WycheproofResult::kValid) { |
| EXPECT_TRUE(sig_ok); |
| } else if (result == WycheproofResult::kInvalid) { |
| EXPECT_FALSE(sig_ok); |
| } else { |
| // this is a legacy signature, which may or may not be accepted. |
| } |
| } else { |
| bssl::ScopedEVP_MD_CTX ctx; |
| ASSERT_TRUE( |
| EVP_DigestVerifyInit(ctx.get(), nullptr, md, nullptr, key.get())); |
| int ret = EVP_DigestVerify(ctx.get(), sig.data(), sig.size(), msg.data(), |
| msg.size()); |
| if (result == WycheproofResult::kValid) { |
| EXPECT_EQ(1, ret); |
| } else if (result == WycheproofResult::kInvalid) { |
| EXPECT_EQ(0, ret); |
| } else { |
| // this is a legacy signature, which may or may not be accepted. |
| EXPECT_TRUE(ret == 1 || ret == 0); |
| } |
| } |
| }); |
| } |
| |
| TEST(EVPTest, Wycheproof) { |
| RunWycheproofTest("third_party/wycheproof_testvectors/dsa_test.txt"); |
| RunWycheproofTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha224_test.txt"); |
| RunWycheproofTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp224r1_sha256_test.txt"); |
| RunWycheproofTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp256r1_sha256_test.txt"); |
| RunWycheproofTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha384_test.txt"); |
| RunWycheproofTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp384r1_sha512_test.txt"); |
| RunWycheproofTest( |
| "third_party/wycheproof_testvectors/ecdsa_secp521r1_sha512_test.txt"); |
| RunWycheproofTest("third_party/wycheproof_testvectors/eddsa_test.txt"); |
| RunWycheproofTest( |
| "third_party/wycheproof_testvectors/rsa_signature_test.txt"); |
| } |